CS 163 & CS 265: Graph Algorithms

Week 3: Shortest paths

Lecture 3a: Relaxation algorithms

**David Eppstein**University of California, Irvine

Winter Quarter, 2025



## Typical application of shortest paths

### Routing in street networks

- Vertices: Points where multiple paths meet (e.g. street intersections)
- Edges: Possible routes between these points (segments of streets)
- Weights (length): physical distance or travel time All positive numbers!

Goal: Find a path from start vertex to destination vertex with minimum total weight



# Critical path planning as a shortest path problem

Negate all the edge lengths!



Longest (critical) path in original scheduling graph = shortest (most negative) path in the graph with negated weights

# Another application with negative weights

"Tramp steamer" (cargo ship) route planning



CC-BY image London Woolwich Tramp steamer geograph-3080372-by-Ben-Brooksbank from Wikimedia commons

- Vertices = ports the ship could travel between
- ► Edges = trips from one port to another (directed)
- Weight of an edge = expenses profit (positive: net loss, negative: net profit)

Goal: Find a cycle (path from any vertex back to itself) with negative total weight

# Shortest walk might not exist

Walk: Like a path but allowing repeated edges and/or vertices



Length of s—t walks:

- Avoid loop: 5 + 4 + 7 = 16
- ▶ Once around cycle: 14
- ► Twice around cycle: 12
- **.**..

Problem: Cycle with negative total length (Exactly what we want to find in the tramp steamer problem)

If some path from s to t touches a negative cycle then going many times around the cycle gives arbitrarily short walks

# Shortest path might be hard to find

Paths do not allow repetitions, so there are only finitely many paths (at most  $\sum_{i=1}^{n} {n \choose i} i!$  of them)

Therefore, shortest path is well-defined and always exists

But when all weights are -1, shortest (most negative) paths use all vertices, when this is possible: "Hamiltonian path". NP-complete to find these, so efficient algorithms are believed not to exist.



## Overview of algorithms

All our algorithms for shortest paths require that the input does not have any negative cycle

For these inputs, shortest path = shortest walk

When the input is a directed acyclic graph: O(m) time using topological ordering (last time)

When all edge lengths are  $\geq 0$ : Dijkstra's algorithm, near-linear time

Directed graphs with negative edges but no negative cycles: Bellman–Ford algorithm, O(mn) can also find negative cycles when one exists

## **Shortest path trees**

In graphs without negative cycles, paths from a single source vertex s to all other vertices form a tree

Parent of x is the second-to-last vertex y on the shortest path from s to x

Shortest path from s to x must use the shortest path to y, because if not then shortest path to y plus edge  $y \rightarrow x$  would be a better path



E.g. shortest path from s to e is  $s \longrightarrow d \longrightarrow e$  parent(e) = second to last vertex, d

## Single source shortest path problem

Input: graph with edge lengths (can be directed or undirected) plus starting vertex s

### Outputs

- Tree of shortest paths from s to all other reachable vertices
- Distances (lengths of paths) to all vertices (+∞ if unreachable)



Represent output by two decorations for each vertex x:

$$P[x]$$
 = parent vertex of  $x$   
 $D[x]$  = distance from start vertex to  $x$ 

# **Relaxation algorithms**

Maintain two decorations P[x] and D[x] for each vertex x

```
They will not always be the correct values (correct: P = \text{parent in shortest path tree}, D = \text{length of shortest path})
```

#### Invariants:

- ▶ D[x] is the length of some path to x (therefore, it is always  $\geq$  the correct value)
- $\triangleright$  P[x] is the second-to-last vertex on a path of length  $\leq D$

Gradually find shorter paths and decrease D[x] until everything becomes correct

# Relaxation algorithms (more detail)

Initialize: P[x] = None; D[x] = 0 if x = s,  $+\infty$  otherwise

"Relax" edge uv: test whether path to u + edge uv gives a better path to v, and if so update the decorations for v

```
def relax(u,v):
    if D[u] + length(edge uv) < D[v]:
        D[v] = D[u] + length(edge uv)
        P[v] = u</pre>
```

### Key insights:

- ► Initialization gives s the correct decorations (its distance and parent in the actual shortest path tree)
- ► If shortest path to v goes through edge uv and u already has correct decorations, then relax(uv) gives v correct decorations
- Other calls to relax are harmless (maintain invariant that  $D[v] \ge$  actual distance)

## Intuitive picture of a relaxation algorithm



# Shortest paths in DAGs (from last time)

Two versions, both equally good:

```
initialize D, P
for v in topological order:
   for incoming edges uv:
        relax(u,v)
        initialize D, P
   for v in topological order:
        for outgoing edges vw:
        relax(v,w)
```

By induction on topological ordering, whenever we relax edge xy, its first vertex x will already have the correct values of D and P

So if we relax an edge in the shortest path tree, correct part grows

Total time is O(m)

# Bellman-Ford algorithm

```
initialize D, P
repeat n-1 times:
    for each edge uv in the whole graph:
        relax(u,v)
```

Each time through the outer loop relaxes at least one shortest-path-tree edge from a correct vertex to an incorrect vertex

Total time is O(mn)

[Ford 1956; Bellman 1958; Moore 1959]

# Bellman-Ford example



Initialize: P[all] = None, D[s] = 0,  $D[a] = D[b] = D[c] = \infty$ 

#### Outer loop #1

- relax ab: no change
- relax bc: no change
- relax ca: no change
- relax sa:
- D[a]=20 P[a]=s
- relax sc:
  D[c]=30 P[c]=s

### Outer loop #2

- relax ab: D[b]=32 P[b]=a
- relax bc: no change
  - relax ca:
  - D[a]=10 P[a]=c
- relax sa: no change
- relax sc: no change

### Outer loop #3

- relax ab: D[b]=22 P[b]=a
- relax bc: no change
- relax ca: no change
- relax sa: no change
- relax sc: no change

### Bellman-Ford variations

#### Better in practice but all lead to same O-notation:

- ▶ Stop outer loop early if no relax step changes anything
- Only relax edges from changed vertices
- ▶ Better order of edges in inner loop ⇒ fewer outer loops
  - Yen 1970: Split graph edges into two DAGs and topologically order them, reduce outer loop to n/2 times
  - ▶ Bannister & E. 2012: Choose the split randomly, reduce outer loop to  $\approx n/3$  times
- If still changing after *n* outer loops, report negative cycle

## Dijkstra's algorithm intuition

- ▶ Bellman–Ford is too slow because it relaxes edges many times; DAG algorithm is fast because it relaxes each edge only once
- ▶ DAG algorithm doesn't need to topologically sort the whole graph, only the shortest-path tree
  - Shortest-path tree is always acyclic, even when the whole graph isn't
- ▶ If all edge weights are positive, then sorting vertices by distance from *s* is topologically sorts the shortest path tree
  - For shortest path edge  $u \to v$ , D[v] = D[u] + positive > D[u], so u will be earlier than v in the sorted order by distance
- ► We can't sort before we start (because we don't know the distances yet) but we can use a priority queue to sort as we go

# Dijkstra's algorithm

```
initialize D, P
make priority queue Q of vertices, prioritized by D[v]
while Q is non-empty:
    find and remove minimum-priority vertex v in Q
    for each edge vw:
        relax(vw)
```

### Time analysis:

- $ightharpoonup \leq n$  find-and-remove operations in priority queue
- ► ≤ m decrease-priority operations
  (when relax changes D, that's a queue operation!)
- $\triangleright$  O(m) other stuff such as looping through adjacency lists
- ▶ Binary heap:  $O(\log n)$  per operation,  $O(m \log n)$  total
- Fibonacci heap:  $O(\log n)$  per find-and-remove, O(1) per decrease-priority,  $O(m + n \log n)$  total

# Last year's news!

### Bellman-Ford is optimal

Relaxation-based algorithms that choose what to relax based on simple linear inequalities use time  $\Omega(mn)$  or  $\Omega(n^3)$  on some graphs

[Eppstein 2023; Hu and Kozma 2024; Atalig et al. 2024]

#### Bellman-Ford can be improved

Randomized expected time  $O(mn^{8/9} \log^k n)$  for some constant k Main idea: reweight (see Friday's lecture) and use Dijkstra

[Fineman 2024]

# This year's news!!

Dijkstra's algorithm is "universally optimal"

What this actually means:

- ▶ If what you want is not just distances, but sorting vertices by distance
- Using comparisons only
- For a fixed graph with variable (but positive) weights
- Using a special priority queue (not binary or Fibonacci heaps)
- It gets within a constant factor of the optimal time

[Haeupler et al. 2024]

## The morals of the story

Path length can be measured in many ways (road distance, travel time, profit) some of which allow negative lengths

Relaxation algorithms provide a unifying framework for several shortest path algorithms

Different input types have different choices of the best algorithm:

### References I

- Sunny Atalig, Alexander Hickerson, Arrdya Srivastav, Tingting Zheng, and Marek Chrobak. Lower bounds for adaptive relaxation-based algorithms for single-source shortest paths. In Julián Mestre and Anthony Wirth, editors, 35th International Symposium on Algorithms and Computation, ISAAC 2024, December 8–11, 2024, Sydney, Australia, volume 322 of LIPIcs, pages 8:1–8:16. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ISAAC.2024.8.
- Michael J. Bannister and David Eppstein. Randomized speedup of the Bellman–Ford algorithm. In *Proc. Analytic Algorithmics and Combinatorics (ANALCO12)*, pages 41–47, 2012. doi:10.1137/1.9781611973020.6.
- Richard Bellman. On a routing problem. *Quarterly of Applied Mathematics*, 16:87–90, 1958. doi:10.1090/qam/102435.
- E. W. Dijkstra. A note on two problems in connexion with graphs. *Numerische Mathematik*, 1(1):269–271, 1959. doi:10.1007/bf01386390.

### References II

- David Eppstein. Lower bounds for non-adaptive shortest path relaxation. In Pat Morin and Subhash Suri, editors, *Proc. 18th Algorithms and Data Structures Symposium (WADS 2023)*, volume 14079 of *Lecture Notes in Computer Science*, pages 416–429. Springer-Verlag, 2023. doi:10.1007/978-3-031-38906-1\_27.
- Jeremy T. Fineman. Single-source shortest paths with negative real weights in  $\tilde{O}(mn^{8/9})$  time. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 3–14. Association for Computing Machinery, 2024. doi:10.1145/3618260.3649614.
- Lester R. Jr. Ford. Network Flow Theory. RAND Papers P-923, RAND Corporation, Santa Monica, California, August 14 1956. URL https://www.rand.org/pubs/papers/P923.html.

## References III

- Bernhard Haeupler, Richard Hladík, Václav Rozhon, Robert E. Tarjan, and Jakub Tetek. Universal optimality of Dijkstra via beyond-worst-case heaps. In 65th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 2099–2130. IEEE, 2024. doi:10.1109/F0CS61266.2024.00125.
- Jialu Hu and László Kozma. Non-adaptive Bellman-Ford: Yen's improvement is optimal. Electronic preprint arxiv:2402.10343, 2024.
- Edward F. Moore. The shortest path through a maze. In *Proceedings of an International Symposium on the Theory of Switching, 1957*, volume 2, pages 285–292, Cambridge, Massachusetts, 1959. Harvard University Press.
- Jin Y. Yen. An algorithm for finding shortest routes from all source nodes to a given destination in general networks. *Quarterly of Applied Mathematics*, 27(4):526–530, 1970. doi:10.1090/qam/253822.