
CS 163 & CS 265: Graph Algorithms

Week 2: Spanning trees and DAGs

Lecture 2b: Minimum spanning tree algorithms

David Eppstein
University of California, Irvine

Winter Quarter, 2025

This work is licensed under a Creative Commons Attribution 4.0 International License

What we did last time

Minimum spanning tree problem definition

7 9

11 14

21 22

30

31 35

406070

75

99

32

32

45

Input:

▶ Undirected graph

▶ Numbers (“weights”) on
its edges

32

7 9

11 14

21 22

30

31 35

60

Output:

▶ Tree connecting all
vertices

▶ Minimize total weight

Cut property (more useful in algorithms)

If we cut the vertices of the graph into any two subsets X and G − X , and e is the
lightest edge with endpoints in both subsets

then e must be in in the MST

11

15

17

9

8

We can safely add it to the output

Cycle property (sometimes useful, less often)

If C is any cycle and e is its heaviest edge

then e cannot be in the MST

12

18 9
13

29

11

17
8

16

We can safely remove it from the graph

History

Three classical algorithms

Bor̊uvka’s algorithm (Otakar Bor̊uvka, 1926)
▶ Rediscovered by Choquet (1938), Florek, Lukaszewicz, Perkal, Steinhaus, &

Zubrzycki (1951), and Sollin (1965)

▶ Often called Sollin’s algorithm

Jarńık’s algorithm (Vojtěch Jarńık, 1930)
▶ Rediscovered by Prim (1957) and Dijkstra (1959)

▶ Often called Prim’s algorithm or Prim–Dijkstra algorithm

Kruskal’s algorithm (Joseph Kruskal, 1956)
▶ Rediscovered by Loberman & Weinberger (1957)

▶ Closely related to single-linkage hierarchical clustering
(Florek et al. 1951; McQuitty 1957; Sneath 1957)

All use only the cut rule: they find edges to include by cutting vertices into subsets and
choosing min-weight edge across the cut

All slower than linear time by a logarithm (similar to sorting)

Some other faster algorithms

Fredman & Willard 1994

▶ Use bit-manipulation operations on weights

▶ Linear time when weights are machine integers

Karger, Klein, & Tarjan 1995

▶ Randomized, linear expected time on any graph

▶ Only uses comparisons of weights

▶ Alternates between two methods: Bor̊uvka-like (cut rule) reducing #vertices, and
cycle rule reducing #edges

Chazelle 2000

▶ Non-random, very slightly non-linear (inverse Ackermann func.)

Pettie & Ramachandran 2002

▶ Non-random, optimal but unknown time complexity

An unsolved research question

Is it possible for a non-random comparison-based algorithm to find minimum
spanning trees in linear time?

Recent algorithms with small O-notation are too complicated to be practical so it
would also be interesting to find the best complexity for a practical algorithm

Jarńık’s algorithm

Main idea of Jarńık’s algorithm

▶ Choose an arbitrary starting vertex s (this choice affects the steps of the
algorithm but not its output)

▶ Build a tree T one edge at a time, starting with a one-vertex tree containing only
s

▶ Repeat:
▶ Partition the graph into two subsets T and G − T
▶ Find the minimum-weight edge e connecting T to G − T
▶ Add e and its endpoint in G − T to the tree

a
s

b c

d
5

9

7
11

12
8

10

a
s

b c

d
5

9

7
11

12
8

10

a
s

b c

d
5

9

7
11

12
8

10

a
s

b c

d
5

9

7
11

12
8

10

a
s

b c

d
5

9

7
11

12
8

10

Data structures for Jarńık’s algorithm

Root the tree T at s, and decorate each vertex v with its parent, so the tree edges are
pairs v — parent[v]

When a vertex v is not yet in T , use parent[v] to store the minimum-weight edge
connecting v to T

Maintain a priority queue Q of vertices that are not yet in T , prioritized by the weight
of this connecting edge

Jarńık pseudocode

def jarnik(G):

let s be any vertex of G

parent = {v : none for v in G}

Q = priority queue of all vertices,

priority = 0 for s, infinity for others

while Q is non-empty:

remove the minimum-priority vertex v from Q

for each edge v-w in G:

if w in Q and weight(v-w) < priority(w):

parent[w] = v

change priority of w to weight(v-w)

Jarńık analysis

Two nested loops:

▶ Outer loop over all the vertices, in priority queue order

▶ Inner loop over the edges at that vertex

Each edge looped over twice (once for each endpoint) so total number of times
through inner loop is 2m

Except for priority queue, everything else is O(m)

Priority queue:

▶ n find-and-remove operations, ≤ m reduce-priority operations

▶ With binary heap, all operations O(log n) ⇒ total O(m log n)

▶ With Fibonacci heap [Fredman and Tarjan 1987], reduce-priority operations take
only O(1) time ⇒ total O(m + n log n)

Other classical algorithms

Kruskal’s algorithm

▶ Start with a forest of one-vertex trees, one for each vertex
▶ Sort the edges from smallest to largest weight
▶ For each edge in sorted order, if it connects two different trees, add it to the forest

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

Analysis:
▶ Sorting: your favorite sorting algorithm

O(m logm) for comparison sorting
▶ Testing for same tree: “union-find data structure”, slightly more than constant

per edge (much faster than sorting)

Bor̊uvka’s algorithm

▶ Start with a forest of one-vertex trees, one for each vertex
▶ While there is more than one tree:

▶ Label vertices by their tree (connected components)
▶ Assign graph edges to sets of edges that go out of each tree (two sets/edge),

ignoring edges with both endpoints in one tree
▶ Add to forest the minimum weight edge out of each tree

a
s

b c

d
5

9

7 11

10
15

12 a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

da
s

b c

d

a
s

b c

d
5

9

7 11

10
15

12

Analysis:

▶ Each time through while loop, #trees goes down by factor ≥ 2
▶ Assigning edges to sets takes linear time ⇒ total O(m log n)

A hybrid algorithm

▶ Run Bor̊uvka’s algorithm until the number of trees goes down from n to ≤ n/ log n

▶ Then switch to Jarńık’s algorithm with Fibonacci heaps, using a priority queue on
trees rather than on individual vertices

Analysis:

▶ Bor̊uvka’s algorithm repeats ≤ log log n times ⇒ time O(m log log n)

▶ Jarńık’s algorithm takes O(m + (n/ log n) log(n/ log n)) = O(m)

▶ Both together: O(m log log n) + O(m) = O(m log log n)

Morals of the story

We can compute minimum spanning trees efficiently in practice (comparable time to
sorting) using several classical algorithms

Theoretical improvements are possible, including randomized linear expected time, but
the best possible time for a non-random comparison-based algorithm remains an

unsolved research problem

References and image credits I

Otakar Bor̊uvka. O jistém problému minimálńım. Práce Moravské Př́ırodovědecké Společnosti,
3:37–58, 1926. URL https://dml.cz/handle/10338.dmlcz/500114.

Bernard Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type
complexity. Journal of the ACM, 47(6):1028–1047, 2000. doi:10.1145/355541.355562.

Gustave Choquet. Étude de certains réseaux de routes. Comptes Rendus de l’Académie des
Sciences, 206:310–313, 1938.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, December 1959. doi:10.1007/BF01386390. URL
https://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf.

Kazimierz Florek, Jan Lukaszewicz, Julian Perkal, Hugo Steinhaus, and Stefan Zubrzycki. Sur
la liaison et la division des points d’un ensemble fini. Colloquium Mathematicae, 2(3–4):
282–285, 1951. doi:10.4064/cm-2-3-4-282-285. URL
https://eudml.org/doc/209969.

Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.
doi:10.1145/28869.28874.

https://dml.cz/handle/10338.dmlcz/500114
http://dx.doi.org/10.1145/355541.355562
http://dx.doi.org/10.1007/BF01386390
https://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
http://dx.doi.org/10.4064/cm-2-3-4-282-285
https://eudml.org/doc/209969
http://dx.doi.org/10.1145/28869.28874

References and image credits II

Michael L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. Journal of Computer and System Sciences, 48(3):533–551, 1994.
doi:10.1016/S0022-0000(05)80064-9.

Steaphan Greene. SVG icon of two standard gaming dice. CC-BY-SA image, December 20
2008. URL https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg.

Vojtěch Jarńık. O jistém problému minimálńım. Práce Moravské Př́ırodovědecké Společnosti, 6
(4):57–63, 1930. URL https://hdl.handle.net/10338.dmlcz/500726.

David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized linear-time algorithm to
find minimum spanning trees. Journal of the ACM, 42(2):321–328, 1995.
doi:10.1145/201019.201022.

Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.
doi:10.1090/S0002-9939-1956-0078686-7. URL
https://www.jstor.org/stable/2033241.

http://dx.doi.org/10.1016/S0022-0000(05)80064-9
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://hdl.handle.net/10338.dmlcz/500726
http://dx.doi.org/10.1145/201019.201022
http://dx.doi.org/10.1090/S0002-9939-1956-0078686-7
https://www.jstor.org/stable/2033241

References and image credits III

H. Loberman and A. Weinberger. Formal Procedures for connecting terminals with a minimum
total wire length. Journal of the ACM, 4(4):428–437, October 1957.
doi:10.1145/320893.320896.

Louis L. McQuitty. Elementary linkage analysis for isolating orthogonal and oblique types and
typal relevancies. Educational and Psychological Measurement, 17(2):207–229, 1957.
doi:10.1177/001316445701700204.

Seth Pettie and Vijaya Ramachandran. Minimizing randomness in minimum spanning tree,
parallel connectivity, and set maxima algorithms. In Proc. 13th ACM-SIAM Symposium on
Discrete Algorithms (SODA ’02), pages 713–722, San Francisco, California, 2002. URL
https://portal.acm.org/citation.cfm?id=545477.

Robert C. Prim. Shortest connection networks And some generalizations. Bell System Technical
Journal, 36(6):1389–1401, November 1957. doi:10.1002/j.1538-7305.1957.tb01515.x.
URL https://archive.org/details/bstj36-6-1389.

P. H. A. Sneath. The application of computers to taxonomy. Microbiology, 17(1):201–226,
1957. doi:10.1099/00221287-17-1-201.

Georges Sollin. Le tracé de canalisation. In Claude Berge and Alain Ghouila-Houri, editors,
Programming, Games, and Transportation Networks. John Wiley & Sons, 1965.

http://dx.doi.org/10.1145/320893.320896
http://dx.doi.org/10.1177/001316445701700204
https://portal.acm.org/citation.cfm?id=545477
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://archive.org/details/bstj36-6-1389
http://dx.doi.org/10.1099/00221287-17-1-201

	References

