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Some problems of arranging nearby things together

Plan a road trip through multiple parks

https://www.us-parks.com/road-trip.html

https://www.us-parks.com/road-trip.html


Some problems of arranging nearby things together

Schedule package deliveries

https://commons.wikimedia.org/wiki/File:Amazon_Prime_Delivery_Trucks_(44155424640).jpg

https://commons.wikimedia.org/wiki/File:Amazon_Prime_Delivery_Trucks_(44155424640).jpg


Some problems of arranging nearby things together

Plan the motion of a 3d printer

https://commons.wikimedia.org/wiki/File:Project_Arc_(7308324).jpeg

https://commons.wikimedia.org/wiki/File:Project_Arc_(7308324).jpeg


Some problems of arranging nearby things together

Product comparison

Reorder rows and
columns so similar
ones are adjacent



Some problems of arranging nearby things together

Reassembling small (possibly overlapping)
pieces of a document into the original
unshredded document

This is how DNA sequencing works!



The traveling salesperson problem

For distances:

Input is a matrix of distances between
n points, satisfying

▶ Symmetric: D[i , j ] = D[j , i ]

▶ Positive: D[i , j ] ≥ 0 (0 ⇒ i = j)

▶ Triangle inequality:
D[i , j ] + D[j , k] ≥ D[i , k]

Goal: find cyclic order using each point
exactly once, minimizing sum of
distances between consecutive points

For graphs:

Input: connected undirected graph
with edge lengths > 0

Goal: find a walk that visits each
vertex at least once, returning to start
vertex, minimizing sum of edge lengths



Converting between matrices and graphs

To convert a distance matrix D into an equivalent graph problem:

▶ Use a complete graph: an undirected graph with an edge between each pair of
vertices

▶ Weight each edge by the distance between endpoints

▶ If you get a solution with repeated vertices, omit them

▶ Triangle inequality implies that omitting repetitions cannot increase tour length

To convert a graph into an equivalent distance matrix:

▶ Compute matrix of all-pairs shortest path distances

▶ Turn any tour of the resulting matrix into a walk in the graph by concatenating
together shortest paths between consecutive vertices in the tour



Hardness

TSP is NP-hard. Even for graphs with all weights = 1, finding a walk with total length
≤ n is NP-complete.

▶ NP: yes-no problems that can be solved by a brute force search over solutions of
polynomial size. For weight-1 TSP, try all length-n walks, checking whether any
walk visits all vertices.

▶ NP-complete: In NP and all other NP problems can be translated into it. E.g., we
could find an input to a Boolean circuit that makes the circuit output true by
translating into an equivalent TSP problem and then using a TSP solver.

▶ TSP itself is not in NP because it’s not a yes-no problem. That’s why it’s called
NP-hard rather than NP-complete.



Implications of hardness

All NP-complete problems including TSP can be solved by exponential-time brute force
search algorithms

Some of them have faster (still exponential time!) algorithms based on other methods;
we will see one for TSP next time

None have known polynomial-time algorithms; if you found one, it would give you a
general method for automatically translating all brute force searches into much more

efficient algorithms.

We think a polynomial-time algorithm does not exist
but we don’t know how to prove that.

Finding a polynomial-time algorithm or proving its nonexistence would win a
$1,000,000 prize



Approximation algorithms

If we can’t solve it quickly and exactly, what can we do?

▶ Solve it slowly and exactly (next time)

▶ Solve it quickly and less exactly, but still with some guarantees on solution quality
(this time)

Approximation algorithm:

▶ Algorithm for producing inexact solutions

▶ Should run in polynomial time

▶ Should produce solution of guaranteed quality



How to measure approximation quality?

Approximation ratio of an algorithm: The largest possible value

algorithm’s solution quality/optimal solution quality

that any worst-case input to the algorithm can cause it to produce
(for minimization problems like TSP where bigger ratios are bad)

Goal: Get the approximation ratio is as close to 1 as possible



Overview of TSP approximation

▶ Approximation ratio 2 is easy using minimum spanning trees

▶ Approximation ratio 3
2 known since 1976 using minimum spanning trees +

matching [Christofides 1976; Serdyukov 1978]

▶ Recent breakthrough: 3
2 − 1

1036
[Karlin et al. 2021]

Very rough sketch: random spanning trees + matching

▶ Several special cases have better approximations, e.g. for unweighted graphs (or
all edge lengths 1) there is an algorithm with ratio 7

5 [Sebő and Vygen 2014]

▶ For the general problem, NP-hard to approximate with ratio better than 123
122

[Karpinski et al. 2015]

Still a big gap between 123
122 and 3

2 − 1
1036

open for research



2-approximation

Use graph version of TSP, so repeated vertices are allowed

Find a minimum spanning tree

Make two copies of each tree edge ⇒ multigraph, all degrees even

Find an Euler tour and return it as the approximate TSP tour



Why is this a 2-approximation?

Approximate tour = 2(minimum spanning tree)

Optimal tour ≥ path formed by removing any one of its edges

But this path is a spanning tree!

So length of minimum spanning tree ≤ length of optimal tour

Put it together: approximate tour ≤ 2 optimal tour



3/2-approximation, step 1

Construct a minimum spanning tree

Identify its odd vertices
(odd by their degree in the spanning tree, not in the whole graph)

Before using an Euler tour, we need to make their degrees even, more cheaply than
doubling every edge in the whole tree



3/2-approximation, step 2

Handshaking lemma: The number of odd vertices we found is even

Connect them in pairs by shortest paths from the original graph
choosing pairings in a way that minimizes the sum of path lengths
(this is a problem of matching; we will discuss matching in week 9)



3/2-approximation, step 3

Put minimum spanning tree and paired paths together in one graph
(or multigraph if the paths and spanning tree have shared edges)

Find an Euler tour and return it as the approximate TSP tour



Why is it a 3/2-approximation?

Minimum spanning tree ≤ optimal tour as before

There are two ways to pair consecutive odd vertices in the optimal tour, by paths
around the tour. Together they add to whole tour

The pairing by shortest paths that we find is at least as good as the best of these two
ways ⇒ ≤ 1

2 optimal tour



Morals of the story

Equivalence between graph and distance versions of traveling salesperson

What it means for traveling salesperson to be NP-hard:

We don’t know how to solve it in polynomial time

Although we think there is no polynomial-time solution, we also don’t know how to
prove it is impossible

The general concept of an approximation algorithm, and the 2- and
3/2-approximations for traveling salesperson
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