
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Emily Oh Navarro
University of California, Irvine
emilyo@ics.uci.edu

A Survey of Software Engineering Educational
Delivery Methods and Associated Learning Theories

April 2005

ISR Technical Report # UCI-ISR-05-5

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

A Survey of Software Engineering Educational Delivery

Methods and Associated Learning Theories

Emily Oh Navarro
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
emilyo@ics.uci.edu

ISR Technical Report # UCI-ISR-05-5

April 5, 2005

Abstract:

Software engineering education has acquired a notorious reputation for producing
students that are ill-prepared for being productive in real-world software engineering
settings. Although much attention has been devoted to improving the state of affairs in
recent years, it still remains a difficult problem with no obvious solutions. In this paper, I
attempt to discover some of the roots of the problem, and provide suggestions for
addressing these difficulties. A survey of software engineering educational approaches is
first presented. A categorization of these approaches in terms of the learning theories they
leverage then reveals a number of deficiencies and potential areas for improvement.
Specifically, there are a number of underutilized learning theories (Learning through
Failure, Keller’s ARCS, Discovery Learning, Aptitude-Treatment Interaction, Lateral
Thinking, and Anchored Instruction), and the majority of existing approaches do not
maximize their full educational potential. Furthermore, the approaches that engage the
widest range of learning theories (practice-driven curricula, open-ended approaches, and
simulation) are also the most infrequently used. Based on these observations, the
following recommendations are proposed: Modify existing approaches to maximize their
educational potential, design new approaches to address under-utilized learning theories,
enhance the most promising approaches to make them more useful and effective, perform
more formal and frequent evaluations of software engineering educational approaches,
and frame software engineering education research in the context of learning theories .

A Survey of Software Engineering Educational
Delivery Methods and Associated

Learning Theories

Emily Oh Navarro

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
emilyo@ics.uci.edu

ISR Technical Report # UCI-ISR-05-5

April 5, 2005

1. Introduction
As software becomes more and more ubiquitous and foundational to an increasingly large
part of modern society, it is not surprising that the attention given to software engineering
education in recent years has also rapidly increased. This rising focus is evident in the
emergence of entire conferences dedicated to the subject [7, 9], the Software Engineering
body of Knowledge (SWEBOK) project [68], special journal issues centered around the
topic [1, 4, 19], and special “software engineering education” tracks at major conferences
[2, 3, 5, 6, 8]. Judging from the approaches published in these venues, it is clear that the
overwhelmingly common basis for software engineering educational approaches consists
of the following: a series of lectures in which concepts and theories are taught; and an
associated small software engineering project that the students must complete in an at-
tempt to put these concepts into practice. Although each educator’s particular approach
differs somewhat, common to nearly all of them are these two components.

Despite all of the attention, it is clear that much is still lacking in the way future soft-
ware engineers are educated during their university education. Those who end up hiring
new graduates frequently complain that they come into the workforce severely unpre-
pared for practicing software engineering in a real-world setting, and the employers
themselves must expend an enormous amount of time and effort to train them adequately
[31, 38].

Educators have also acknowledged that there is a problem [41, 82, 89, 118]. Most
seem to agree that it lies in the fact that the experience gained in the project component of
software engineering curricula does not adequately reflect the experience in a real-world
setting. In a 2001 IEEE Computer article, Bertrand Meyer pointed out that typical educa-
tional software engineering projects are “insufficient preparation for the true challenges
of professional software development, which involve large systems (rather than the rela-
tively small endeavors of academic projects), large groups (seldom the case in a univer-
sity setting), modifying someone else’s legacy system (rather than building a solution
from scratch), and dealing with end users (rather than a professor and a grader)” [91].

 - 1 -

Similar ideas were reflected in Mehdi Jazayeri’s keynote talk at the 2004 Automated
Software Engineering Conference [70]. He noted that class projects are by necessity typi-
cally constrained in the following ways: the instructor specifies the requirements, prede-
termines the infrastructure and development environment, fixes the schedule, trims the
project to a manageable size, and ensures that there are no compatibility or legacy re-
quirements. He acknowledges that, while these constraints are necessary for practical rea-
sons, they are also the exact reasons why these projects grossly misrepresent real-world
software engineering situations.

Although there is some consensus on what the problem is, there is little agreement on
how to address the problem. Members of the software engineering educational commu-
nity have proposed numerous approaches to making class projects more closely resemble
the real world, as well as others that address the problem in various ways. But so far, no
single approach (or set of approaches) has been accepted as a sufficient solution to the
problem. The question is then, why is it so difficult to teach software engineering? Why
are so many experienced, intelligent educators having such a hard time figuring out how
to prepare future software engineers for the real world? What are the problems with cur-
rent software engineering education delivery methods? Can we address these problems?
If so, how?

In this paper I will explore these questions and attempt to provide some answers to
them by surveying the various software engineering educational approaches and viewing
them in light of well-known general educational theories. Specifically, I will describe the
main categories of approaches, present the major relevant educational theories, investi-
gate which theories these approaches have sufficiently exploited and which they have
not, and, from this, make recommendations for ways in which we can more effectively
educate future software engineers. It is important to note that this particular approach to
addressing the problems of software engineering education will only address part of what
makes software engineering education sub-optimally effective, namely, the ineffective-
ness of delivery methods based on the learning theories they leverage (or fail to lever-
age). Undoubtedly, there are other factors that also contribute to the ineffectiveness of
software engineering education, including many that may be intrinsic to the discipline of
software engineering itself. This survey does not focus on such factors, but rather aims
specifically to make recommendations for how to make software engineering education
delivery methods more effective by leveraging more learning theories in their usage. This
particular approach, evaluating delivery methods in terms of learning theories, was cho-
sen because it is a common practice in other educational domains but has not yet been
attempted in software engineering education.

The remainder of this paper is organized as follows: In Section 2, I describe and cate-
gorize the major approaches to software engineering education. In Section 3, I present a
set of well-known learning theories that are especially applicable to software engineering
education. Section 4 introduces a categorization of the software engineering educational
approaches in terms of the learning theories they leverage. I provide key observations and
recommendations for software engineering education in Section 5, discuss related work
in Section 6, and conclude in Section 7.

 - 2 -

2. Software Engineering Educational Approaches
In surveying the software engineering educational literature, it is clear that nearly every
approach to teaching the subject is based on the same two components: lectures, in which
software engineering theories and concepts are presented; and projects, in which students
must work in groups to develop a (generally small) piece of software. However, judging
from the dissatisfaction of industrial organizations that hire recent graduates (mentioned
previously), it is clear that this approach is not sufficiently preparing future software en-
gineers for jobs in the real world.

The academic community has recognized this problem and, in response to it, has cre-
ated a wealth of innovations that build on the standard lectures plus project approach.
These approaches fall into three major categories. The first involves attempts to make the
students’ project experience more closely resemble one they would encounter in the real
world. The second category is simulation approaches, in which educators have students
practice software engineering processes in a (usually) computer-based simulated envi-
ronment. The final category includes approaches that teach one or more specific subjects
a particular instructor feels are currently missing (e.g., usability testing or formal meth-
ods), and are crucial to effectively educating the students. It should be noted that some of
these approaches span more than one category, and quite often a number of approaches
from these different categories are combined in one course. It should also be noted that
the purpose of this survey (to answer the question of why software engineering education
in general is less-than-ideally effective) has certain implications for the scope of the ap-
proaches presented here. I incorporate only overall, high-level delivery methods that have
been stated to be motivated expressly by the need to better prepare students for real-world
software engineering careers.1 I do not include approaches that deal with the details of
how individual topics within software engineering are taught, such as how to teach the
various protocols for white box testing, or UML notation. The focus instead is on ap-
proaches that aim to make the software engineering educational experience as a whole
more effective, and in which the papers describing these approaches have expressly
stated their motivation to be the need for better preparing future software engineers for
the real world.

The remainder of this section describes these categories and their approaches in
greater detail.

2.1 Adding Realism to Class Projects
It is clear from looking at the software engineering literature that the most common
method of improving the educational experience involves modifying certain aspects of
the class project to make it more closely resemble the experience students will face in
their future software engineering careers. As the academic environment differs so greatly
from the industrial, there are numerous angles from which educators have approached
this issue, or aspects of the academic environment that they have tried to make more real-
istic.

1 Throughout this paper, “the real world” should be taken to mean an industrial career or environment.
These are the types of careers that the majority of graduates will find themselves in, and therefore all ap-
proaches surveyed are explicitly motivated by the need to better prepare students for the industrial envi-
ronment.

 - 3 -

2.1.1 Industrial Partnerships
Perhaps the most popular and practical way of making a class project more realistic is by
partnering with an industrial participant. This type of approach varies in the level of in-
volvement the industrial organization has with the project. (Note that some use a combi-
nation of the following approaches.) The lowest level of involvement consists of obtain-
ing existing software developed by real-world organizations and requiring the students to
modify that software [55]. A slightly more involved approach is putting the industrial
participant in an advisory role, as they work with the instructor to design the project [20].
In other approaches, the industrial participant takes a more hands-on role with the stu-
dents, holding seminars on special topics, providing guest lectures, offering feedback on
their work from an industrial perspective, “pretending” to be a real customer, or working
with the students as a mentor [113, 140]. Alternatively, in what could be termed as the
“case study approach”, the industrial organization provides the instructor with actual
software engineering problems that they have solved in the past, or are solving in parallel,
for the students to work on as exercises [56, 77, 79, 120, 140]. In such cases the industrial
participant will also often “play” the customer role. In the most involved and most com-
mon type of approach, the industrial representative is an actual customer [52, 61, 62, 76,
79, 85, 129]. In such situations the students are provided with the experience of working
on real-world applications that will potentially be used by real-world customers. Some of
the benefits of industrial participation-type approaches that have been reported are:
Higher motivation and satisfaction for the students, greater ease with which students ob-
tain jobs after graduation, the opportunity for them to learn a real application domain, and
a greater appreciation of quality and why it is important on the part of the students.2

2.1.2 Maintenance/Evolution-based Projects
A second type of approach to making class projects more realistic is the mainte-
nance/evolution approach, in which students modify or enhance an existing software sys-
tem rather than build one from scratch. This approach seems to come in two main varie-
ties: In the first one, the maintenance project is ongoing over a number of semesters or
quarters, and each class extends and builds on the previous classes’ modifications [88,
114, 116, 137]. In the second type of approach, the piece of software being modified is
unique to that particular class and/or semester [15, 55, 72, 101, 103]. These approaches
generally argue that, since the majority of real-world projects are maintenance projects,
students will be better prepared for the real world by becoming familiar with these types
of projects during their university education.

2.1.3 Team Composition
While some educators focus on the nature of the project (e.g., maintenance-based or real-
world), others focus on the nature and composition of the student teams that work on the
project, to make them more closely mirror the team dynamics in real-world software en-
gineering situations. One such approach is [113], which could be termed the “long-term
teams” approach. In this approach students are grouped into teams during their freshman

2 When describing the “claimed benefits” of each approach, I am referring to those that are claimed in the
literature describing the approach. Most of these are not empirically proven phenomena, but rather claims
based on anecdotal evidence.

 - 4 -

year, and work in these same teams throughout their entire four-year program. Coupled
with this is a series of projects that start out relatively simple in the earlier years, and be-
come increasingly more complex as the students advance in the curriculum. This ap-
proach is designed to mimic the fact that teams in the real world generally work together
for a period of time longer than just a quarter or semester, and to illustrate the dynamics
of such long-term cohesion. An additional goal of this approach is to better train students
in team skills—students in these long-term teams are forced to figure out ways to work
together since they are “stuck with” each other for four years. A team that exists for only
a semester or quarter knows that their team will soon be disbanded, so is perhaps less mo-
tivated to invest in making it work.

Another approach that focuses on making team dynamics more realistic is purposely
making the teams very large. While academic project teams are normally composed of
approximately three to six students, these approaches instead put the entire class on one
development team [22, 23, 94]. While the students may take different roles in the process,
they all work on the same project. This type of approach claims a number of benefits:
First, it better exemplifies the size of teams in which students will work in their future
careers. In the process, issues and dynamics that are unique to large groups are demon-
strated. Second, it illustrates a more realistic control dynamic: No longer can any one per-
son (student or instructor) be in control of, or even completely understand the entire pro-
ject—they must truly depend on others to get the job done. Finally, it allows them to
work on a project of greater (and hence, more realistic) size than would be feasible in a
small team.

Another type of approach that focuses on the realism of team composition involves
composing teams of students from different backgrounds and/or situations. The simplest
of these is one in which the team members are all Computer Science students, but where
each team consists of students from different classes within Computer Science (e.g., Hu-
man Computer Interaction, Databases, Software Engineering, Communication Technol-
ogy) collaborating on the same project [121]. In this approach, students from each class
work on the particular aspect of their project that pertains to the course they are taking. A
slightly more diverse composition occurs when the teams are made up of students from
different majors or degree programs within the same university [43, 90]. For instance, in
one such project, English students did the technical writing, Marketing students did the
market analysis, and Computer Science students wrote the code [90]. This “diversity”
approach is used to try to prepare students for the real world in which they will work with
people with different strengths and skills.

An alternate take on the “diversity” approach is one that combines students that are
geographically distributed, coming from different universities [26, 27], and sometimes
even from different countries [50]. In such cases the students never meet face-to-face, but
instead must rely heavily upon groupware technologies in order to successfully collabo-
rate. Such approaches argue that because software engineering in the real world is be-
coming increasingly distributed and global, exposing students to such situations early
helps to better prepare them for their future careers.

The final category of approach that focuses on the realism of team dynamics involves
dictating a well-defined, hierarchical team structure that the students must adhere to
while completing their project [13, 52, 129]. In these approaches the students and teach-
ing staff engage in a strict “corporate-style” interaction, simulating the group dynamics of

 - 5 -

a real-world organization. Each student has a well-defined role (e.g., configuration man-
ager, team lead, quality assurance engineer) and, in most cases, explicit protocols for
communication and task management are defined. An example of an organizational chart
from one of these types of approaches is shown in Figure 1. Each one of these roles is
filled by one or more students, and each role has specific tasks for which they are respon-
sible. It can be seen that this particular course had five different projects. One student is
assigned to be the manager of the entire group, and their role is to balance the project-
wide resources throughout the different teams, manage group-wide assignments such as
presentations, and manage the support teams. For each project team, there is one project
lead, one technical lead, and a number of engineers, depending on the project. Each of
these project teams utilizes the services of the support team, which has specific people
assigned to quality assurance, configuration management, process engineering, tools, and
documentation. Each member of the support team plays a dual role on one of the project
teams. Approaches like these are designed to better prepare students for the project team
structures they will encounter in the real world. As a side result, these approaches also
claim to foster better communication and produce higher quality software.

Project 1 Project 2 Project 3 Project 4 Project 5 Multi-Project
Support

Proj. Lead [11]
Tech. Lead [11]
Engineer [4]

Proj. Lead [11]
Tech. Lead [11]
Engineer [3]

Proj. Lead [11]
Tech. Lead [11]
Engineer [7]

Proj. Lead [11]
Tech. Lead [11]
Engineer [11]

Proj. Lead [11]
Tech. Lead [11]
Engineer [3]

Figure 1: An Example of a Student Project Team Organizational Chart (adapted from [129]).

QA [3]
CM [2]
Process [3]
Toolsmith [2]
Tech. Wrtng [4]

Manager [11]

2.1.4 Non-Technical Skills
Along the same lines as the team dynamics-based realism approaches, some educators
focus their software engineering class projects specifically on non-technical skills such as
communication, group process, interpersonal competencies, project management, and
problem solving [56, 57]. These types of approaches place more emphasis on social and
logistical tasks typical in software projects, such as understanding the customer’s domain
and requirements, working in a team, organizing the division of work, and coping with
time pressure in hard deadlines. As a result, the actual technical procedures of software
engineering, such as writing code and designing software, are de-emphasized. For exam-
ple, in [57] students are required to complete (and report upon) in-class team-building
activities that emphasize communication, leadership, group problem solving, and deci-
sion making. These approaches identify such “soft” skills as what are most lacking in

 - 6 -

university graduates, and hence argue that this kind of emphasis is crucial for their educa-
tion.

2.1.5 Open-Endedness/Vagueness
In contrast to these highly structured approaches in which students are assigned specific
tasks to complete in a specific way, others have tried to mimic the common less-
structured real-world software engineering situations by making the project purposely
open-ended and/or vague. There are two main ways in which this is done. In the first type
of approach, the open-endedness comes in the requirements stage—requirements are
made purposely unclear or indefinite, and the students must form most of them on their
own [45, 94]. This approach is designed to give students the pseudo-experience of new
product development based on market research. In the second type of approach, the proc-
ess is unspecified, requiring the students to define their own process (sometimes with
help from the instructor) [32, 58, 94, 116, 134] (note that [94] incorporates vagueness in
both requirements and process). This is meant to give the students experience in not only
following a process, but in designing the process that they follow. On top of these bene-
fits, the open-ended approaches also claim that they are more motivating to students
(which results in higher quality work on their part) since their focus is on creating rather
than on following someone else’s directions.

2.1.6 Practice-Driven Curricula
All of the approaches presented thus far have been designed to be used in conjunction
with lectures, in which the concepts that the students are meant to be putting into practice
in their projects are presented. In contrast, a somewhat radical approach that has been
used is a “practice-driven” approach in which the curriculum is largely project-based [63,
97, 129]. In these approaches, lectures are used only as supporting activities. These ap-
proaches argue that theory is something that cannot be taught in a lecture, but instead
must be built in each individual through experience and making mistakes. These ap-
proaches are designed to provide students with ample opportunity to make and learn from
their mistakes, as they will undoubtedly do in the real world, albeit there with much more
severe consequences. In one of these approaches, they conducted follow-ups with their
students’ employers after they graduated, which showed that these students needed less
internal training than others in order to become productive in the workplace [97].

2.1.7 Sabotage
Another approach that encourages learning through mistakes or failure, although more
explicitly, is deliberate sabotage. In this approach, the instructor purposely sets the stu-
dents up for failure by introducing common real-world complications into projects, the
rationale being that students will then be prepared when these situations occur in their
future careers. Both [55] and [47] describe projects in which the instructor played a num-
ber of “dirty tricks” on the students during development. Some of the “dirtier tricks” in-
cluded providing inadequate specifications, instructing the customer to be purposely un-
certain when describing their needs, and purposely crashing the hardware just before a
deadline. Table 1 presents all twenty of the tricks, including the underlying skills that the
authors claim each trick teaches. The last column in the table indicates whether or not the
particular trick is feasible in a typical academic setting.

 - 7 -

2.1.8 Re-enacting Project Failures
A more severe way of purposely setting students’ projects up for failure is presented in
[21]. In this approach, the instructor assigned projects that had been known to fail in the
past due to software process problems. In all cases, the students also failed, providing a
perfect opportunity for the instructor to explain the rationale behind the best practices of
software processes, as well as a way for the students to learn the consequences of not fol-
lowing these practices firsthand.

 - 8 -

Table 1: The "Twenty Dirty Tricks" and the Skills they are Meant to Promote (adapted from [47]).

Pr
ob

le
m

 u
nd

er
-

st
an

di
ng

Pe
op

le
 h

an
dl

in
g

sk
ill

s

N
eg

ot
ia

tio
n

sk
ill

s

C
om

pr
om

is
e

sk
ill

s

Pl
an

ni
ng

 sk
ill

s

A
da

pt
ab

ili
ty

Q
ua

lit
y

un
de

r-
st

an
di

ng

O
rg

an
iz

at
io

na
l

sk
ill

s

D
es

ig
n

sk
ill

s

Po
ss

ib
le

 a
t a

un

iv
er

si
ty

?

Inadequate specification X X X X X
Make assumptions wrong X X X X
Uncertain customer X X X X
Change requirements X X X X X X
Conflicting requirements X X X X
Conflicting customer ideas X X X X X X
Different personalities X X X X X
Ban overtime X X
Additional tasks X X X ?
Change deadlines X X X X ?
Quality inspections X X X X
Different truths X X X
Change the teams X X X X X
Change working procedures X X X X
Upgrade the software X X ?
Change the hardware X X X
Crash the hardware X X X
Slow the software X X X
Disrupt the file store X X X X
Say “I told you so” X X X X X X X X X X

2.2 Simulation
While a majority of the software engineering educational approaches have focused on
adding realism to class projects, a number of others have argued that the only feasible
way to provide students with the experience of realistic software engineering processes
within the academic environment is through simulation, used in conjunction with lectures
and projects. While these approaches vary in terms of the processes they simulate and
their specific purpose, they are all designed to allow students to practice and participate
in software engineering processes on a larger scale and in a more rapid manner than can
be feasibly done through an actual project. Judging from the relatively low number of
publications in this area compared to other approaches (see Section 5), simulation is per-
haps the most under-explored approach in software engineering education.

2.2.1 Industrial Simulation in the Classroom
The most straightforward type of approach to educational software engineering simula-
tion is taking a software process simulator that is designed for industrial use and putting it
in the classroom [37, 100]. These simulators are usually used for predicting the effects of

 - 9 -

process changes and decisions on the eventual outcome of a project. The models run in
these simulators are generally based strictly on empirical data. They typically have a non-
graphical interface (meaning they display a set of gauges, graphs, and meters rather than
characters and realistic surroundings) and a relatively low level of interactivity, taking a
set of inputs such as man power, project size, and/or process plan, and outputting a set of
results, such as budget, time, and defect rate. Figure 2 presents an example of one such
simulator’s user interface. In this particular interface, the user can see such data as per-
cent complete and schedule pressure in the form of gauges, and other information, such
as elapsed man hours and remaining hours, as numerical values. Through the buttons on
the interface, they also have the ability to view graphs of this data, as well as start, stop,
pause, and resume the simulation.

Figure 2: User Interface of an Industrial Simulator used in the Classroom [37].

 When these simulators are used in the classroom, students are usually given an as-
signment involving the simulator, such as “simulate different life cycles and compare the
results”; or “simulate this process with and without the use of code inspections, and note
the difference in resulting defect rates.” [37] has been used in the following incremental
process: students are given simple simulations to begin with, which become increasingly
more complex as their knowledge of the simulation and the model increases. These
highly realistic simulations are designed to illustrate to students, using real-world data,
the overall life cycle and project planning phenomena of software engineering.

 - 10 -

2.2.2 Game-Based Simulations
Other educational software engineering simulations also simulate entire life cycles, but
rather than use an industrial simulator, they do so in a game-based environment [18, 46,
49, 95, 117]. In these software engineering simulation games, the player is generally
given a task to complete in the simulated world, such as “complete project X within 10
months, at or below a budget of $500,000, with a defect rate of less than 10%.” The
player will then interact with the game on a step-by-step basis to drive the simulation in
order to complete the task. Some of these simulation games have graphical user interfaces
in which the simulated physical surroundings are displayed, such as The Incredible Man-
ager [46], SimSE [95], and OSS [117] (see Figure 3). Others, like SESAM [49], provide
only textual output. Problems and Programmers [18] is a physical card game simulation
that uses humorous descriptions, card illustrations, and unexpected situations to immerse
the player in the process. With the exception of SESAM and SimSE, all of the other
simulations come with one hard-coded simulation model, and do not support the devel-
opment and simulation of other models. SESAM has also been used with an accompany-
ing dialog and reflection session at the end of the simulation, in which students reflect on
their experience and the lessons they have learned, and discuss this with a tutor or in-
structor [84]. The general hope in the game-based approach is that the additional enjoy-
ment provided by the game features and dynamics will make learning about the particular
software engineering process being modeled more memorable, and hence, more effective.

2.2.3 Group Process Simulations
While most educational software engineering simulations are used to simulate entire

processes (or sub-processes), others are designed to specifically support structured group
discussion and interaction processes [96, 125]. In these cases, the student engages in a
discussion in which some or all of the other participants are simulated. The structured
discussions being simulated are those that are typically present in software engineering

Figure 3: Graphical User Interface of OSS [117], a Software Engineering Simulation Game.

 - 11 -

simulations, such as code inspections and requirements analysis meetings. For example,
[125] describes an interactive video code inspection simulation that includes video and a
natural language interface to immerse the user as a participant in the meeting. A screen-
shot of this simulation is shown in Figure 4. The user can choose which role they wish to
play (moderator, reader, or recorder) in the inspection. The simulation incorporates an
intelligent tutoring system that provides feedback to the student on their performance,
both during and after the simulation. The requirements analysis meeting simulation de-
scribed in [96] is embedded in a process that incorporates reflection, feedback, and dis-
cussion sessions as post-simulation activities. Such simulations are designed to give stu-
dents experience in these kinds of discussions, which, these approaches argue, is one area
in which new graduates are typically unprepared.

Figure 4: Simulated Characters in an Inspection Simulation [125].

2.3 Adding the “Missing Piece”
While the approaches discussed thus far have all mainly focused on changing the manner
in which software engineering concepts are taught, there is another large school of
thought that concentrates instead on changing the content of what is taught—in particu-
lar, these approaches believe that software engineering education is lacking in effective-
ness due to the omission of one (or a few) important subject(s). What this “missing piece”
is varies from approach to approach, but all generally believe that the addition of this sub-
ject to the curriculum (either to an existing course or as an entirely new and separate

 - 12 -

course) will make the students’ education much more complete, better preparing them for
the real world.3

Some of these approaches believe that formality is underemphasized. Both [10] and
[135] argue that formal methods should be taught more, while [41] proposes teaching tra-
ditional engineering education as part of a software engineering course.

Others believe that students should be taught a specific software process and be re-
quired to follow that process in their academic software engineering projects. These ap-
proaches teach such processes as the Personal Software Process (PSP) [33, 35, 65, 81, 83,
107, 110, 128-130, 138] or a variation of PSP [67, 131, 132], a Team Software Process
(TSP) variety [127], [107], a Rational Unified Process (RUP) variety [52, 60], [108], or
Extreme Programming (XP) [63, 119].

Still others propose that students should not only be required to follow a specific
software process, but to also practice process engineering and project management tech-
niques to create their own software processes, and use process improvement techniques
to improve upon them [29, 58, 69]. For example, [69] presents an approach in which stu-
dents must use a software process simulator to build, simulate, and improve upon the
process used in a group project. Others take a broader approach, in which they require
students to learn and utilize general project management techniques [86, 93, 139].

Rather than focus on process as a whole, other approaches focus on specific parts of
the process, and specific techniques for performing that task. For example, [40] proposes
teaching scenario-based requirements engineering, [131] includes extensive teaching of
code reviews, and usability testing is emphasized in [136].

Some approaches, rather than teach software engineering in general, focus on a spe-
cific type of software engineering. Examples of this are [15], [122], and [103], which all
emphasize maintenance- and evolution-based software engineering; [98] and [51], which
focus on component-based software engineering; and [75], [78], and [44], which empha-
size software engineering for real-time applications.

Still others believe it is certain non-technical aspects of software engineering that
should be added to the software engineering curriculum. [57], [56], and [59] present class
project setups that emphasize skills such as communication, group process, interpersonal
skills, project management, and problem solving over the more typical technical abilities.
[102] argues that software engineering students should receive more training in how to
interact with various stakeholders. The importance of including a course in Human-
Computer Interaction in a software engineering curriculum is argued for in [133] and
[64]. Finally, [114] proposes that it is important to include the business aspects of soft-
ware engineering, such as intellectual property, product marketing and distribution, and
financial models.

2.4 Summary of Software Engineering Educational Approaches
It is clear that software engineering education is an important research area to which
much attention has been given in recent years. Numerous educators are actively contrib-
uting their ideas and approaches to making the software engineering class project envi-

3 All approaches thus far have dealt strictly with delivery methods. The “missing piece” approach is the
only one that crosses the line into topics. However, it is included in this survey because of each of these
approach’s explicit statement of their motivation being the need to better prepare software engineers for the
real world.

 - 13 -

ronment more realistic, creating simulations in which students can freely experience
simulated software engineering processes, and adding overlooked software engineering
subjects to the curriculum. However, the presence of all these disparate approaches, as
well as the lack of agreement on which one(s) are best and the continued dissatisfaction
of industry, signifies that the problem of effectively educating future software engineers
is by no means a solved one.

3. Learning Theories
When discussing and evaluating educational approaches, it is only appropriate that the
discussion is tied back to the roots of educational theory. Learning theories are theories
that describe how people learn. One of the main purposes of learning theories is their use
as a guide in evaluating and modifying existing educational approaches, as well as in cre-
ating new ones. In this section, I will present and describe some of the most widely ac-
cepted and well-known learning theories that are relevant to the domain of software engi-
neering education. This section will provide the background necessary for a categoriza-
tion of software engineering educational approaches in terms of these learning theories,
which will be presented in Section 4.
 This particular set of learning theories was chosen according to two criteria: orthogo-
nality and relevancy. In order to create an ideal framework for the categorization pre-
sented in Section 4, and to avoid redundancy, I aimed to include the more orthogonal
theories that exist. There exists a great deal of overlap among learning theories, and there
are several learning theories that encompass a number of others. In these cases, I either
group theories that have the same basic idea (and explicitly mention and describe all of
the ones that I group), and omit those that simply combine a number of theories. By ne-
cessity, however, there are still some theories that share common elements, but have
some other distinguishing characteristic(s). I also omitted four other categories of learn-
ing theories. I did not include those that are very general cognitive theories (with no ob-
vious application to software engineering education), such as cognitive dissonance, which
deals with how one resolves conflicting notions in the mind. I also omitted those that are
specific to other subjects (such as math, reading, or foreign language), those that are spe-
cific to irrelevant people groups (such as older adults or elementary school-aged chil-
dren), and those that are simply not relevant to software engineering education (such as
behaviorist theories).

3.1 Learning by Doing / Experiential Learning / Active Learning /
Constructivism
It is well known that people learn a task best not only by hearing about it, but also by ac-
tually doing it. This is the basic premise of the Learning By Doing educational theory
[16, 104, 109, 111, 112] (also known as / virtually identical to Experiential Learning).
Often when a student hears about a skill or piece of knowledge in theory, the information
appears straightforward, and they assume they have grasped it. However, when they ac-
tually attempt that task, they realize how difficult and complex the skill or piece of
knowledge actually is. It is from this point that they truly begin to learn the material, as
they discover by experience the complexities and depth of the subject. Alternately, a
piece of knowledge can seem complex and difficult to grasp at first, until the learner puts
that knowledge into practice, at which point it becomes clear and they begin to master it.

 - 14 -

In either case, it is only by actively doing something with the knowledge that the student
truly learns it.
 A relevant subset of the Learning by Doing theory is the idea of Active Learning [12,
24]. This theory builds on Learning by Doing by specifying the “doing” tasks, namely,
analysis, synthesis, and evaluation. Such tasks encourage students to not only do the task,
but to also think about what they are doing, in order to gain a deeper level of knowledge
and understanding.
 Another related subset of Learning by Doing is Constructivism [17, 30, 87]. The basis
of this theory is that knowledge is something that is built or constructed through experi-
ence, not something that can simply be told or conveyed. Constructivism is highly
learner-centric, focusing less on the actions and thinking of the teacher and more on those
of the learner—how they construct new concepts or ideas based on their past knowledge
and current experience.

To sum up and tie these concepts together, the implication of these theories for educa-
tional approaches is the following: the learner should be provided with ample opportunity
to actually do what they are learning about, not simply absorb the knowledge through a
lecture, book, or some other medium; and in so doing, should be encouraged to reflect
upon their actions through analysis, synthesis, and evaluation activities. An ideal example
of this would be a situation in which one is learning the skill of writing fiction: An ap-
proach that takes advantage of these theories would not only have the student hear lec-
tures about fiction-writing and read about how to write fiction; they would also actually
write stories themselves, as well as analyze and evaluate their work and the work of oth-
ers.

3.2 Situated Learning / Functional Context / Andragogy / Schema
Theory
Situated Learning [12, 28, 54, 106, 124, 126] (also known as / virtually identical to Func-
tional Context) is an educational theory that builds upon the Learning by Doing approach.
However, while Learning by Doing focuses on the specific learning activities that the
student performs, the Situated Learning educational theory is concerned with the envi-
ronment in which the learning by doing takes place. In particular, Situated Learning is
based on the belief that knowledge is situated, being in large part a product of the activ-
ity, context, and culture in which it is developed and used. Therefore the environment in
which the student practices their newly learned knowledge should resemble, as closely as
possible, the environment in which the knowledge will be used in real life. Situated
Learning argues that typical school learning does not apply well to workplace situations
because it does not provide a meaningful context in which skills are taught, and gives too
much attention to theoretical explanation rather than to building true performance skills.
 One of the main educational practices proposed by the Situated Learning theory is
that of cognitive apprenticeships [36]. The idea of a cognitive apprenticeship is similar to
that of a typical craft apprenticeship. However, its focus is to bring students into the cul-
ture of practice rather than simply engage them in the relevant activities. It does so by
providing for them an authentic environment and authentic social interaction in which to
practice their newly learned skills and knowledge.
 It is worth mentioning two other educational theories that are implied in Situated
Learning: Andragogy and Schema Theory. Andragogy [73] is a theory that is specific to

 - 15 -

adult education and is based on two basic premises: 1) In order to learn effectively, adults
need to know why they are learning something (e.g., provide examples of what happens
if you do not follow the practices being taught); 2) In order to learn effectively, adults
need to know that what they are learning has a clear effect on their ability to handle real-
world situations. Andragogy has an obvious connection to Situated Learning in that al-
lowing students to practice skills in environments that resemble the real world will show
them how that piece of knowledge is useful in the real world.
 Schema Theory [14] is also related, but applies to all ages and stages of education.
Schema Theory views organized knowledge as a complex network of schemata, or ab-
stract mental structures, that represent an individual’s understanding of the world around
them. Therefore the role of the teacher is to help learners build schemata and make con-
nections between ideas by demonstrating how a piece of knowledge applies in the real
world.
 It is clear that the implication of these theories for educational approaches is to make
the environment in which a skill or piece of knowledge is practiced resemble the envi-
ronment in which the knowledge will be used in real life, thereby demonstrating the rele-
vance and direct usefulness of that knowledge to real-world situations. For instance, a
journalism student may hear and read a great deal about journalistic style, culture, and
techniques, and may even put some of these techniques into practice by writing articles
for their instructor to grade. However, the only “situated” way for the student to learn
about journalism would be by writing for the school paper or doing an internship for a
commercial magazine or newspaper.

3.3 Keller’s ARCS Motivation Theory
Like Situated Learning, Keller’s ARCS Motivation Theory [71] also focuses on motivat-
ing students to learn. However, rather than focusing on the physical environment in
which they learn, Keller’s ARCS Motivation Theory concerns itself with promoting cer-
tain feelings in the learner that motivate them to learn. In particular, these feelings are
attention, relevance, confidence, and satisfaction.

• Attention: The attention and interest of the learner must be engaged. Proposed
methods for doing so are: introducing unique and unexpected events; varying as-
pects of instruction; and arousing information-seeking behavior by having the
learner solve or generate questions or problems.

• Relevance: Learners must feel that the knowledge is relevant to their lives. The
theory suggests that knowledge be presented and practiced using examples and
concepts that are relevant to learners’ past, present, and future experiences.

• Confidence: Learners need to feel personal confidence in the learning material.
This should be done by presenting a non-trivial challenge and enabling them to
succeed at it, communicating positive expectations, and providing constructive
feedback.

• Satisfaction: A feeling of satisfaction must be promoted in the learning experi-
ence. This can be done by providing students with opportunities to practice their
newly learned knowledge or skills in a real or simulated setting, and providing
positive reinforcements for success.

 - 16 -

To summarize, Keller’s ARCS Motivation theory suggests that attention, relevance, con-
fidence, and satisfaction (ARCS) are the conditions that, when integrated, motivate an
individual to learn.

3.4 Anchored Instruction / Problem-based Learning
Anchored Instruction [25] is another theory that deals with teaching techniques. In par-
ticular, Anchored Instruction says educators should center all learning activities around
an “anchor”—a realistic situation, case study, or problem. Presentation of general con-
cepts and theories should be kept to a minimum. Instead, Anchored Instruction believes
that knowledge is best learned by exploration of these realistic case studies or problems.
 Problem-based Learning [123] is a well-known subset of Anchored Instruction. It is
more specific, however, in that it requires that the anchor be a real-world problem that
students must work together in groups to solve. It places significant emphasis on the re-
quirement that the problems be real-world—since they are usually ill-defined and un-
structured (rather than “cut and dry” like many toy problems), they strongly promote
critical thinking and problem-solving skills that will be invaluable to students’ future ca-
reers.
 An educational approach that leverages both Anchored Instruction and Problem-
based Learning is frequently used in training medical students: Specifically, the course
consists of nothing but presenting a group of students with a series of bizarre real-world
cases (e.g., “A 93-year old woman appears to be pregnant”). For each problem, the group
is asked to brainstorm the possible causes of the condition, do research, formulate hy-
potheses, and recommend a solution.

3.5 Discovery Learning
The Discovery Learning theory [12, 104] takes a similar approach to Anchored Instruc-
tion in that it believes that an exploratory type of learning is best. Discovery Learning is
based on the idea that an individual learns a piece of knowledge most effectively if they
discover it on their own, rather than having it explicitly told to them. This theory encour-
ages educational approaches that are rich in exploring, experimenting, doing research,
asking questions, and seeking answers.
 An example of Discovery Learning would be a Chemistry curriculum that is driven
by lab experiments—specifically, one that in which concepts are discovered through lab
experiments, and lectures are used only to further explore these discovered concepts.

3.6 Learning through Failure
Along the same lines as the Discovery Learning theory is the Learning Through Failure
theory [111]. This approach is based on the assumption that the most memorable lessons
are those that are learned as a result of failure. Learning through failure also provides
more motivation for students to learn, so as to avoid the adverse consequences that they
experience firsthand when they do not perform as taught. Failure can also engage stu-
dents, as they are motivated to try again in order to succeed. Proponents of the theory ar-
gue that students should be allowed to (and even set up to) fail to encourage maximal
learning. For example, pilots-in-training begin their training in flight simulators (rather
than real airplanes). The trainees are expected to crash land several times (but safely, as
the crash is not real, but simulated) before they master the skill of landing an aircraft.

 - 17 -

3.7 Learning through Dialogue / Conversation Theory
While most of the learning theories discussed so far focus mainly on the learner as inde-
pendent and responsible for fostering their knowledge on their own (using the proper
learning materials/activities), the Learning through Dialogue theory [39] gives the teacher
a much more active and pivotal role in the learner’s education. Learning through Dia-
logue suggests that dialogue between student and teacher is necessary for effective learn-
ing and retention. According to the theory, this dialogue should consist of the teacher en-
couraging reflection, assessing the student’s aptitudes and learning style, and tailoring
their teaching strategy accordingly. Learning through Dialogue is based on Conversation
Theory [99], a learning theory that emphasizes the importance of the learner conversing
with others about the subject matter in order to learn it effectively. Conversation Theory,
however, is slightly more general, in that allows for the other party in the conversation to
be anyone, not just the instructor.

3.8 Aptitude-Treatment Interaction
Like Learning through Dialogue, the Aptitude-Treatment Interaction [42] theory also
recommends that the instructor take an active role in assessing the characteristics of the
learner and modify their teaching style accordingly. Aptitude-Treatment Interaction fo-
cuses primarily on the aptitude of the learner, and states that the learning environment
should be tailored to this particular characteristic: Specifically, low-ability learners need
highly structured learning environments that incorporate a high level of control by the
instructor, concrete and well-defined assignments, and specific sequences to follow for
completing them. High-ability learners, on the other hand, tend to be more independent,
which implies a less structured approach is more effective for this type of student.

3.9 Multiple Intelligences
Like the Aptitude-Treatment Interaction theory, the theory of Multiple Intelligences also
deals with the diverse learning needs and styles of individuals. However, while Aptitude-
Treatment Interaction is primarily concerned with the aptitude of the learner, the Multiple
Intelligences [53] theory is instead focused on the particular learning modalities that are
unique to each individual. In particular, the theory identifies seven different learning mo-
dalities: linguistic, musical, logical-mathematical, spatial, body-kinesthetic, intrapersonal
(metacognition and insight), and interpersonal (social skills). Whenever possible, instruc-
tion should be individually tailored to each student to target the particular learning mo-
dalities that are most effective for them. For example, a highly musically-inclined student
who is learning computer programming should first be introduced to the subject by pro-
gramming a simple musical piece. In contrast, a student with strong spatial skills should
have as their first assignment some type of graphics program.

3.10 Learning through Reflection
The theory of Learning through Reflection is primarily based on Donald Shon’s work
suggesting the importance of reflection activities in the learning process [115]. In particu-
lar, Learning through Reflection emphasizes the need for students to reflect on their
learning experience in order to make the learning material more explicit, concrete, and
memorable. Reflection activities encourage individuals to take a “meta” view of their

 - 18 -

learning experience by encouraging them to explore their learning process, evaluate their
performance, assess how their learning has prepared them for future experiences, and de-
termine which skill or knowledge areas they lack. Some common reflection activities in-
clude discussions, journaling, or dialogue with an instructor [74]. Educational approaches
that leverage the Learning through Reflection theory are rich in these types of activities.

3.11 Elaboration / Information Processing Theory
While Learning Through Reflection is primarily concerned with what individuals do with
knowledge once they have received it, the theory of Elaboration [105] is focused on how
that information is presented to the learner in the first place. In particular, it states that,
for optimal learning, instruction should be organized in order of complexity, from least
complex to most complex. Simplest versions of tasks should be taught first, followed by
more complicated versions.
 It is worth mentioning that the theory of Elaboration is based on another learning the-
ory: that of Information Processing [92]. The Information Processing theory states that
short-term memory, or attention span, can process no more than seven pieces of informa-
tion at a time. In addition, it states that processing information in sequential steps is an
essential cognitive sub-process of learning. Hence, these theories together imply that
educational approaches should present information to students in small chunks that start
out simple and become increasingly more complex.

3.12 Lateral Thinking
While the Elaboration theory deals with the size and type of information to be presented,
the Lateral Thinking theory [48] is instead concerned with how students are encouraged
to think about the information presented. Specifically, Lateral Thinking states that
knowledge is best learned when students are presented with problems that require them to
take on different perspectives than they are used to and practice “out of the box” thinking.
The theory suggests that students be challenged to search for new and unique ways of
looking at things, and in particular, these views should involve low-probability ideas that
are unlikely to occur in the normal course of events. It is only through this type of re-
laxed, exploratory thinking that one can obtain a firm grasp on a problem or piece of
knowledge.
 The following anecdote (taken from [48]) demonstrates lateral thinking in action: A
certain man owed money to a lender. This man convinced the lender to settle the debt
based upon a random drawing: Two stones would be placed in a bag, one white and one
black. The man’s daughter would draw a stone. If she drew the white stone, the debt
would be forgiven. If she drew the black stone, the lender would get to take the man’s
daughter for his wife. The man attempted to outsmart the lender and put two black stones
in the bag. But his daughter was even smarter: When she drew a stone, she immediately
dropped it on the ground, amongst the other stones naturally occurring there. Hence, it
was immediately indistinguishable from these other stones. She then argued that the stone
she drew must have been the opposite color from the one remaining in the bag, and she
was able to prevent herself from being taken by the lender. This man’s daughter solved
an intractable problem through lateral thinking.

 - 19 -

3.13 Summary of Learning Theories
In this section I have presented a basic background of learning theories that are applicable
to software engineering education. Although these theories have distinguishing character-
istics from each other, it is clear that they all share a common goal: To make learning
more motivating, relevant, and effective, whether through the setup of the learning envi-
ronment (Situated Learning, Anchored Instruction, Discovery Learning, Learning
through Failure, Elaboration, Learning by Doing), the instructor’s actions (Learning
through Dialogue, Aptitude-Treatment Interaction, Multiple Intelligences), the learner’s
thought process (Learning through Reflection, Lateral Thinking), or any combination of
these that achieve a desired result (Keller’s ARCS).

4. Software Engineering Educational Approaches and
Learning Theories
Obviously, there are both a wealth of innovative software engineering educational ap-
proaches, and a wealth of learning theories that can be leveraged in designing an educa-
tional approach. However, is the former taking maximal advantage of the latter? And
could the answer to this question explain why, in spite of all of these innovations, soft-
ware engineering education is still so difficult and ineffective in preparing students for
the real world? I will now take a look at the approaches presented in Section 2 in light of
the educational theories presented in Section 3 in order to address this question.
 However, before doing this, it is necessary to state a basic assumption on which I will
be making this analysis and the subsequent observations and recommendations. The as-
sumption is the following: The more learning theories a method incorporates, the more
effective it will be. This is not an empirically proven fact, but there exists an enormous
body of literature in other educational domains that also bases their educational evalua-
tions on this assumption. However, I do not claim that this assumption is necessarily true
in all cases. This assumption is made with the following two caveats: First, it is more ef-
fective to choose a method that incorporates a number of learning theories naturally and
coherently, rather than combining different methods that each utilize a different learning
theory. This means that, if the desired effect is to incorporate x learning theories, it is
more effective to choose Method A, which incorporates all x naturally rather than trying
to combine Methods B, C, D, and E, which each incorporate a subset of the x learning
theories. Such an approach would most likely be unfocused and confusing. The second
caveat is that, for any given delivery method, there may be an optimal number of theories
with a drop-off in effectiveness at some point. For instance, Method A might be optimal
with x theories, but once it tries to incorporate (x + 1) theories, the effectiveness may start
to decrease.
 In Table 2, the analysis that is based on this assumption is presented. Table 2 is a ma-
trix of software engineering educational approaches, and the learning theories that they
leverage. There are a number of approaches within the Projects plus Realism category
that take advantage of the same set of learning theories. These are all in the lower half of
the table, and, since they leverage the same exact set of learning theories, they will not be
discussed separately, but will instead be grouped together in the discussion throughout
the remainder of this paper as the “Projects plus Realism (all others)” category. Some
other approaches are also discussed together, if they are highly similar and/or employ the

 - 20 -

Table 2: Software Engineering Educational Approaches and the Learning Theories they Leverage.

Le
ar

ni
ng

 b
y

D
oi

ng
 e

t.
al

.

Si
tu

at
ed

 L
ea

rn
in

g
et

. a
l.

K
el

le
r’

s A
R

C
S

A
nc

ho
re

d
In

st
ru

ct
io

n

D
is

co
ve

ry
 L

ea
rn

in
g

Le
ar

ni
ng

 T
hr

ou
gh

 F
ai

lu
re

Le
ar

ni
ng

 T
hr

ou
gh

 D
ia

lo
gu

e

A
pt

itu
de

-T
re

at
m

en
t I

nt
er

ac
tio

n

M
ul

tip
le

 In
te

lli
ge

nc
es

Le
ar

ni
ng

 T
hr

ou
gh

 R
ef

le
ct

io
n

El
ab

or
at

io
n

La
te

ra
l T

hi
nk

in
g

Industrial Partnership – Real Project X X X X/P X/P

Team Composition – Long-Term Teams X X P P X P

Open-Endedness – Requirements X X X X X P P

Open-Endedness – Process X X X X X P P

Practice-Driven X X X X X/P P ? X/P P

Sabotage X X X P P P

Re-enacting Failures X X X P P P

Simulation – Industrial X X X P X X P P ? P X/P P

Simulation – Game-Based X X X P X X X/P P ? X/P P P

Simulation – Group Process X X X P X X X/P P ? X/P P X/P

Missing Piece X

Industrial Partnership – Modify Real Software X X P P P

Industrial Partnership – Industrial Advisor X X P P P

Industrial Partnership – Involved Mentor X X P P P

Industrial Partnership – Case Study X X P P P

Maintenance/Evolution – Multi-semester X X P P P

Maintenance/Evolution – Single-semester X X P P P

Team Composition – Large Teams X X P P P

Team Composition – Different C.S. Classes X X P P P

Team Composition – Different Majors X X P P P

Team Composition – Different Universities X X P P P

Team Composition – Different Countries X X P P P

Team Composition – Team Structure X X P P P

Non-Technical Skills X X P P P

same learning theories (e.g., sabotage and re-enacting failures). An ‘X’ in the table indi-
cates that there have been approaches within that category that have leveraged that the-
ory, a ‘P’ represents that there is an obvious potential for that particular type of approach

 - 21 -

to employ that learning theory (in and of itself, not combined with any other approach),
but there have been no known cases of it. The presence of both an ‘X’ and a ‘P’ indicates
that perhaps one or two approaches in the category have taken advantage of the theory,
but most have not, so there is significant potential for further exploitation. A question
mark denotes an open research question that is difficult to determine without further in-
vestigation.

4.1 Industrial Partnership – Real-world Project
A specific approach from the most popular of the adding-realism-to-class-projects cate-
gory, the “Industrial Partnership” approach, fully leverages three of the ten learning theo-
ries. In particular, I refer to the specific approach in which students work on actual real-
world projects. Only three of these five learning theories are utilized by all approaches in
this category, while the other two are only used in one particular approach. First, these
approaches allow students to “learn by doing”, in that they learn how to work on real pro-
jects by actually working on them. Second, they provide a learning environment that is
more similar to that of the real world, namely, by the addition of the “real project” envi-
ronmental factor (leveraging the Situated Learning theory). If we recall one of this ap-
proach’s claimed benefits from Section 2.1.1 (students learn a greater appreciation of
quality and why it is important), it is clear that this benefit could be directly attributed to
the situated nature of the approach: students exposed to a more realistic environment
through a real-world project realize the importance of quality because quality is important
in a real world with real customers. In an academic environment in which customers are
usually “fake” (or nonexistent), quality is intrinsically not as crucial.
 Third, these approaches promote Attention, Relevance, Confidence, and Satisfaction
(Keller’s ARCS). As these approaches have also reported, a “real” project is taken more
seriously by students, considered more relevant to their lives, and promotes a greater feel-
ing of confidence, motivation, and satisfaction.
 Learning through Dialogue and Learning through Reflection are two theories that are
not as heavily utilized by the industrial partnership – real project approach. Specifically,
it is only mentioned in the approach described in [129], which incorporates weekly one-
on-one mentoring sessions with a “coach” that discusses each student’s performance with
them, answers their questions, makes suggestions, and helps them reflect on their experi-
ence. This is a relatively simple component that could be added to the other approaches to
take advantage of these two learning theories and thereby enhance their educational ef-
fectiveness.

4.2 Team Composition – Long-Term Teams
As described in Section 2.1.3, the “long-term teams” approach has students work in the
same teams for their entire four-year program, on projects that start out simple in their
first year and gradually become more complex as the years continue. This approach takes
full advantage of three learning theories. First, as this approach claims, the students learn
how to work in an unchanging team for a long period of time (a characteristic of real-
world software engineering teams) by actually doing so (Learning by Doing). Further-
more, the fact that they do so for a long period of time suggests that this approach allows
them more “doing” (with respect to practicing team skills) than some other approaches.
Second, intrinsic to the educational effectiveness of this experience is the meaningful,

 - 22 -

realistic context (long-term teams) in which these skills were learned (Situated Learning).
Finally, because the projects start out simple and incrementally add complexity (elabo-
rate), this approach also leverages the Elaboration theory.4
 The theories of Learning through Reflection, Learning through Dialogue, and Lateral
Thinking also have significant potential to be used with modified versions of this ap-
proach. First, both Learning through Reflection and Learning through Dialogue could be
leveraged if the approach incorporated structured reflection and dialogue techniques, in
which students could reflect upon and discuss their long-term team experience. Second,
because the teams in this approach are together for such a long period of time, it would be
an ideal situation for students to rotate roles and responsibilities in the projects, directly
utilizing Lateral Thinking. Unlike a shorter-term team approach, these students could
have the opportunity to get a good feel for a number of different roles, as they could po-
tentially spend several months in each.

4.3 Open-endedness
As discussed in Section 2.1.5, an open-ended approach entails the instructor purposely
leaving some parts of the project vague, either in terms of the requirements of the soft-
ware or the process the students are to follow. This type of approach fully leverages five
learning theories. First, Learning by Doing is an integral part of this approach: Students
learn how to create and then follow a self-defined process by doing so, and also learn
how to do market research to define their own requirements by doing so. Second, Situ-
ated Learning is employed, as the learning environment is made more situated, or realis-
tic: In the process vagueness approach, the students must define their own process, which
is a normal practice in real-world software engineering situations, in contrast to having an
instructor specify all intermediate deadlines, deliverables, and procedures. In the re-
quirements vagueness approach, they are put in the realistic situation of needing to do
market analysis to define the requirements for a new product.
 The third learning theory the open-ended approach leverages is Keller’s ARCS.
Looking back to Section 2.1.5, one of the claims of this type of approach is that it is more
motivating to students and results in higher quality work, due to the fact that the students
have a greater ownership of the project—they design their own requirements, process, or
both, not simply follow the dictates of others. This claim fits squarely in the four tenets of
Keller’s ARCS theory:

• Attention: Clearly, the high level of motivation reported attests to the fact that the
attention of the students was sparked and engaged with this approach.

• Relevance: An integral part of this approach is its portrayal of how things are
done in the real world, in which such issues as requirements and process are often
vague.

• Confidence: The fact that the students in these approaches were successful in
producing high quality work is both evidence of, and a contributing factor to the
confidence these students cultivated through the experience. Their increased

4 It could be argued that the long-term team approach’s utilization of the Elaboration theory should not be
compared to others for the following reason: It is specific to a four-year time period, during which it is only
natural that instruction become more advanced as students progress, while other approaches mainly refer to
projects in general without specifying a time period. However, since this approach obviously and specifi-
cally leverages the Elaboration theory, it remains included in this comparison.

 - 23 -

amount of ownership in the project and their subsequent success perhaps pro-
motes even more confidence than a non-open-ended approach.

• Satisfaction: Again, the students’ success in a project that they felt a great deal of
ownership in is a factor that fosters a high level of satisfaction.

 The open-ended approach also richly utilizes the Discovery Learning theory. As this
theory states, an individual learns most effectively if they discover a piece of knowledge
on their own, rather than having it explicitly told to them. An open-ended approach pro-
motes this type of learning, as students are simply thrown into a situation in which they
must make the vague concrete and the undefined defined, in the process discovering how
to do market research to formulate requirements for a new product, or how to design and
follow a process.
 Learning through Failure is another theory that is directly leveraged by the open-
ended approach. As students are thrown into a vague situation and required to simultane-
ously discover, develop, and employ their skills, they are bound to fail at times. But it is
through these failures that they have some of the greatest opportunities to learn “what not
to do” and “what they should have done.”
 Finally, this type of approach has potential to make use of Learning through Reflec-
tion and Learning through Dialogue if reflection and dialogue activities are incorporated.
These activities could be particularly useful in analyzing, discussing, and reflecting on
the students’ mistakes and failures and gleaning all that can be learned from them.

4.4 Practice-Driven Curricula
A practice-driven curriculum, as described in Section 2.1.6, is one that is heavily based
on projects and labs, and believes that true knowledge can only be built through experi-
ence, making mistakes, and learning from them (which this approach gives students
plenty of opportunity to do). This approach encompasses four educational theories. It has
a heavy Learning by Doing slant, in that virtually the entire approach consists of “doing”
activities rather than passive activities such as listening to lectures and reading. It also
directly implements the Anchored Instruction theory, which has a similar philosophy to
that mentioned by this type of approach: As stated previously, Anchored Instruction be-
lieves that all learning activities should be centered around an “anchor” (in this case a
project or a lab) that is actively explored and practiced. This, the theory states, is the way
that knowledge is most effectively learned, not through presentations of general concepts
and theories, which should be kept to a minimum. The related theory of Discovery Learn-
ing is also utilized by this approach—a practice-driven curriculum allows an individual to
discover knowledge on their own through exploration and experimentation, rather than
having it explicitly told to them. Finally, an integral part of this approach is Learning
through Failure: Students are expected to fail several times as they attempt the projects
and labs with little background knowledge or preparation, but this failure is the expected
avenue to gaining true insight and knowledge.
 There is also the potential for four other learning theories to be incorporated into a
practice-driven approach. First, dialogue and reflection sessions could be added as part of
the curriculum, in which the knowledge discovered in the anchor activities could be re-
flected upon and discussed, which would make it more explicit and perhaps more memo-
rable. At the same time, these types of sessions might reveal knowledge that one had sub-
consciously discovered but was not consciously aware of yet (e.g., “I knew I had resolved

 - 24 -

this conflict with my team, but I didn’t realize that I discovered teamwork skills in the
process”). Such activities have only been incorporated into one of these approaches
([129]).
 Second, there may be the potential for the Aptitude-Treatment Interaction theory to
be incorporated into this approach. In particular, its project-intensive nature makes it an
ideal situation for varying the amount of structure for each student according to their apti-
tude: An instructor could give more open-ended projects and assignments to higher apti-
tude students, and more concrete and structured ones to those of lower aptitude. (This
would not be possible with a lecture-based curriculum, as it is not feasible to tailor a lec-
ture to each individual student’s needs.) While there may be several obvious drawbacks
to such an approach (namely, unfairness, and feelings of ineptitude on the part of those
who are assigned more structured projects), the benefits claimed by the Aptitude-
Treatment Interaction theory may warrant further investigation into this approach.
 Along the same lines, the theory of Multiple Intelligences could also potentially be
incorporated into this approach. Specifically, rather than changing the level of structure
of the projects or assignments, their content could vary based on the learning modalities
of each student. There is an obvious question of feasibility here however, which is why
this particular box in the chart has a question mark rather than a “potential”: Is it feasible
for an instructor to assess the learning modalities of each student and design for them an
appropriate project that takes advantage of these? Is there a way this process could be
automated, perhaps with a quiz or tool that assesses learning modalities, and a standard
set of projects for each modality?
 Finally, this approach could also utilize the theory of Elaboration if the anchors (pro-
jects and labs) are assigned in order of increasing complexity. Although it could probably
be safely assumed that the projects in these approaches are being organized in some sort
of increasingly complex order, they do no explicitly state this, so it remains a potential in
this categorization.

4.5 Sabotage / Re-enacting Failures
The approaches of sabotage and re-enacting project failures, described in Sections 2.1.7
and 2.1.8, respectively, have a close and obvious tie to the Learning through Failure the-
ory—students are deliberately set up to fail, and this failure is the primary method of
learning. In these approaches, students also learn by doing—they learn how to handle
project failures, and factors that can cause project failures, by actually experiencing them
firsthand. Finally, Situated Learning is also intrinsic to this approach in that the primary
characteristic of the learning environment is the presence of realistic adverse events and
circumstances.
 There are also three other learning theories that this approach has the potential to lev-
erage, if modified slightly. Again, as in several other approaches, Learning through Re-
flection and Learning through Dialogue could be utilized with dialogue and reflection
sessions. These types of activities would be especially useful in reflecting upon failures,
and analyzing them to determine their causes, effects, and possible ways to prevent them
in the future. Elaboration could also be employed if sabotage “events” (dirty tricks in
[47]) or failures are introduced in order of increasing complexity.

 - 25 -

4.6 Projects Plus Realism (All Others)
The rest of the “Projects plus Realism” approaches presented in Section 2.1 leverage the
same set of learning theories, therefore they are all placed at the end of Table 2. Because
the goal of a project in general is to teach students how to perform tasks using the knowl-
edge they are taught, all approaches that involve a project are essentially Learning by Do-
ing approaches. Furthermore, because these approaches all aim to add realism to the envi-
ronment in which the project is practiced, they also fall into the category of Situated
Learning.
 Again, any of these approaches could also incorporate reflection and dialogue ses-
sions in order to take advantage of the Learning through Reflection and Learning through
Dialogue theories. In addition, most of these techniques could also take advantage of the
Elaboration theory in the way they organize the concepts being introduced. For example,
one of the approaches that focuses on teaching non-technical skills could teach the sim-
plest non-technical skills first, followed by those that are more advanced.

4.7 Simulation
By far, simulation is the approach that takes advantage of, and has the potential to take
advantage of, the largest number of learning theories (eleven). First of all, all aforemen-
tioned educational software engineering simulations allow students to learn software
processes by participating in them (Learning by Doing), albeit virtually. These simula-
tions also employ Situated Learning by adding realism to the learning environment, al-
though in different ways: Industrial simulations add realistic factors in the form of real
project data in the simulation model; Game-based simulations add realism by immersing
the student in the role of a participant in a realistic game scenario; Group process simula-
tions inject realism through the simulated characters that behave similarly to real-world
participants.
 Simulation approaches also strongly fit with the Keller’s ARCS model of learning. In
particular, they promote attention, relevance, confidence, and satisfaction in the following
ways:

• Attention: A number of studies done with educational software engineering
simulations have repeatedly shown that students find these simulation enjoyable,
engaging, and an interesting challenge they are happy to take on [18, 46, 95, 117,
125]. This is particularly true for game-based simulations. Clearly this is the result
of the elements of surprise, humor, challenge, and fun that are integral to many
game-based simulations.

• Relevance: Because learners can experience firsthand how the knowledge they
are learning is relevant in a real-world situation (the one that is portrayed in the
simulation), simulation promotes a feeling of relevance to students’ future careers.
This relevance can be enhanced by the usage of real-world data in the model to
make the simulation more realistic. Furthermore, as the theory suggests, relevance
is enhanced even further if the educational approach builds on previous and pre-
sent knowledge. Simulations that are used to demonstrate concepts that have al-
ready been communicated to the students in another form (e.g., lecture or text) di-
rectly address this.

• Confidence: Simulations provide a non-trivial challenge that is also doable. As
students are given the opportunity to succeed at a simulation, they will feel a

 - 26 -

sense of personal confidence in the learning material. This is especially true in
game-based simulations, in which students have the additional benefit of feeling
they have “won the game.”

• Satisfaction: As students are able to practice their knowledge and skills in a real-
istic (yet simulated) setting, seeing the positive consequences of applying their
knowledge correctly promotes a true feeling of satisfaction. Again, game-based
simulations add to this if the student is also rewarded with a high score or some
other game-relevant measure of success.

 The exploratory quality of simulation in and of itself also directly implements the
Discovery Learning theory. The nature of simulation is highly conducive to allowing stu-
dents to discover knowledge on their own, as they see phenomena played out in a simula-
tion, and are encouraged to explore, experiment, do research, ask questions, and seek an-
swers.
 This type of exploratory learning is also inherently related to the Learning through
Failure theory. As students explore the simulation and try different approaches, they are
likely to fail at least a few times. In fact, one of the basic purposes of simulations is to
allow students to “push boundaries”, try different approaches, and fail without fear of the
drastic and severe consequences that would occur in a real-world setting. For example, a
student who fails in a simulated software project would only have to worry about getting
a low game score or seeing an unhappy simulated customer, while in the real world such
a failure could cost millions of dollars or have even more serious consequences.
 Both Learning through Dialogue and Learning through Reflection have also been in-
corporated into the simulation approach. However, these have only been used limitedly:
with the game-based simulation SESAM [49], and the industrial simulation described in
[96]. As mentioned previously, dialogue and reflection sessions have been incorporated
into these learning processes as post-simulation activities. In these sessions, students ana-
lyze and discuss their simulation experience with a tutor or instructor, and reflect on what
they have learned. Some dialogue activity is also an inherent part of Problems and Pro-
grammers [18], the educational software engineering card game simulation. Although the
dialogue referred to in the Learning through Dialogue theory is usually between a student
and teacher, the face-to-face, competitive nature of this physical card game has been
shown to promote rich and useful discussion between student opponents, regarding such
topics as why they took the approach they did, the reasons behind one person’s win and
another’s loss, and their reactions to unexpected events. This type of student-student dia-
logue more closely fits within the more general Conversation Theory.
 Like Learning through Dialogue and Learning through Reflection, the Elaboration
theory has also been only limitedly incorporated into simulation-based software engineer-
ing educational approaches. In particular, Elaboration has only been leveraged in the
process used with the industrial simulation described in [37]. This process consists of as-
signing students very simple simulations to begin with, and incrementally increasing the
complexity of the simulations as the students progress in their knowledge.
 The Lateral Thinking theory is also one that has only been utilized minimally in simu-
lation, but has a strong potential to be used much more, especially in game-based and
group process simulations. As described in Section 3.12, the theory of Lateral Thinking
states that students will learn best when they are encouraged to look at problems in new
and unique ways, within the context of situations that involve events not likely to occur

 - 27 -

normally. Simulation technology has clear capability to fit this bill. Simulations, espe-
cially those that are computer-based, could be modified in such a way as to allow the stu-
dent to take on different roles, or the perspectives of different participants in the simu-
lated process. (The inspection group process simulation described in [125] is the only one
that has this capability.) Such a feature strongly promotes Lateral Thinking, as it allows a
student to look at a software process from the viewpoint of, for instance, a programmer,
manager, tester, and customer, all within the same simulation. Furthermore, Lateral
Thinking could also be promoted if configurable simulations, such as SESAM and
SimSE, are programmed with simulation models that involve the type of “unusual”
events proposed by Lateral Thinking.
 Although Aptitude-Treatment Interaction has not yet been used in conjunction with
educational software engineering simulations, the usage of such simulations could poten-
tially be modified to take advantage of this learning theory. In particular, students with
lower aptitudes could be assigned simulation models or activities that are more structured
and provide fewer options, while those with high aptitudes are given more open-ended
simulations with extra freedom. For instance, a simulation that is trying to teach the wa-
terfall process of software engineering (requirements -> design -> implementation -> test)
could have two variations: For lower aptitude students, it could enforce this sequence and
never even give them the option of, for example, starting design before requirements are
finished. In this way, they would have a very structured experience in which the lessons
are obvious and explicit. Higher aptitude students, on the other hand, could be given
complete freedom to perform any step at any given time, and would instead have to infer
the proper sequence by trying many different approaches and seeing the results of each.
Again, this approach might raise some ethical, instructional, and feasibility issues, but
still may be worth investigating.
 Similarly, incorporating the theory of Multiple Intelligences into simulation in soft-
ware engineering education may be another avenue worth pursuing. As in the Aptitude-
Treatment Interaction theory, different simulations could be given to different students,
but based on their learning modalities rather than their aptitudes. It is unclear how or if
exactly a simulation could be designed for a student’s particular learning modality, and
whether this is even a feasible task. Hence, this is designated as an open research area.
 Finally, Anchored Instruction is another theory that has not been utilized at all in
simulation, but has obvious potential to. In particular, simulations could be used as the
anchor (realistic situation, case study, and problem, simultaneously) that instruction is
centered around. In such a case, students would practice a simulation (or series of simula-
tions) for each concept (or set of concepts) being taught. Simulations would allow for
ample exploration—one of the basic tenets of Anchored Instruction—as students could
practice the same simulation multiple times, using a different approach each time, learn-
ing the consequences of various actions, and, as a result, learning a great deal about the
process and concepts being simulated.

4.8 Adding the “Missing Piece”
Although the various “Missing Piece” approaches vary by the particular subject(s) being
taught and exact manner of teaching, most of them employ a Learning by Doing ap-
proach. Specifically, the subject in question is either incorporated into the class project
(e.g., students should learn real-time software engineering, so the software they build for

 - 28 -

the project must be real-time), or the student is required to complete a lab assignment or
small exercise demonstrating the concept (e.g., have students create a Z specification of
an existing piece of software in order to teach them formal methods).
 Because the “Missing Piece” is somewhat of a meta-approach, in that it specifies
what subject(s) should be added to the curriculum as a whole, rather than how to specifi-
cally teach software engineering, the other learning theories are not particularly relevant
to this approach on its own.

5. Observations and Recommendations
Table 3 presents the frequency of each software engineering educational approach pre-
sented in this paper, including a breakdown of each approach’s subcategories. Looking at
the number of approaches that fall into the “Projects Plus Realism” category (53 out of
109 total), it is obvious that this is the most popular approach to addressing the problem
of adequately preparing students for their future careers in software engineering. This
makes logical sense: If we want to better prepare students for the real world, it is only
common sense that we try to introduce the real world to them sooner rather than later.
However, if we look again at Table 2, we can see that the majority of these approaches
only employ two learning theories: Learning by Doing and Situated Learning.

Table 3: Frequency and Breakdown of Each Software Engineering Educational Approach.

Realism 53 Simulation 8 Missing Piece 48
Industrial Partnerships 16 Industrial 2 Formality 3
- Modify real software 1 Game-Based 4 - Formal methods 2
- Industrial advisor 1 Group Process 2 - Engineering 1
- Industrial mentor/lecturer 2 Process (Specific) 21
- Case study 5 - PSP 14
- Real project / customer 7 - TSP 2
Maintenance/Evolution 9 - RUP 3
- Multi-semester 4 - XP 2
- Single-semester 5 Process (General) 6
Team Composition 13 - Process engineering 3
- Long-term teams 1 - Project management 3
- Large teams 3 Parts of Process 3
- Different C.S. classes 1 - Scenario-based req. eng. 1
- Different majors 2 - Code reviews 1
- Different universities 2 - Usability testing 1
- Different countries 1 Types of Software Eng. 8
- Team structure 3 - Maintenance/Evolution 3
Non-Technical Skills 2 - Component-based SE 2
Open-Endedness 7 - Real-time SE 3
- Requirements 2 Non-Technical Skills 7
- Process 5 - Social/logistical skills 3
Practice-Driven 3 - Interact w/ stakeholders 1
Sabotage 2 - HCI 2
Project Failures 1 - Business aspects 1

 In fact, Learning by Doing and Situated Learning are the most heavily-utilized theo-
ries in the surveyed approaches. It is obvious that software engineering educators have

 - 29 -

gotten very good at employing these two theories in their approaches. However, as a
tradeoff, there are many other learning theories that are overlooked. Figure 5 presents the
number of approaches that leverage or may potentially leverage each learning theory (ap-
proaches that only minimally leverage a theory fall into the potential category in this dia-
gram). From this graph it is clear that there are a number of under-utilized theories. Over
half of the learning theories are addressed by less than 50% of the surveyed approaches.
Aptitude-Treatment Interaction, Lateral Thinking, and Anchored Instruction are the least
utilized theories (aside from Multiple Intelligences, whose potential is unclear in the do-
main of software engineering education, as discussed in Sections 4.4 and 4.7). Anchored
Instruction is employed by only one approach (practice-driven), with the potential to be
utilized by only three other approaches (the three simulation categories). Both Lateral
Thinking and Aptitude-Treatment Interaction are only potentially or partially employed
by four approaches. Clearly, both Learning through Dialogue and Learning through Re-
flection are the theories with the most potential for greater use—every approach except
for the Missing Piece meta-approach could potentially be enhanced to leverage (or better
leverage) these theories. Elaboration also has considerable potential to be employed more
in these existing approaches (20 of 24).

0

5

10

15

20

25

30

Le
ar

ni
ng

 b
y

D
oi

ng

Le
ar

ni
ng

 th
ro

ug
h

D
ia

lo
gu

e

Le
ar

ni
ng

 th
ro

ug
h

R
ef

le
ct

io
n

S
itu

at
ed

 L
ea

rn
in

g

E
la

bo
ra

tio
n

Le
ar

ni
ng

 th
ro

ug
h

Fa
ilu

re

K
el

le
r's

 A
R

C
S

D
is

co
ve

ry
 L

ea
rn

in
g

A
pt

itu
de

-T
re

at
m

en
t I

nt
er

ac
tio

n

La
te

ra
l T

hi
nk

in
g

A
nc

ho
re

d
In

st
ru

ct
io

n

M
ul

tip
le

 In
te

llig
en

ce
s

Learning Theory

of

 A
pp

ro
ac

he
s

Fully Leveraged Potential

Figure 5: Number of Approaches Leveraging or Potentially Leveraging Each Learning Theory.

 - 30 -

 If we take a different view and look at each approach rather than each learning theory,
we can gain even more insight. Figure 6 depicts the number of learning theories lever-
aged or potentially leveraged by each approach. (As in Figure 5, theories that are only
minimally leveraged are put into the “potential” category.) If we examine each column in
the graph, it is evident that most of these approaches are not being maximized in terms of
their educational potential. In fact, with the exception of the open-ended approach, the
industrial partnership / real project approach, and the missing piece approach, none of
them are maximized by more than 50%. Obviously there exists a great deal of untapped
potential in each of these approaches.

0

2

4

6

8

10

12

Simulation Practice-
driven

Open-
endedness

Long-term
Teams

Sabotage /
Re-enacting

Failures

Industrial
Partnership

- Real
Project

Projects +
Realism (all

others)

Missing
Piece

Approach

of

 L
ea

rn
in

g
Th

eo
rie

s

Fully Leveraged Potential

Figure 6: Number of Learning Theories Leveraged or Potentially Leveraged by Each Approach.

 Based on this information, I would make the following overall recommendations for
modifications (not overhauls) to existing software engineering curricula:

• The existing approaches should be modified (according to the recommenda-
tions presented in Section 4) to take advantage of all these potential areas for
improvement. The fact that nearly every approach only leverages at most 50% of
the learning theories it could employ reveals that there is a great deal of potential
for them to be significantly more educationally effective. Particularly promising
are the Learning through Dialogue and Learning through Reflection enhance-
ments, which can be used to enhance nearly every approach. Simulation is the ap-
proach that could be improved to employ the most additional learning theories
(six). Of course, it is not feasible for one to enhance and incorporate all ap-
proaches—a great deal of selectivity and prioritization must be used in choosing
which ones are most appropriate to the nature of a specific educational environ-
ment. In addition, the previously stated caveat (multiple learning theories must be
incorporated naturally and coherently) must be kept in mind.

 - 31 -

• New approaches should be designed to specifically address the more under-
utilized learning theories. Specifically, the least utilized learning theories are
Aptitude-Treatment Interaction, Lateral Thinking, and Anchored Instruction. In
addition, Learning through Failure, Keller’s ARCS, and Discovery Learning are
also poorly utilized, being leveraged by less than half of the approaches. It is pos-
sible that the reason why these theories are not utilized is because they have little
applicability to the domain of software engineering education. Therefore, investi-
gations should also be conducted that determine the true potential of these theo-
ries in this domain. Furthermore, studies should be undertaken to assess the rele-
vance of the Multiple Intelligences theory to software engineering education,
since it could also potentially be useful to the domain, but its applicability is
highly unclear at this point.

 Now suppose that, rather than modifying an existing curriculum, we were tasked with
designing a brand new software engineering curriculum from the ground up, using only
the currently existing approaches (with allowance for modifications to maximize their
educational potential). This requires a comparison of these approaches based on the fol-
lowing criteria: Logically, the more educational theories that a particular approach em-
ploys, the better and more effective it should be.5 Therefore, on first glance, one might
propose that this ideal curriculum should include all or many of these approaches in a
combined fashion in order to maximize the learning benefits. However, such an approach
would not only be problematic for the reasons mentioned, but it would also be highly in-
feasible, due to the fact that both courses and curricula are constrained in terms of time,
scope, and resources. While each and every one of these approaches undoubtedly have
their merits, and could perhaps be included in an imaginary software engineering curricu-
lum that had no time or resource limits, there is no possible way anyone can incorporate
all of them into one course or even one four-year curriculum.
 Instead, it is more feasible and efficient to choose those approaches that encompass
the most learning theories in and of themselves, and require the minimum amount of time
and resources. These approaches could then be combined into a curriculum that makes
the optimal tradeoff between feasibility and educational effectiveness. If we look again at
Figure 6, we can see that simulation is the clear front-runner in the number of learning
theories it addresses (11 of 12). The practice-driven approach (eight of 12) and the open-
ended approach (seven of 12) are both relatively close behind, and the remaining ap-
proaches (potentially) make use of a gradually decreasing number of theories.
 First, let us take a look at the latter two approaches: the practice-driven curriculum
and the open-ended approach. While the practice-driven approach may be one of the most
educationally rewarding and effective approaches, it also requires perhaps the most radi-
cal departure from the traditional lecture-based approach to software engineering educa-
tion. Furthermore, it is nearly impossible to incorporate it into an existing curriculum that
is primarily lecture-based. Instead, it would require a great amount of effort put into a
complete redesign of such a curriculum. Perhaps these obstacles are the very reasons be-
hind the low usage of this approach to date (three of 109 total approaches). Very likely,

5 It should be noted that I am speaking here of singular approaches, not entire curricula. A curriculum that
is packed full of all sorts of different approaches that employ a number of different learning theories each
would likely be unfocused, overwhelming, and confusing to the student. Rather, combining a few ap-
proaches that employ a maximal number of theories would be a more optimal balance.

 - 32 -

educators are just not convinced enough of this approach’s benefits to warrant putting the
effort and risk into employing it. To quell these educators’ fears (or else prove them
valid), I would suggest the following:

• Conduct more formal evaluations that demonstrate the effectiveness of the
practice-driven approach, especially compared to traditional lecture-based
techniques. To date, only one of these approaches ([97]) has done any such
evaluation—they conducted a follow-up study with the graduates from this prac-
tice-driven curriculum, which found that their employers reported a decreased
need for training them as compared to students who had not been educated using a
practice-driven curriculum. This is clearly a promising result. With replication
and other types of comparisons, more educators will likely be encouraged to
adopt this approach.

• Accompany practice-driven approaches with reflection & dialogue tech-
niques. As mentioned previously, the fact that this approach relies on inferred and
experiential knowledge rather than explicit knowledge being communicated ver-
bally makes these kinds of activities especially helpful in these situations. Only
one of these approaches [129] to date has incorporated reflection and dialogue.
Incorporating them more will likely make the approach more effective and result
in stronger evidence of its effectiveness when evaluations are conducted.

The potential benefits of a practice-driven curricula have also been recognized by Medhi
Jazayeri. He proposes that software engineering curricula should be project-based, in or-
der to “enable the students to apply system-level thinking, see technologies in use, and
appreciate the difficulties and benefits of working with others in a team” [70].
 Like the practice-driven approach, the open-ended approach is also a technique that is
both potentially powerful and potentially risky. Although it requires a less drastic para-
digm shift than the practice-driven approach, it is still not widely used (seven of 109 ap-
proaches). This is most likely due to the amount of risk and uncertainty that is involved in
such an approach. There are undoubtedly a number of unanswered questions in an in-
structor’s mind going into such a project: Will they succeed? Will they fail? If they fail,
will they still learn valuable lessons? How do I know that their failures will not be so
miserable that they outweigh their successes, or any lessons they may learn? There are
three possible ways to address this:

• Use the open-ended approach only with advanced students, namely those
that are in their final year or semester in the program. This solution is sug-
gested in [94], which argues that only advanced students will have the maturity
and sufficient background knowledge to make this a worthwhile exercise with a
high probability of success.

• Use a “watered-down” open-ended approach, in which students are given
significant freedom, but the instructor intervenes when they begin to go
down the wrong path. Of course, in this case there still exists some risk on the
part of the instructor, namely, where is the balance between letting the students
learn a lesson and ensuring they do not throw the project completely off track?
When is the right time to intervene and when is it more effective to let the events
play themselves out? Obviously, due to the “foggy” nature of this approach, there
are some highly subjective issues surrounding its use that can most likely only be
resolved on an individual basis.

 - 33 -

• Conduct more formal evaluations of the open-ended approach and compare
it to more structured techniques. All of the open-ended approaches to date have
only anecdotal results to report. These are promising, but until conclusive studies
are performed, it is unlikely that greater use of this approach will occur.

• Accompany open-ended approaches with reflection & dialogue sessions. Like
the practice-driven approach, the open-ended approach also relies heavily on
knowledge being inferred and built from experience rather than through explicit
communication, making this an ideal environment for reflection and dialogue to
be helpful. Using these techniques will likely make the approach more effective,
which will reflect favorably upon the results of the formal evaluations suggested
previously.

 Now, let us take a look at the front-runner in this comparison, simulation. Besides
incorporating the most learning theories, simulation also has two other characteristics that
make it ideal for addressing the needs of software engineering education. First, it is rela-
tively easy to add into a curriculum. An instructor can simply pick up an existing simula-
tion and use it in their class. Simulation runs could be assigned as out-of-class exercises.
Minimal preparation, class time, and modification to an existing curriculum would be re-
quired in such a situation. Second, the configurable nature of simulations gives them the
capacity to teach a wealth of different software engineering sub-topics. It is obvious by
the large number of “Missing Piece” approaches (48 out of 109) that there is an enormous
number of concepts instructors want to bring into software engineering education. Per-
haps the only feasible way a significant number of these subjects could be even intro-
duced in the same curriculum is in teaching them through simulation. While it is probably
beyond the capabilities of simulation to teach the low-level details of specific subjects,
such as Human-Computer Interaction or formal methods, it could at least be used to show
how these concepts fit into the software engineering process at a higher level, which is
probably the only feasible level at which to incorporate a number of these subjects into a
curriculum. For instance, a simulation designed to highlight the importance of Human-
Computer Interaction could penalize the student for not performing usability testing, not
involving users early in the development cycle, and/or not creating rapid prototypes of a
user interface.
 Finally, the history of simulation in education also makes it an ideal tool for software
engineering education. Simulations have already been used to teach typical software en-
gineering sub-processes, such as code inspections [125] and requirements analysis meet-
ings [96], and have been known to be effective educational tools in other domains, such
as hardware design, pilot training, and battlefield training.
 Ironically, although simulation encompasses the most learning theories, is intrinsi-
cally simple to add to a curriculum, has the potential to teach a wide range of subjects,
and has been used extensively in other educational domains, it is also one of the most un-
der-explored approaches in software engineering education, as can be seen in Table 3 (8
out of 109). Aside from the fact that relatively few simulations exist and new ones are not
trivial to build, I believe this can be attributed to the fact that simulation approaches to
date have not taken full advantage of their educational potential, and have not been
proven to be truly effective in this domain. Specifically, based on the under-explored
learning theories discussed in Section 4.7, the following improvements must be made to
educational software engineering simulations:

 - 34 -

• Simulations should make better use of dialogue and reflection techniques. In
order to better leverage the Learning through Dialogue and Learning through Re-
flection theories, simulations should more regularly be accompanied by post-
simulation sessions in which instructor-student dialogue and reflection are en-
couraged. Such an activity would give students the opportunity to analyze, think,
and talk about the lessons learned in the simulation, ingraining the concepts more
deeply into their minds. (As mentioned previously, such an approach has only
been used in [49] and [96]). Such an activity is especially important in simulation,
due to the fact that its lessons are usually not completely explicit, but are rather
implied and inferred through experience, observation, and analysis.

• Simulations should be used in order of increasing complexity. With the excep-
tion of [37], students are generally given one simulation of significant complexity
and asked to tackle it immediately, with no introduction to simpler simulations
first. The Elaboration learning theory could be better utilized if either simple
models or simple assignments involving a more complex model (only requiring
the student to complete part of, or a certain aspect of, the simulated project, for
example) are practiced first, followed by increasingly complex ones.

• Simulations should allow students to take on different roles in the simulated
process. As mentioned in Section 4.7, Lateral Thinking is one of the learning
theories that educational software engineering simulations have failed to fully
leverage. A simulation that allows students to experience a software process from
different perspectives would address this issue. Such a feature would probably be
most feasible and appropriate in game-based and group process simulations, in
which there are usually multiple visible characters with different roles.

• Simulation should take a more central role in instruction. Also pointed out in
Section 4.7 was the failure to leverage the Anchored Instruction learning theory in
simulation. An ideal situation that uses simulation as an “anchor” and takes full
advantage of this theory would be something like the following: In a lecture,
whenever the instructor introduces a concept, she has a simulation model that il-
lustrates that concept. She could first go through the simulation, which is pro-
jected on the screen for the students to see. Then, the students (who all have lap-
tops) would be assigned to execute the simulation on their own. For instance, in
teaching the waterfall model of software development, the instructor could assign
them to first follow the correct requirements -> design -> code -> test cycle, then
start the simulation again and follow a different model, and compare the results of
each simulation run. Of course, this type of approach would require a significant
amount of effort on the instructor’s part, re-designing their teaching approach and
building models for each concept, but it also may be the most rewarding and ef-
fective way to incorporate simulation into a course (as opposed to, e.g., simply as-
signing simulations as homework).

• Simulations should be more easily configurable. If simulations are going to
take a more central role in instruction and teach a wide range of different concepts
(necessitated by the “Missing Piece” approaches), this obviously requires that
they be easily configurable. Such configurability could be realized through two
major features: user-friendly modeling tools that allow instructors to build models
quickly and easily; and pre-existing, possibly generic models that can be easily

 - 35 -

modified, enhanced, and/or configured to fit different educational goals. The cur-
rent state-of-the-art in configurability is SESAM, which has its own complicated
(although powerful) textual process modeling language that the instructor must
learn. Furthermore, there has only been one SESAM model built to date [49]. This
does not give an instructor many examples to work with when trying to build a
new model, and is also evidence that, despite SESAM’s powerful language, the
need to actually textually program a model is a significant challenge that few wish
to tackle.

• Simulation approaches should be more robustly verified. Possibly one of the
most significant factors in the underutilization of simulation in software engineer-
ing education is that instructors are unsure of its effectiveness in this domain, and
therefore hesitant to expend the time and effort to invest in employing it in their
classrooms. This is a valid concern, as there have been relatively few studies that
have definitively affirmed the effectiveness of simulation in software engineering
education. With the exception of [100], all of the other experiments involving
educational software engineering simulations, although mostly favorable (a possi-
ble explanation for the unfavorable results of [49] is that it did not follow all of
these recommendations), have been preliminary and informal in nature. More ro-
bust, complete, and formally-design experiments are needed to confirm these
studies and/or reveal needed areas of improvement. Such studies will likely instill
more confidence in the minds of software engineering educators who are consid-
ering adding simulation to their curriculum.

In order to achieve these goals, it is unclear whether existing simulations can be modi-
fied, or whether this will require new simulations to be developed. It is also unclear
whether it is even feasible to have all of these features in one simulation. For instance, a
simulation that allows different viewpoints might have the adverse side effect of making
configurability quite difficult. In order to answer these questions, a series of feasibility
studies need to be undertaken: First, existing simulations must be explored in order to see
if they can be modified to fit these recommendations. Second, either an existing simula-
tion should be modified, or a new simulation be created that attempts to incorporate all of
these features and explores the tradeoffs between them. Only after these questions are
answered can the ideal and most educationally effective software engineering simulation
environment (and associated approach for class use) be developed.
 From this discussion, it should be clear that although simulation has tremendous edu-
cational potential, its effectiveness is highly contingent on the method of use in a curricu-
lum, and the “right” usage will require a significant amount of effort—it is not a ready-
made, pre-packaged “silver bullet.” Specifically, there are several learning theories that
can only be leveraged if simulation is used in a particular way. Anchored Instruction, for
instance, is only leveraged if numerous realistic simulation models are built and the cur-
riculum is redesigned around these examples. Even in a non-Anchored Instruction ap-
proach in which lectures are the main mode of teaching and simulation is used as a sup-
porting activity, simulation models must be built to illustrate the concepts the instructor
wishes to convey. Likewise, Aptitude-Treatment Interaction and Elaboration can only be
employed if multiple models of varying levels of structure and complexity are built. Apti-
tude-Treatment Interaction also requires the further effort of assessing students’ aptitudes
and assigning models accordingly. Finally, Learning through Dialogue and Learning

 - 36 -

through Reflection can only be incorporated if the curriculum is modified to include ses-
sions for these purposes. One should not think that simply adopting simulation in a
minimal way, such as adding it as a one-time homework assignment, is going to bring the
maximal educational benefits, although it may bring some advantages.
 Although this is the first time simulation has emerged as one of the answers to the
problem of software engineering education through the particular analysis presented in
this paper, it is certainly not the first time simulation in software engineering education
has been proposed as a highly promising approach. In Mary Shaw’s Roadmap for Soft-
ware Engineering Education, one of the key improvements she suggests is to “exploit our
own technology in support of education… In local classrooms, we could make better use
of simulations and game-playing exercises” [118]. At Ed Yourdon’s keynote speech at
the 2002 Conference on Software Engineering Education and Training titled “Preparing
Software Engineers for the ‘Real World’”, he stated that industry has found that the best
way to teach their new hires (recent graduates) the competencies they lack is through
“’war games’ based on realistic simulation models of software projects”, and suggested
that academia also incorporate this kind of approach into their curricula [141]. A project
that aimed to analyze “the gap between the knowledge and skills learned in academic
software engineering course projects and those required in real projects” by assessing a
typical software engineering curriculum using the guidelines presented in SWEBOK con-
cluded that the gaps found are attributable to the time and size constraints on course pro-
jects. They suggested that the ideal way to bridge this gap would be through “simulation
technology to create a large project learning environment” [82]. Clearly, there are many
experts in the field that are in agreement on the potential benefits of simulation in soft-
ware engineering education.

6. Related Work
Because software engineering education has long been recognized as being problematic,
there have been several other papers written that provide general, overall suggestions for
remedying its problems. Most of these have gone about suggesting solutions either
through intuition, informal personal analysis, or the author’s experience and expertise.
Mentioned previously, Medhi Jazayeri gave a keynote talk at the 2004 Automated Soft-
ware Engineering Conference that gave a broad outline of his ideal software engineering
curriculum, largely based on new trends and technologies in the field, arguing that these
should be major driving factors in the design of software engineering educational pro-
grams [70]. Bertrand Meyer takes a different approach in his 2001 IEEE Computer article
about the topic, stating that software engineering curricula should instead be more rooted
in traditional mathematical, engineering, and computer science topics and techniques
[91]. Mary Shaw’s roadmap for software engineering education took a stance somewhere
in between these two viewpoints, stating that an engineering attitude should be instilled in
students while, at the same time, education should be kept current in the face of rapid
change [118]. She also recommended that distinct roles in software engineering should be
defined, and separate education programs be developed for each.
 While these analyses are all based on the expertise and experience of seasoned soft-
ware engineers and educators, there is also another class of analyses that are based on
data other than personal experience. Also mentioned previously is an analysis of the defi-
ciencies of software engineering education based on the areas of knowledge defined in

 - 37 -

SWEBOK [82]. This study concluded that the primary problem is the time and scope
constraints of the academic environment preventing students from being able to practice
projects of realistic size, and suggested simulation as a solution. In a 1987 paper, when
software engineering education was still an up-and-coming field, Doris Carver surveyed
software engineering textbooks to glean what the important topics in the area were, and
accordingly proposed an ideal curriculum for a software engineering course [34]. Finally,
Timothy Lethbridge conducted a survey of computer science or software engineering
graduates working in industry, asking them which topics they felt turned out to be most
useful to them in their careers [80]. From this, he recommended which topics should be
taught more (such as data structures, algorithms, communication, and professionalism)
based on their higher anticipated usefulness, as well as ones that should be taught less
(such as mathematics). In a 1997 article in IEEE Software, Thomas Hilburn makes rec-
ommendations for improving software engineering education based on Carnegie Mel-
lon’s Software Engineering Institute’s people, process, and technology triad. Namely, he
defines a set of skills in each category (i.e., people skills, technology skills, and process
skills) that education should focus on and invest in [66].
 This survey is distinguished from the others in three major ways: First, it is the only
one to date that approaches the problem from a general educational view, using general
learning theories, rather than from a domain-specific software engineering education
view. Second, this is the first time an extensive survey has been done of the research lit-
erature in the field. Third, most of these other works have focused primarily on topics
that should be included in software engineering educational programs. Although topics
are a necessary part of any discussion about software engineering education, including
this survey, and some delivery methods are largely defined by the topics they are meant
to teach (e.g., the various team composition approaches are meant to teach the topic of
teamwork skills, the missing piece approach is defined by its topics), the main focus here
is delivery methods and overall approaches to teaching the subject as a whole.

7. Conclusions
Despite all of the effort that educators have put into making software engineering educa-
tional techniques more effective, new graduates are still notoriously unprepared for func-
tioning in a real-world software engineering situation. In this paper, I have attempted to
discover one reason why this is so. An analysis of software engineering educational de-
livery methods in light of learning theories revealed three possible answers to this:

1. There are several learning theories that are under-utilized in existing approaches.
In particular, Learning through Failure, Keller’s ARCS, Discovery Learning, Ap-
titude-Treatment Interaction, Lateral Thinking, and Anchored Instruction are all
leveraged by less than half of the approaches. Learning by Doing and Situated
Learning are the most utilized theories.

2. There exists a great deal of untapped potential in the existing approaches that
suggests ways they could be enhanced to take advantage of several more learning
theories.

3. The approaches that utilize the widest range of learning theories and are therefore
some of the most promising, namely, practice-driven curricula, the open-ended
approach, and simulation, are infrequently used. This could be attributed to cer-
tain shortfalls in the existing approaches in these categories and their typical us-

 - 38 -

age. Specifically, practice-driven curricula is a more radical departure from tradi-
tional types of instruction than most educators are comfortable with; open-ended
approaches entail a great deal of risk on the part of the instructor; and existing
simulations fall short in their usage, flexibility, and configurability.

Based on these holes and deficiencies, the following recommendations can be made for
enhancing the educational effectiveness of software engineering curricula:

1. Existing software engineering educational approaches should be modified to
take advantage of stated potential areas for improvement. Most promising are
the Learning through Dialogue and Learning through Reflection enhancements,
which can be used to enhance nearly every approach. Simulation is the approach
that could be improved to employ the most additional learning theories (six).

2. New approaches should be designed to specifically address the more under-
utilized learning theories. Over half of the learning theories are utilized by 50%
or less of the approaches. Most under-utilized are Aptitude-Treatment Interaction,
Lateral Thinking, and Anchored Instruction. Although the theory of Multiple In-
telligences is not utilized by any approach, it also does not have clear potential to
be. Hence, there are needed investigations into this theory’s applicability to the
domain of software engineering education.

3. Practice-driven approaches should be more robustly evaluated and make
better use of reflection and dialogue techniques. With more conclusive evi-
dence that this approach is effective, along with the added benefits of reflection
and dialogue techniques, perhaps more educators will be encouraged to adopt this
somewhat radical approach.

4. Open-ended approaches should be used with only advanced students, per-
haps be tempered with a slightly more structured approach, make use of re-
flection and dialogue techniques, and be more robustly verified. The combina-
tion of these modifications will likely make the approach more effective and
viewed as less risky by potential adopters of it.

5. Simulations should be accompanied by dialogue and reflection sessions, used
in order of increasing complexity, allow students to take on different roles
and viewpoints, take a more central role in instruction, be more easily con-
figurable, and undergo more robust evaluation. These modifications will di-
rectly address what are the probable factors that have impeded the widespread use
of simulation in the past, and make it a much more potentially educationally ef-
fective technology.

6. Software engineering educational techniques should undergo more frequent,
robust, and formal evaluations. While there exists a wealth of promising ap-
proaches, many of them are risky and require a significant paradigm shift on the
part of the educator, as well as a great deal of effort incorporating them into their
curricula. If these techniques are proven to be effective, more educators will likely
be willing to expend the effort to adopt them.

7. Software engineering educators should become more educated in learning
theories. If educators are better versed in learning theories, they will design their
delivery methods to better take advantage of these theories.

8. Software engineering education research should be framed in the context of
learning theories. Through this perspective, the community can begin to ap-

 - 39 -

proach the problem of software engineering education’s effectiveness from a new
and potentially useful angle.

To sum up, software engineering education could become more effective if delivery
methods are designed, modified, and evaluated with learning theories in mind
 The particular analysis presented in this paper, evaluating software engineering edu-
cational approaches in terms of the learning theories they leverage, is, of course, only one
analysis, and surely does not reveal all of the problems and holes and suggest all of the
potential solutions. There are undoubtedly numerous other ways and criteria against
which software engineering educational approaches can be evaluated that may reveal
several different insights. However, the suggestions presented in this paper provide a
good starting point for improving the state of software engineering based on this particu-
lar analysis.

Acknowledgements
I would like to thank my advisor, André van der Hoek, for his invaluable wisdom, guid-
ance, and feedback on this paper.

References
1. The Journal of Systems and Software. Vol. 49. 1999: Elsevier Science Inc.
2. Proceedings of the 22nd International Conference on Software Engineering.

2000: ACM.
3. Proceedings of the 23rd International Conference on Software Engineering.

2001, Toronto, Canada: IEEE Computer Society.
4. IEEE Software, Special Issue on Educating Software Professionals. Vol. 19 (5),

September/October. 2002: IEEE.
5. Proceedings of the 24th International Conference on Software Engineering. 2002,

Orlando, Florida: ACM.
6. Proceedings of the 2003 Frontiers in Education Conference. 2003, Boulder, CO,

USA.
7. Proceedings of the 2004 Canadian Conference on Computer and Software Engi-

neering Education. 2004, Calgary, Alberta, Canada.
8. Proceedings of the 2004 Frontiers in Education Conference. 2004, Savannah,

GA, USA.
9. Proceedings of the Seventeenth Conference on Software Engineering Education

and Training. 2004, Norfolk, Virginia, USA: IEEE.
10. Abernethy, K. and J. Kelly, Technology Transfer Issues for Formal Methods of

Software Specification, in Proceedings of the Thirteenth Conference on Software
Engineering Education and Training. 2000, IEEE: Austin, TX, USA. p. 23-31.

11. Ace Win-E-Crypt 1.0 Beta. 2001.
12. Alessi, S.M. and S.R. Trollip, Multimedia for Learning. 2001, Needham Heights,

MA, USA: Allyn & Bacon.
13. Alfonso, M.I. and F. Mora, Learning Software Engineering with Group Work, in

Proceedings of the Sixteenth Conference on Software Engineering Education and
Training. 2003, IEEE: Madrid, Spain. p. 309-316.

 - 40 -

14. Anderson, R.C., The Notion of Schemata and the Educational Enterprise, in
Schooling and the Acquisition of Knowledge, R.C. Anderson, R.J. Spiro, and W.E.
Monatague, Editors. 1977, Lawrence Erlbaum: Hillsdale, NJ, USA. p. 415-431.

15. Andrews, J.H. and H.L. Lutfiyya, Experience Report: A Software Maintenance
Project Course, in Proceedings of the Thirteenth Conference on Software Engi-
neering Education and Training. 2000, IEEE: Austin, TX, USA. p. 132-139.

16. Angehrn, A.A., Advanced Social Simulations: Innovating the Way we Learn how
to Manage Change in Organizations. International Journal of Information Tech-
nology Education, 2004 (to appear).

17. Applefield, J.M., R.L. Huber, and M. Moallem, Constructivism in Theory and
Practice Toward a Better Understanding. High School Journal, 2000. 84(2): p.
35-46.

18. Baker, A., E.O. Navarro, and A. van der Hoek, Problems and Programmers: An
Educational Software Engineering Card Game, in Proceedings of the 2003 Inter-
national Conference on Software Engineering. 2003: Portland, Oregon. p. 614-
619.

19. Balci, O., Annals of Software Engineering. Vol. 6. 1998: Baltzer Science Publish-
ers.

20. Beckman, K., et al., Collaborations: Closing the Industry-Academia Gap. IEEE
Software, 1997. 14(6): p. 49-57.

21. Bernstein, L. and D. Klappholz, Eliminating Aversion to Software Process in
Computer Science Students and Measuring the Results, in Proceedings of the Fif-
teenth Conference on Software Engineering Education and Training. 2002, IEEE:
Covington, KY, USA. p. 90-99.

22. Blake, B.M., A Student-Enacted Simulation Approach to Software Engineering
Education. IEEE Transactions on Education, 2003. 46(1): p. 124-132.

23. Blake, B.M. and T. Cornett, Teaching an Object-Oriented Software Development
Lifecycle in Undergraduate Software Engineering Education, in Proceedings of
the Fifteenth Conference on Software Engineering Education and Training. 2002,
IEEE: Covington, KY. p. 234-240.

24. Bonwell, C.C. and J.A. Eison, Active Learning: Creating Excitement in the Class-
room. ERIC Clearinghouse on Higher Education, 1991(Document No. ED 340
272).

25. Bransford, J.D., et al., Anchored Instruction: Why we Need it and how Technology
can Help, in Cognition, Education, and Multimedia: Exploring Ideas in High
Technology, D. Nix and R. Spiro, Editors. 1990, Lawrence Erlbaum: Hillsdale,
NJ. p. 115-141.

26. Brereton, O.P., M. Gumbley, and S. Lees, Distributed Student Projects in Soft-
ware Engineering, in Proceedings of the Eleventh Conference on Software Engi-
neering Education and Training. 1998, IEEE: Atlanta, GA, USA. p. 4-15.

27. Brereton, O.P., et al., Student Group Working Across Universities: A Case Study
in Software Engineering. IEEE Transactions on Education, 2000. 43(4): p. 394-
399.

28. Brown, J.S., A. Collins, and P. Duguid, Situated Cognition and the Culture of
Learning. Educational Researcher, 1989. 18(1): p. 32-42.

 - 41 -

29. Brown, S.M., A Software Maintenance Process Architecture, in Proceedings of
the Ninth Conference on Software Engineering Education and Training. 1996,
IEEE: Daytona Beach, FL, USA. p. 130-141.

30. Bruner, J., Acts of Meaning. 1990, Cambridge, MA, USA: Harvard University
Press.

31. Callahan, D. and B. Pedigo, Educating Experienced IT Professionals by Address-
ing Industry's Needs. IEEE Software, 2002. 19(5): p. 57-62.

32. Cannon, B., T. Hilburn, and J. Diaz-Herrera, Tutorial: Introduction to the Team
Software Process, in Proceedings of the Thirteenth Conference on Software Engi-
neering Education and Training. 2000, 315: Austin, TX, USA.

33. Carrington, D., B. McEniery, and D. Johnston, PSP in the Large Class, in Pro-
ceedings of the Fourteenth Conference on Software Engineering Education and
Training. 2001, IEEE: Charlotte, NC, USA. p. 81-88.

34. Carver, D.L., Recommendations for Software Engineering Education, in Proceed-
ings of the Eighteenth SIGCSE Technical Symposium on Computer Science Edu-
cation. 1987: St. Louis, MO, USA. p. 228-232.

35. Ceberio-Verghese, A.C., Personal Software Process: A User's Perspective, in
Proceedings of the Ninth Conference on Software Engineering Education and
Training. 1996, IEEE: Daytona Beach, FL, USA. p. 52-65.

36. Collins, A., Cognitive Apprenticeship and Instructional Technology, in Educa-
tional Values and Cognitive Instruction: Implications for Reform, L. Idol and B.F.
Jones, Editors. 1991, Erlbaum: Hillsdale, NJ.

37. Collofello, J.S., University/Industry Collaboration in Developing a Simulation
Based Software Project Management Training Course, in Proceedings of the
Thirteenth Conference on Software Engineering Education and Training, S.
Mengel and P.J. Knoke, Editors. 2000, IEEE Computer Society. p. 161-168.

38. Conn, R., Developing Software Engineers at the C-130J Software Factory. IEEE
Software, 2002. 19(5): p. 25-29.

39. Cook, J., The Role of Dialogue in Computer-based Learning and Observing
Learning: an Evolutionary Approach to Theory. Journal of Interactive Media in
Education, 2002. 5.

40. Cowling, A.J., The Crossover Project as an Introduction to Software Engineer-
ing, in Proceedings of the Seventeenth Conference on Software Engineering Edu-
cation and Training. 2004, IEEE: Norfolk, VA, USA. p. 12-17.

41. Crnkovic, I., R. Land, and A. Sjogren, Is Software Engineering Training Enough
for Software Engineers? in Proceedings of the Sixteenth Conference on Software
Engineering Education and Training. 2003, IEEE: Madrid, Spain.

42. Cronbach, L. and R. Snow, Aptitudes and Instructional Methods: A Handbook for
Research on Interactions. 1977, New York, NY, USA: Irvington.

43. Dalcher, D. and M. Woodman, Together We Stand: Group Projects for Integrat-
ing Software Engineering in the Curriculum, in Proceedings of the Sixteenth Con-
ference on Software Engineering Education and Training. 2003, IEEE: Madrid,
Spain.

44. Dampier, D.A. and R.E. Wilson, Teaching Scientific Method for Real-Time Soft-
ware Engineering, in Proceedings of the Thirteenth Conference on Software En-
gineering Education and Training. 2000, IEEE: Austin, TX, USA. p. 199-199.

 - 42 -

45. Daniels, M., X. Faulkner, and I. Newman, Open Ended Group Projects, Motivat-
ing Students and Preparing them for the 'Real World', in Proceedings of the Fif-
teenth Conference on Software Engineering Education and Training. 2002, IEEE:
Covington, KY, USA. p. 115-126.

46. Dantas, A.R., M.O. Barros, and C.M.L. Werner, A Simulation-Based Game for
Project Management Experiential Learning, in Proceedings of the 2004 Interna-
tional Conference on Software Engineering and Knowledge Engineering. 2004:
Banff, Alberta, Canada.

47. Dawson, R., Twenty Dirty Tricks to Train Software Engineers, in Proceedings of
the 22nd International Conference on Software Engineering. 2000, ACM. p. 209-
218.

48. DeBono, E., NewThink: The Use of Lateral Thinking in the Generation of New
Ideas. 1967, New York, NY, USA: Basic Books.

49. Drappa, A. and J. Ludewig, Simulation in Software Engineering Training, in Pro-
ceedings of the 22nd International Conference on Software Engineering. 2000,
ACM. p. 199-208.

50. Favela, J. and F. Pena-Mora, An Experience in Collaborative Software Engineer-
ing Education. IEEE Software, 2001. 18(2): p. 47-53.

51. Flor, N.V., F.J. Lerch, and S. Hong, A Market-driven Approach to Teaching Soft-
ware Components Engineering. Annals of Software Engineering, 1998. 6: p. 223-
251.

52. Gamble, R.F. and L.A. Davis, A Framework for Interaction in Software Devel-
opment Training. Journal of Information and Technology Education, 2002. 1(4).

53. Gardner, H., Art, Mind and Brain. 1982, New York, NY, USA: Basic Books.
54. Gee, J.P., What Video Games Have to Teach Us About Literacy and Learning.

2003, New York, NY, USA: Palgrave Macmillan.
55. Gehrke, M., et al., Reporting about Industrial Strength Software Engineering

Courses for Undergraduates, in Proceedings of the 24th International Conference
on Software Engineering. 2002, IEEE: Orlando, FL, USA. p. 395-405.

56. Gnatz, M., et al., A Practical Approach of Teaching Software Engineering, in
Proceedings of the Sixteenth Conference on Software Engineering Education and
Training. 2003, IEEE: Madrid, Spain. p. 120-128.

57. Goold, A. and P. Horan, Foundation Software Engineering Practices for Cap-
stone Projects and Beyond, in Proceedings of the Fifteenth Conference on Soft-
ware Engineering Education and Training. 2002, IEEE: Covington, KY, USA. p.
140-146.

58. Groth, D.P. and E.L. Robertson, It's All About Process: Project-Oriented Teach-
ing of Software Engineering, in Proceedings of the Fourteenth Conference on
Software Engineering Education and Training. 2001, IEEE: Charlotte, NC, USA.
p. 7-17.

59. Habra, N., "Peopleware" Integration in an Evolving Software Engineering Cur-
riculum, in Proceedings of the Tenth Conference on Software Engineering Educa-
tion and Training. 1997, IEEE: Virginia Beach, VA, USA. p. 102-110.

60. Halling, M., et al., Teaching the Unified Process to Undergraduate Students, in
Proceedings of the Fifteenth Conference on Software Engineering Education and
Training. 2002, IEEE: Covington, KY, USA. p. 148-159.

 - 43 -

61. Harrison, J.V., Enhancing Software Development Project Courses Via Industry
Participation, in Proceedings of the Tenth Conference on Software Engineering
Education and Training. 1997, IEEE: Virginia Beach, VA, USA.

62. Hayes, J.H., Energizing Software Engineering Education through Real-World
Projects as Experimental Studies, in Proceedings of the 15th Conference on Soft-
ware Engineering Education and Training. 2002, IEEE. p. 192-206.

63. Hazzan, O. and Y. Dubinsky, Teaching a Software Development Methodology:
The Case of Extreme Programming, in Proceedings of the Sixteenth Conference
on Software Engineering Education and Training. 2003, IEEE: Madrid, Spain. p.
176-184.

64. Hazzan, O. and J.E. Tomayko, Reflection Processes in the Teaching and and
Learning of Human Aspects of Software Engineering, in Proceedings of the Sev-
enteenth Conference on Software Engineering Education and Training. 2004,
IEEE: Norfolk, VA, USA. p. 32-38.

65. Hilburn, T., PSP Metrics in Support of Software Engineering Education, in Pro-
ceedings of the Twelfth Conference on Software Engineering Education and
Training. 1999, IEEE: New Orleans, LA, USA. p. 135-136.

66. Hilburn, T.B., Software Engineering Education: A Modest Proposal. IEEE Soft-
ware, 1997: p. 44-48.

67. Hirai, K., Micro-Process Based Software Metrics in the Training, in Proceedings
of the Twelfth Conference on Software Engineering Education and Training.
1999, IEEE: New Orleans, LA, USA. p. 132-134.

68. IEEE Computer Society Professional Practices Committee, Guide to the Software
Engineering Body of Knowledge. 2004.

69. Jaccheri, M.L. and P. Lago, Applying Software Process Modeling and Improve-
ment in Academic Setting, in Proceedings of the Tenth Conference on Software
Engineering Education and Training. 1997, IEEE: Virginia Beach, VA, USA. p.
13-27.

70. Jazayeri, M., The Education of a Software Engineer, in Proceedings of the 19th
International Conference on Automated Software Engineering. 2004, IEEE: Linz,
Austria. p. xviii-xxvii.

71. Keller, J.M. and K. Suzuki, Use of the ARCS Motivation Model in Courseware
Design, in Instructional Designs for Microcomputer Courseware, D.H. Jonassen,
Editor. 1988, Lawrence Erlbaum: Hillsdale, NJ, USA.

72. Kessler, R.R. and L.A. Williams, "If This is What It's Really Like, Maybe I Better
Major in English": Integrating Realism into a Sophomore Software Engineering
Course, in Proceedings of the 1999 Frontiers in Education Conference. 1999,
IEEE: San Juan, Puerto Rico.

73. Knowles, M.S., The Modern Practice of Adult Education From Pedagogy to An-
dragogy. 1980, Chicago, IL, USA: Association Press.

74. Kolb, D.A., Experiential Learning: Experiences as the Source of Learning and
Development. 1984, Englewood Cliffs, NJ, USA: Prentice-Hall International, Inc.

75. Kornecki, A.J., Real-Time Computing in Software Engineering Education, in
Proceedings of the Thirteenth Conference on Software Engineering Education
and Training. 2000, IEEE: Austin, TX, USA. p. 197-198.

 - 44 -

76. Kornecki, A.J., I. Hirmanpour, and M. Towhidnajad, Strengthening Software En-
gineering Education through Academic Industry Collaboration, in Proceedings of
the Tenth Conference on Software Engineering Education and Training. 1997,
IEEE: Virginia Beach, VA, USA. p. 204-211.

77. Kornecki, A.J., S. Khajenoori, and D. Gluch, On a Partnership between Software
Industry and Academia, in Proceedings of the Sixteenth Conference on Software
Engineering Education and Training. 2003, IEEE: Madrid, Spain. p. 60-69.

78. Kornecki, A.J., J. Zalewski, and D. Eyassu, Learning Real-Time Programming
Concepts through VxWorks Lab Experiments, in Proceedings of the Thirteenth
Conference on Software Engineering Education and Training. 2000, IEEE: Aus-
tin, TX, USA. p. 294-301.

79. Krone, J., D. Juedes, and M. Sitharam, When Theory Meets Practice: Enriching
the CS Curriculum Through Industrial Case Studies, in Proceedings of the Fif-
teenth Conference on Software Engineering Education and Training. 2002, IEEE:
Covington, KY, USA. p. 207-214.

80. Lethbridge, T.C., Priorities for the Education and Training of Software Engi-
neers. Journal of Systems and Software, 2000. 53(1): p. 53-71.

81. Lisack, S.K., The Personal Software Process in the Classroom: Student Reactions
(An Experience Report), in Proceedings of the Thirteenth Conference on Software
Engineering Education and Training. 2000, IEEE: Austin, TX, USA. p. 169-175.

82. Ludi, S. and J.S. Collofello, An Analysis of the Gap Between the Knowledge and
Skills Learned in Academic Software Engineering Course Projects and Those Re-
quired in Real Projects, in Proceedings of the 2001 Frontiers in Education Con-
ference. 2001.

83. Maletic, J.I., A. Howald, and A. Marcus, Incorporating PSP into a Traditional
Software Engineering Course: An Experience Report, in Proceedings of the Four-
teenth Conference on Software Engineering Education and Training. 2001, IEEE:
Charlotte, NC, USA. p. 89-97.

84. Mandl-Striegnitz, P., How to Successfully Use Software Project Simulation for
Educating Software Project Managers, in Proceedings of the 2001 Frontiers in
Education Conference. 2001: Reno, NV, USA.

85. Mayr, H., Teaching Software Engineering by Means of a "Virtual Enterprise", in
Proceedings of the 10th Conference on Software Engineering. 1997, IEEE Com-
puter Society. p. 176-184.

86. McDonald, J., Teaching Software Project Management in Industrial and Aca-
demic Environments, in Proceedings of the Thirteenth Conference on Software
Engineering Education and Training. 2000, IEEE: Austin, TX, USA. p. 151-160.

87. McKeachie, W., Teaching Tips: Strategies, Research, and Theory for College and
University Teachers. 1994, Lexington, MA, USA: D.C. Heath and Company.

88. McKim, J.C. and H.J.C. Ellis, Using a Multiple Term Project to Teach Object
Oriented Programming and Design, in Proceedings of the Seventeenth Confer-
ence on Software Engineering Education and Training. 2004, IEEE: Norfolk, VA,
USA.

89. McMillan, W.W. and S. Rajaprabhakaran, What Leading Practitioners Say
Should Be Emphasized in Students' Software Engineering Projects, in Proceed-

 - 45 -

ings of the Twelfth Conference on Software Engineering Education and Training,
H. Saiedian, Editor. 1999, IEEE Computer Society. p. 177-185.

90. Mengel, S.A., L. Carter, and J. Falkenberg, A Perspective on Three Cooperating
Courses, in Proceedings of the Thirteenth Conference on Software Engineering
Education and Training. 2000, IEEE: Austin, TX, USA. p. 265-272.

91. Meyer, B., Software Engineering in the Academy. IEEE Computer, 2001. 34(5):
p. 28-35.

92. Miller, G.A., The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information. Psychological Review, 1956. 63: p. 81-
97.

93. Murphy, M.G., Teaching Software Project Management: A Response-Interaction
Approach, in Proceedings of the Twelfth Conference on Software Engineering
Education and Training. 1999, IEEE: New Orleans, LA, USA. p. 26-31.

94. Navarro, E.O. and A. van der Hoek, Scaling Up: How Thirty-two Students Col-
laborated and Succeeded in Developing a Prototype Software Design Environ-
ment, in Proceedings of the Eighteenth Conference on Software Engineering Edu-
cation and Training. 2004, IEEE: Ottawa, Canada (to appear).

95. Navarro, E.O. and A. van der Hoek, Design and Evaluation of an Education Soft-
ware Process Simulation Environment and Associated Model, in Proceedings of
the Eighteenth Conference on Software Engineering Education and Training.
2005 (to appear), IEEE: Ottawa, Canada.

96. Nulden, U. and H. Scheepers, Understanding and Learning about Escalation:
Simulation in Action, in Proceedings of the 3rd Process Simulation Modeling
Workshop (ProSim 2000). 2000: London, United Kingdom.

97. Ohlsson, L. and C. Johansson, A Practice Driven Approach to Software Engineer-
ing Education. IEEE Transactions on Education, 1995. 38(3): p. 291-295.

98. Parrish, A., et al., A Case Study Approach to Teaching Component Based Soft-
ware Engineering, in Proceedings of the Thirteenth Conference on Software En-
gineering Education and Training. 2000, IEEE: Austin, TX, USA. p. 140-147.

99. Pask, G., Conversation, Cognition, and Learning. 1975, New York, NY, USA:
Elsevier.

100. Pfahl, D., et al., Evaluating the Learning Effectiveness of Using Simulations in
Software Project Management Education: Results From a Twice Replicated Ex-
periment. Information and Software Technology, 2004. 46: p. 81-147.

101. Pierce, K.R., Teaching Software Engineering Principles Using Maintenance-
Based Projects, in Proceedings of the 10th Conference on Software Engineering
Education and Training. 1997, IEEE Computer Society: Virginia Beach, VA,
USA. p. 53-60.

102. Poole, W.G., The Softer Side of Custom Software Development: Working with the
Other Players, in Proceedings of the Sixteenth Conference on Software Engineer-
ing Education and Training. 2003, IEEE: Madrid, Spain. p. 14-21.

103. Postema, M., J. Miller, and M. Dick, Including Practical Software Evolution in
Software Engineering Education, in Proceedings of the Fourteenth Conference on
Software Engineering Education and Training. 2001, IEEE: Charlotte, NC, USA.
p. 127-135.

104. Prensky, M., Digital Game-Based Learning. 2001, New York, NY: McGraw-Hill.

 - 46 -

105. Reigeluth, C.M. and C.A. Rodgers, The Elaboration Theory of Instruction: Pre-
scriptions for Task Analysis and Design. NSPI Journal, 1980. 19: p. 16-26.

106. Resnick, L., Learning in School and Out. Educational Researcher, 1987. 16(9): p.
13-20.

107. Robillard, P.N., Measuring Team Activities in a Process-Oriented Software Engi-
neering Course, in Proceedings of the Eleventh Conference on Software Engi-
neering Education and Training. 1998, IEEE: Atlanta, GA, USA. p. 90-101.

108. Robillard, P.N., P. Kruchten, and P. d'Astous, YOOPEEDOO (UPEDU): A Proc-
ess for Teaching Software Process, in Proceedings of the Fourteenth Conference
on Software Engineering Education and Training. 2001, IEEE: Charlotte, NC,
USA. p. 18-26.

109. Rogers, C.R., Freedom to Learn. 1969, Columbus, OH, USA: Merrill.
110. Runeson, P., Experiences from Teaching PSP for Freshmen, in Proceedings of the

Fourteenth Conference on Software Engineering Education and Training. 2001,
IEEE: Charlotte, NC, USA. p. 98-107.

111. Schank, R.C., Virtual Learning. 1997, New York, NY, USA: McGraw-Hill.
112. Schank, R.C. and C. Cleary, Engines for Education. 1995, Hillsdale, NJ, USA:

Lawrence Erlbaum Associates, Inc.
113. Schlimmer, J.C., J.B. Fletcher, and L.A. Hermens, Team-Oriented Software Prac-

ticum. IEEE Transactions on Education, 1994. 37(2): p. 212-220.
114. Schlimmer, J.C. and J.R. Hagemeister, Utilizing Corporate Models in a Software

Engineering Studio, in Proceedings of the Tenth Conference on Software Engi-
neering Education and Training. 1997, IEEE: Virginia Beach, VA, USA.

115. Schon, D., Educating the Reflective Practitioner. 1987, San Francisco, CA, USA:
Jossey-Bass.

116. Sebern, M.J., The Software Development Laboratory: Incorporating Industrial
Practice in an Academic Environment, in Proceedings of the 15th Conference on
Software Engineering and Training. 2002, IEEE. p. 118-127.

117. Sharp, H. and P. Hall, An Interactive Multimedia Software House Simulation for
Postgraduate Software Engineers, in Proceedings of the 22nd International Con-
ference on Software Engineering. 2000, ACM. p. 688-691.

118. Shaw, M., Software Engineering Education: A Roadmap, in The Future of Soft-
ware Engineering, A. Finkelstein, Editor. 2000, ACM. p. 373-380.

119. Shukla, A. and L. Williams, Adapting Extreme Programming for a Core Software
Engineering Course, in Proceedings of the Fifteenth Conference on Software En-
gineering Education and Training. 2002, IEEE. p. 184-191.

120. Sikkel, K., T.A.M. Spil, and R.L.W. van de Web, Replacing a Hospital Informa-
tion System: an Example of a Real-World Case Study, in Proceedings of the
Twelfth Conference on Software Engineering Education and Training. 1999,
IEEE: New Orleans, LA, USA.

121. Sindre, G., et al., The Cross-Course Software Engineering Project at the NTNU:
Four Years of Experience, in Proceedings of the Sixteenth Conference on Soft-
ware Engineering Education and Training. 2003, IEEE: Madrid, Spain. p. 251-
258.

 - 47 -

122. Slimick, J., An Undergraduate Course in Software Maintenance and Enhance-
ment, in Proceedings of the Tenth Conference on Software Engineering Education
and Training. 1997, IEEE: Virginia Beach, VA, USA. p. 61-73.

123. Stepien, W.J. and S.A. Gallagher, Problem-based Learning: As Authentic as it
Gets. Educational Leadership, 1993. 50(7): p. 25-28.

124. Sternberg, R.J., R.K. Wagner, and L. Okagaki, Practical Intelligence: The Nature
and Role of Tacit Knowledge in Work and at School, in Mechanisms of Everyday
Cognition, J.M. Puckett and H.W. Reese, Editors. 1993, Lawrence Erlbaum Asso-
ciates: Hillsdale, NJ. p. 205-227.

125. Stevens, S.M., Intelligent Interactive Video Simulation of a Code Inspection.
Communications of the ACM, 1989. 32(7): p. 832-843.

126. Sticht, T.G., Applications of the Audread Model to Reading Evaluation and In-
struction, in Theory of Practice and Early Reading, L. Resnick and P. Weaver,
Editors. 1975, Erlbaum: Hillsdale, NJ.

127. Suri, D. and M.J. Sebern, Incorporating Software Process in an Undergraduate
Software Engineering Curriculum: Challenges and Rewards, in Proceedings of
the Seventeenth Conference on Software Engineering Education and Training.
2004, IEEE: Norfolk, VA, USA. p. 18-23.

128. Syu, I., et al., A Web-Based System for Automating a Disciplined Personal Soft-
ware Process (PSP), in Proceedings of the Tenth Conference on Software Engi-
neering Education and Training. 1997, IEEE: Virginia Beach, VA, USA. p. 86-
96.

129. Tomayko, J.E., Carnegie Mellon's Software Development Studio: a Five Year
Retrospective, in Proceedings of the Ninth Conference on Software Engineering
Education and Training. 1996, IEEE: Daytona Beach, FL, USA. p. 119-129.

130. Umphress, D.A. and J.A. Hamilton, Software Process as a Foundation for Teach-
ing, Learning, and Accrediting, in Proceedings of the Fifteenth Conference on
Software Engineering Education and Training. 2002, IEEE: Covington, Ken-
tucky, USA. p. 160-169.

131. Upchurch, R.L. and J.E. Sims-Knight, Designing Process-based Software Cur-
riculum, in Proceedings of the Tenth Conference on Software Engineering Educa-
tion and Training. 1997, IEEE: Virginia Beach, VA, USA. p. 28-38.

132. Upchurch, R.L. and J.E. Sims-Knight, In Support of Student Process Improve-
ment, in Proceedings of the Eleventh Conference on Software Engineering Educa-
tion and Training. 1998, IEEE: Atlanta, GA, USA. p. 114-123.

133. van der Veer, G. and H. van Vliet, The Human-Computer Interface is the System;
A Plea for a Poor Man's HCI Component in Software Engineering Curricula, in
Proceedings of the Fourteenth Conference on Software Engineering Education
and Training. 2001, IEEE: Charlotte, NC, USA. p. 276-286.

134. Vaughn, R.B., A Report on Industrial Transfer of Software Engineering to the
Clasroom Environment, in Proceedings of the Thirteenth Conference on Software
Engineering Education and Training. 2000, IEEE: Austin, TX, USA. p. 15-22.

135. von Konsky, B.R., M. Robey, and S. Nair, Integrating Design Formalisms in
Software Engineering Education, in Proceedings of the Seventeenth Conference
on Software Engineering Education and Training. 2004, IEEE: Norfolk, VA,
USA. p. 78-83.

 - 48 -

136. Wahl, N.J., Student-Run Usability Testing, in Proceedings of the Thirteenth Con-
ference on Software Engineering Education and Training. 2000, IEEE: Austin,
TX, USA. p. 123-131.

137. Wilde, N., et al., Some Experiences With Evolution and Process-Focused Pro-
jects, in Proceedings of the Sixteenth Conference on Software Engineering Edu-
cation and Training. 2003, IEEE: Madrid, Spain. p. 242-250.

138. Williams, L., Integrating Pair Programming into a Software Development Proc-
ess, in Proceedings of the Fourteenth Conference on Software Engineering Edu-
cation and Training, D. Ramsey, P. Bourque, and R. Dupuis, Editors. 2001, IEEE
Computer Society: Charlotte, NC. p. 27-36.

139. Wohlin, C., Meeting the Challenge of Large-Scale Software Development in an
Educational Environment, in Proceedings of the Tenth Conference on Software
Engineering Education and Training. 1997, IEEE: Virginia Beach, VA, USA. p.
40-52.

140. Wohlin, C. and B. Regnell, Achieving Industrial Relevance in Software Engineer-
ing Education, in Proceedings of the Twelfth Conference on Software Engineer-
ing Education and Training, H. Saiedian, Editor. 1999, IEEE Computer Society.
p. 16-25.

141. Yourdon, E., Preparing Software Engineers for the 'Real World', in Proceedings
of the Fifteenth Conference on Software Engineering Education and Training.
2002, IEEE: Covington, KY, USA. p. 2-2.

 - 49 -

	UCI-ISR-05-5.pdf
	2. Software Engineering Educational Approaches
	2.1 Adding Realism to Class Projects
	2.1.1 Industrial Partnerships
	2.1.2 Maintenance/Evolution-based Projects
	2.1.3 Team Composition
	2.1.4 Non-Technical Skills
	2.1.5 Open-Endedness/Vagueness
	2.1.6 Practice-Driven Curricula
	2.1.7 Sabotage
	2.1.8 Re-enacting Project Failures

	2.2 Simulation
	2.2.1 Industrial Simulation in the Classroom
	2.2.2 Game-Based Simulations
	2.2.3 Group Process Simulations

	2.3 Adding the “Missing Piece”
	2.4 Summary of Software Engineering Educational Approaches

	3. Learning Theories
	3.1 Learning by Doing / Experiential Learning / Active Learn
	3.2 Situated Learning / Functional Context / Andragogy / Sch
	3.3 Keller’s ARCS Motivation Theory
	3.4 Anchored Instruction / Problem-based Learning
	3.5 Discovery Learning
	3.6 Learning through Failure
	3.7 Learning through Dialogue / Conversation Theory
	3.8 Aptitude-Treatment Interaction
	3.9 Multiple Intelligences
	3.10 Learning through Reflection
	3.11 Elaboration / Information Processing Theory
	3.12 Lateral Thinking
	3.13 Summary of Learning Theories

	4. Software Engineering Educational Approaches and Learning
	4.1 Industrial Partnership – Real-world Project
	4.2 Team Composition – Long-Term Teams
	4.3 Open-endedness
	4.4 Practice-Driven Curricula
	4.5 Sabotage / Re-enacting Failures
	4.6 Projects Plus Realism (All Others)
	4.7 Simulation
	4.8 Adding the “Missing Piece”

	5. Observations and Recommendations
	6. Related Work
	7. Conclusions
	Acknowledgements
	References

