CS 163 & CS 265: Graph Algorithms
Week 3: Shortest paths

Lecture 3a: Relaxation algorithms

David Eppstein
University of California, Irvine

Winter Quarter, 2025

This work is licensed under a Creative Commons Attribution 4.0 International License

Typical application

Routing in street networks

> Vertices: Points where
multiple paths meet (e.g.
street intersections)

> Edges: Possible routes
between these points
(segments of streets)

» Weights (length): physical
distance or travel time
All positive numbers!

Goal: Find a path from start
vertex to destination vertex
with minimum total weight

of shortest paths

T 43 Poats Coffec
o
&

Vinifred Smith Hall UG Irvine

séoia Scibnce Lab (s51) Q)

9

Einstein Biros. Bag

 Quaiteusing L ®

°
€20 Gma

oo

g

T ODanald BienHal
a

Go.
Engineering

Critical path planning as a shortest path problem

Negate all the edge lengths!

implement
& —

&
& 3%

-
-2
\)
—4
de.,%p _8 o
tegy Case
tests

Longest (critical) path in original scheduling graph =
shortest (most negative) path in the graph with negated weights

0™

Another application with negative weights

-

“Tramp steamer” (cargo ship) route planning

CC-BY image London Woolwich Tramp steamer geograph-3080372-by-Ben-Brooksbank from Wikimedia commons

> Vertices = ports the ship could travel between
» Edges = trips from one port to another (directed)
> Weight of an edge = expenses — profit

(positive: net loss, negative: net profit)

Goal: Find a cycle (path from any vertex back to itself) with negative total weight

Shortest walk might not exist

Walk: Like a path but allowing repeated edges and/or vertices

Length of s—t walks:
» Avoid loop: 5+4+7 =16
» Once around cycle: 14
» Twice around cycle: 12
> ..

Problem: Cycle with negative total length
(Exactly what we want to find in the tramp steamer problem)

If some path from s to t touches a negative cycle

then going many times around the cycle gives arbitrarily short walks

Shortest path might be hard to find

Paths do not allow repetitions, so there are only finitely many paths
(at most 37, (7)i! of them)

Therefore, shortest path is well-defined and always exists

But when all weights are —1, shortest (most negative) paths use all vertices, when this
is possible: “Hamiltonian path”. NP-complete to find these, so efficient algorithms are
believed not to exist.

Overview of algorithms

All our algorithms for shortest paths require that the input does not have any negative
cycle

For these inputs, shortest path = shortest walk

When the input is a directed acyclic graph:
O(m) time using topological ordering (last time)

When all edge lengths are > 0:
Dijkstra’s algorithm, near-linear time

Directed graphs with negative edges but no negative cycles:
Bellman—Ford algorithm, O(mn)
can also find negative cycles when one exists

Shortest path trees

In graphs without negative
cycles, paths from a single
source vertex s to all other
vertices form a tree

Parent of x is the
second-to-last vertex y on the
shortest path from s to x

Shortest path from s to x must
use the shortest path to y,
because if not then shortest
path to y plus edge y — x
would be a better path

E.g. shortest path from s to e
iss— d — e

parent(e) = second to last
vertex, d

Single source shortest path problem

Input: graph with edge lengths
(can be directed or undirected)

s
plus starting vertex s / \
Outputs a d
» Tree of shortest paths / \ /l\
from s to all other b c . £
reachable vertices &

» Distances (lengths of l
paths) to all vertices h
(+o00 if unreachable)

Represent output by two decorations for each vertex x:

P[x] = parent vertex of x

DI[x] = distance from start vertex to x

Relaxation algorithms

Maintain two decorations P[x] and D[x] for each vertex x

They will not always be the correct values
(correct: P = parent in shortest path tree,
D = length of shortest path)

Invariants:

» DIx] is the length of some path to x
(therefore, it is always > the correct value)

» P[x] is the second-to-last vertex on a path of length < D

Gradually find shorter paths and decrease D[x] until everything becomes correct

Relaxation algorithms (more detail)
Initialize: P[x] = None; D[x] = 0 if x = s, 400 otherwise

“Relax” edge uv: test whether path to u + edge uv gives a better path to v, and if so
update the decorations for v

def relax(u,v):
if D[u] + length(edge uv) < D[v]:
D[v] = D[u] + length(edge uv)
Plvl] = u

Key insights:
» Initialization gives s the correct decorations (its distance and parent in the actual
shortest path tree)
> If shortest path to v goes through edge uv and u already has correct decorations,
then relax(uv) gives v correct decorations
» Other calls to relax are harmless
(maintain invariant that D[v] > actual distance)

Intuitive picture of a relaxation algorithm

if we relax an edge
vertices with in the shortest path tree
correct values from a correct vertex u

of D[V] and P[V] to an incorrect vertex v,
/ v becomes correct

Shortest paths in DAGs (from last time)

Two versions, both equally good:

initialize D, P initialize D, P
for v in topological order: for v in topological order:
for incoming edges uv: for outgoing edges vw:
relax(u,v) relax(v,w)

By induction on topological ordering, whenever we relax edge xy, its first vertex x will
already have the correct values of D and P

So if we relax an edge in the shortest path tree, correct part grows

Total time is O(m)

Bellman—Ford algorithm

initialize D, P
repeat n-1 times:
for each edge uv in the whole graph:
relax(u,v)

Each time through the outer loop relaxes at least one shortest-path-tree edge from a
correct vertex to an incorrect vertex

Total time is O(mn)

[Ford 1956; Bellman 1958; Moore 1959]

Bellman—Ford example

20 30
O N
-20
Initialize: P[all] = None, D[s] = 0, D[a]=D[b]=D[c]=00
Outer loop #1 Outer loop #?2 Outer loop #3
» relax ab: no change > relax ab: » relax ab:

relax bc: no change D[b]=32 P[b]=a D[b]=22 P[b]=a

D[a]=20 P[a]=s relax sa: no change

» relax sa: no change

>
» relax bc: no change » relax bc: no change
» relax ca: no change
> relax sa: > relax ca: > relax ca: no change
i D[a]=10 P[a]=c
>
>

> relax sc: relax sc: no change

D[c]=30 P[c]=s > relax sc: no change

Bellman—Ford variations

Better in practice but all lead to same O-notation:

> Stop outer loop early if no relax step changes anything
» Only relax edges from changed vertices

> Better order of edges in inner loop = fewer outer loops

» Yen 1970: Split graph edges into two DAGs and topologically order them, reduce
outer loop to n/2 times

» Bannister & E. 2012: Choose the split randomly,
reduce outer loop to =~ n/3 times

> If still changing after n outer loops, report negative cycle

Dijkstra’s algorithm intuition

Bellman—Ford is too slow because it relaxes edges many times; DAG algorithm is
fast because it relaxes each edge only once

DAG algorithm doesn't need to topologically sort the whole graph, only the
shortest-path tree

Shortest-path tree is always acyclic, even when the whole graph isn't

If all edge weights are positive, then sorting vertices by distance from s is
topologically sorts the shortest path tree

For shortest path edge u — v, D[v] = D[u] + positive > D[u],

so u will be earlier than v in the sorted order by distance

We can't sort before we start (because we don’t know the distances yet) but we
can use a priority queue to sort as we go

Dijkstra’s algorithm

initialize D, P
make priority queue Q of vertices, prioritized by D[v]
while Q is non-empty:
find and remove minimum-priority vertex v in Q
for each edge vw:
relax(vw)

Time analysis:
» < n find-and-remove operations in priority queue
» < m decrease-priority operations
(when relax changes D, that's a queue operation!)
» O(m) other stuff such as looping through adjacency lists

» Binary heap: O(logn) per operation, O(mlog n) total
» Fibonacci heap: O(log n) per find-and-remove,
O(1) per decrease-priority, O(m + nlog n) total

Last year’s news!

Bellman—Ford is optimal
Relaxation-based algorithms that choose what to relax based on simple linear
inequalities use time Q(mn) or Q(n3) on some graphs

[Eppstein 2023; Hu and Kozma 2024; Atalig et al. 2024]

Bellman—Ford can be improved

Randomized expected time O(mn®/9 logk n) for some constant k

Main idea: reweight (see Friday's lecture) and use Dijkstra

[Fineman 2024]

This year’s news!!

Dijkstra’s algorithm is “universally optimal”

What this actually means:
» If what you want is not just distances, but sorting vertices by distance

Using comparisons only

>

» For a fixed graph with variable (but positive) weights

» Using a special priority queue (not binary or Fibonacci heaps)
>

It gets within a constant factor of the optimal time

[Haeupler et al. 2024]

The morals of the story

Path length can be measured in many ways (road distance, travel time, profit) some of
which allow negative lengths

Relaxation algorithms provide a unifying framework for several shortest path algorithms

Different input types have different choices of the best algorithm:
acyclic = the DAG algorithm
has cycles but all edge lengths are positive = Dijkstra

otherwise = Bellman—Ford

References |

Sunny Atalig, Alexander Hickerson, Arrdya Srivastav, Tingting Zheng, and Marek
Chrobak. Lower bounds for adaptive relaxation-based algorithms for single-source
shortest paths. In Julidn Mestre and Anthony Wirth, editors, 35th International
Symposium on Algorithms and Computation, ISAAC 2024, December 8—11, 2024,
Sydney, Australia, volume 322 of LIPIcs, pages 8:1-8:16. Schloss Dagstuhl —
Leibniz-Zentrum fur Informatik, 2024. doi:10.4230/LIPICS.ISAAC.2024.8.

Michael J. Bannister and David Eppstein. Randomized speedup of the Bellman—Ford
algorithm. In Proc. Analytic Algorithmics and Combinatorics (ANALCO12), pages
41-47, 2012. doi:10.1137/1.9781611973020.6.

Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87-90,
1958. doi:10.1090/qam/102435.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269-271, 1959. doi:10.1007/b£01386390.

http://dx.doi.org/10.4230/LIPICS.ISAAC.2024.8
http://dx.doi.org/10.1137/1.9781611973020.6
http://dx.doi.org/10.1090/qam/102435
http://dx.doi.org/10.1007/bf01386390

References ||

David Eppstein. Lower bounds for non-adaptive shortest path relaxation. In Pat Morin
and Subhash Suri, editors, Proc. 18th Algorithms and Data Structures Symposium
(WADS 2023), volume 14079 of Lecture Notes in Computer Science, pages
416-429. Springer-Verlag, 2023. doi:10.1007/978-3-031-38906-1_27.

Jeremy T. Fineman. Single-source shortest paths with negative real weights in
O(mnS/g) time. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors,
Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, Vancouver, BC, Canada, June 24-28, 2024, pages 3—14. Association for
Computing Machinery, 2024. doi:10.1145/3618260.3649614.

Lester R. Jr. Ford. Network Flow Theory. RAND Papers P-923, RAND Corporation,
Santa Monica, California, August 14 1956. URL
https://www.rand.org/pubs/papers/P923.html.

http://dx.doi.org/10.1007/978-3-031-38906-1_27
http://dx.doi.org/10.1145/3618260.3649614
https://www.rand.org/pubs/papers/P923.html

References Il

Bernhard Haeupler, Richard Hladik, Viclav Rozhon, Robert E. Tarjan, and Jakub
Tetek. Universal optimality of Dijkstra via beyond-worst-case heaps. In 65th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2024, Chicago, IL,
USA, October 27-30, 2024, pages 2099-2130. IEEE, 2024.
doi:10.1109/F0CS61266.2024.00125.

Jialu Hu and Laszlé Kozma. Non-adaptive Bellman-Ford: Yen's improvement is
optimal. Electronic preprint arxiv:2402.10343, 2024.

Edward F. Moore. The shortest path through a maze. In Proceedings of an
International Symposium on the Theory of Switching, 1957, volume 2, pages
285-292, Cambridge, Massachusetts, 1959. Harvard University Press.

Jin Y. Yen. An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. Quarterly of Applied Mathematics, 27(4):526-530,
1970. doi:10.1090/qam/253822.

http://dx.doi.org/10.1109/FOCS61266.2024.00125
http://dx.doi.org/10.1090/qam/253822

	References

