
 1

Abstract— Teaching and training is one of the important

applications of software engineering process simulation. Up
until this point, however, it has only been used in the context of
students running simulations of process models that were built
by someone else.

In this paper, we suggest a different approach: to use the
modeling activity for teaching as well, rather than the
simulation activity only. In particular, we pro-pose to assign
students the task of building a new soft-ware process
simulation model using an existing educational software
process simulation environment, SimSE.

First experiences from a feasibility project are reported.

Index Terms—Process modeling, software project
simulation, teaching of software engineering.

I. INTRODUCTION
RAINING and teaching is an important application of

software process simulation [1]. Various models and
environments have been developed targeting this context,
e.g. [3], [4], [5], [6], [7] [8]. These all share the purpose of
giving students virtual experiences of realistic software
processes that would otherwise be infeasible to practice in
an academic environment.

So far, the reported usage of simulation and modeling in
this context is always structurally similar: An existing model
is used by the trainee for virtual experiences, i.e. simulation
is leveraged for teaching, and modeling is done outside the
learning situation by an instructor or some other expert
beforehand.

From other technical fields, however, it is well known
that the modeling by itself provides valuable learning
insights. For example, many classes in engineering
disciplines include the development of a simulation model
in the respective field of application as a final assignment.

In this paper, it is suggested to use software process
modeling and simulation in a similar way: the active
development of the model as a task for students, not just
their passive usage of a pre-existing simulation.

Experiences from a first project are reported and needs
for further work and developments are discussed.

Manuscript received February 6, 2005. The SimSE project is partially

funded by the National Science Foundation under grant numbers DUE-
0341280, CCR-0093489 and IIS-0205724.

T. Birkhoelzer is with the Department of Electrical Engineering and In-
formation Technology, University of Applied Science, Konstanz, Germany
(phone: +49 7531 206239; e-mail: birkhoelzer@fh-konstanz.de).

E. Navarro is with the Department of Informatics, Donald Bren School
of Information and Computer Science, University of California, Irvine
(e-mail: emilyo@ics.uci.edu).

A. v. d. Hoek is with the Department of Informatics, Donald Bren
School of Information and Computer Science, University of California,
Irvine (e-mail: andre@ics.uci.edu).

II. DIDACTIC GOALS OF MODELING
The development of the model by students has three

unique didactic advantages:
• Modeling requires articulateness and explicitness.

For a simulation model, all assumed relations and
mechanisms of projects or processes must be made
explicit and precise in order to be executable. For
example, it is one thing to just state that a tool would
“improve the process”. A simulation model, on the other
hand, requires one to articulate this assumption explicitly:
which attributes (e.g. error rate or productivity) are
influenced and how?

• Enactment of a simulation provides immediate feedback.
Enacting a simulation usually provides immediate and
obvious feedback about the consequences of relations and
mechanisms stated, much better than any instructor
critiques, especially with regard to errors or neglected
side-effects. This is not to say that the simulation can
replace an instructor. The simulation just provides the
mechanical feedback, such that instructors can
concentrate on translating this into lessons learned.

• Creative task as motivation.
Technical students – engineers as well as computer
scientists – usually love to create things, not just to use
them. In this sense, model creation can provide a much
higher motivation than just model usage.

III. MODELING A SYSTEM ENGINEERING PROJECT

A. Background
As a feasibility study of developing a simulation model

by students as part of normal project management course
work, three undergraduate students of “project engineering”
at the University of Applied Science, Konstanz developed a
simulation model as a project assignment. They were in the
third year of their studies with a background in electrical
engineering and project management, not in software
engineering or computer science.

SimSE was chosen as the modeling tool and simulation
environment, mainly because of its integrated model builder
tool and graphical simulation environment.

Together with the SimSE tools, an existing SimSE model
of a software project following a waterfall process model
was available, which was used as example and template.

B. SimSE Environment
SimSE is a game-based, graphical, interactive software

process modeling and simulation environment designed
specifically for generating educational simulations. Its
purpose is to allow students to practice quasi-realistic, large-
scale software processes in a fun (and hence, more

Teaching by Modeling instead of by Models
Thomas Birkhoelzer, Emily Oh Navarro, André van der Hoek

T

 2

educationally effective [2]) setting; and to allow instructors
to build the simulation models for their students to “play.”

One of the most significant features of SimSE is its model
builder tool, which was designed to make model building
simpler by obliterating the need to learn and program in a
process modeling language. The model builder tool
completely hides the underlying textual modeling language
from the modeler by providing a graphical user interface.
This interface allows one to build a model using only
buttons, drop-down lists, menus, and text boxes – no
programming is required. Once a modeler specifies all of
the object types, start state objects, actions, rules, and
graphics for a model, the environment then generates a
simulation game based on that model.

The graphical, high-level nature of the model input
requires less initial learning overhead compared to a special
modeling or programming language, which was an
important issue considering the students’ non-computer
science background.

Moreover, the model builder, as well as the generated
simulation game, are Java applications. Therefore, only a
Java development kit is required as a prerequisite, which
eases the usage by students on their private hardware.

More information about SimSE and its waterfall model
that was extended for this project can be found at [9].

C. Modeling task
As modeling task, a system engineering project was

chosen, i.e. a project combining hardware and software
parts into a system. Because SimSE is a game-based
simulation environment, it requires that a scenario or “story”
accompany each model. In this case, the simulation’s goal
was the development of a control component for a test
robot. The idea of this story stemmed from work done by
one of the students during an internship. Thus, this
immediately connected the theoretical model to practical
experiences.

The students built the model as an extended waterfall
model that incorporates hardware aspects as well as
software, using the following basic flow: Starting from
system requirements, hardware, software, and supply
components are pursued in separate paths (with the
associated artifacts) and finally integrated into the product.

Therefore, the modeling task was similar to the existing
waterfall simulation model. Theoretically, the artifacts,
activities, and relations from this existing model just needed
to be cloned and extended. At the same time however, to
avoid an overly complex model, the existing mechanisms
needed to be simplified. Both, appropriate extension and
simplification, required a thorough understanding of the
model and, more importantly, of the intentions behind the
model.

D. Modeling Workflow
The SimSE model builder tool supports a modeling

workflow, which closely resembles a didactic
decomposition of project management issues.
1. Definition of the project constituents (artifacts,

deliverables, participants, tools).
This is the first and basic step of any project
management. In the SimSE model builder, this

corresponds to defining the object types (templates for
the simulation objects) and start state (instantiated objects
that the simulation begins with). For the system
engineering project, business, software and hardware
artifacts were defined reflecting the basic steps of a
development process in each category (e.g. specification,
design implementation, test). Participants are employees
with different experience in these three fields (software,
hardware, business).

2. Definition of the actions a manager (player) can take.
These are the inputs into the simulation. There are
typically two classes of such actions: task assignments
(create, review, correct) and management actions (give
bonus, purchase tool, motivate by free coffee, fire).
Whereas the first ones are direct consequences of the list
of artifacts, the second class enables and enforces the
students to define their management style. Each
manager/player action corresponds directly to a SimSE
action – the specific ways that a player can manage,
control, and drive the simulation.

3. Definition of the actions that occur autonomously.
In addition to the actions triggered by the manager, there
are events beyond the control of a manager. In SimSE,
this is modeled by actions that occur automatically (e.g.,
employees take breaks) or randomly (e.g., the customer
introduces new requirements, employees get sick). The
definition of such events teaches basic risk management.

4. Definition of the effects the actions should have.
In SimSE rules are attached to each action. These rules
specify how that action affects the rest of the simulation.
For example, a creation rule affects the completion
percentage of an artifact depending on the productivity of
the participant.
The rules and actions can be prioritized according to
which ones should be evaluated first, based on their
dependencies. For instance, an action that is triggered
based on an employee’s energy level (e.g., take a break)
should be evaluated after another rule that modifies that
employee’s energy level is fired.
Whereas the definition of such rules seems to be
straightforward on a first glance, actually conducting it
reveals two basic challenges: The large amount of such
effects and the difficulty to quantitatively describe it by
mathematical formulas. For example, every project
manger would immediately agree that the productivity of
an employee depends on the experience, the mood, and
the number of parallel tasks, but how to model this by a
mathematical formula, e.g. as a sum or a product?

5. Definition of the dependencies.
Dependencies between artifacts and activities are
modeled in SimSE by effects of rules as well. For
example, a creation rule can have the effect of reducing
the completion percentage of a dependent artifact (or the
effect of increasing the number errors in this artifact).
Whereas this provides a realistic management situation (a
dependent artifact can be worked on before finishing its
precursor), it adds another level of complexity. The
student project stopped at this point.

 3

6. Definition of the graphics (in parallel to the previous
steps).
To each constituent of the project, an image needs to be
assigned for the simulation. In addition, a pictorial layout
of the simulated office must be defined. Whereas this
provides no direct insight into project management, it
adds a lot to the impression of ownership.

IV. LESSONS AND RECOMMENDATIONS
During the project, the following lessons were learned:

• Modeling is difficult but possible
The modeling task provides a challenge to students. The
translation of project management knowledge into
mathematical formulas and mechanisms is unusual and
unfamiliar. Nevertheless, the student group finally
succeeded: despite some odds, they were able to form a
first simulation model. Of course this model is not yet
complete (specifically, further effects could be modeled
and many dependencies are missing).

• Creative aspects provide high motivation
The opportunity to create their own processes and
mechanisms served as an important motivation for the
students. In this context, also less scientific aspects like
graphics and playful aspects should not be neglected. It
seems to be more fun to design a game-like simulation
than just chart outputs.

• Examples are helpful and necessary
For the system engineering project, the most successful
modus operandi was the study of the artifacts and
mechanisms of the existing model and their appropriate
modification. Designing everything from scratch would
have been much more difficult. Based on that experience,
it is recommended to document and use such examples as
kind of templates or patterns.

• Tools need improvements
Within the traditional usage of simulation models in a
teaching context, the students use only the simulation
environment, not the modeling tool. Therefore, the
simulation environments are designed for non-expert use,
whereas the usability of the modeling tool got less
attention. Instead, the modeling tools were designed to
allow maximal expressiveness and flexibility.
Modeling by students requires modeling tools for non-
expert users as well. Usability with minimal training
might be more important than complicated functionality.

• Implementation-independent notational support missing
One of the most difficult tasks was the specification of
the intended relations and mechanism on paper. For
example, the modeling tool provides interactive menus to
specify the modeling rules. However, to design, discuss,
and document these rules outside the program on paper,
an appropriate notation (not a programming language) is
necessary. For process modeling, such a notation is not
readily available or broadly established. It is difficult for
students to develop such a notation by themselves.
Therefore, early support by the instructors on formal
model design (not just implementation) is necessary. It
might even be helpful, if the modeling tools would be
accompanied by notational tutorials and examples as
well.

V. CONCLUSION
Modeling by themselves forces the students to be precise

and explicit about their assumptions regarding projects and
processes, as the enactment by the simulation provides
immediate feedback. Moreover, the creative nature of the
task seems to meet the motivation of many students in this
area.

This is not to say that such modeling should replace the
use of preexisting models in a learning context. Both have
their distinct advantages: Own modeling is restricted to
small problems with a limited level of detail and
sophistication and might even remain incomplete. It is not
expected that such models can be used to gain really new
insights from the model itself. To gain such insights requires
using and studying more elaborate and detailed models
developed by experts. Using the later one as templates for
the own development as described in Chapter 4 can benefit
both approaches by improving the own results as well as the
appreciation of the “expert-models”.

Therefore, it is expected that the development of
simulation models by students themselves can be a valuable
component of process and project teaching and training
complementing the use of expert-models. The overall
positive outcome of the system engineering project
modeling supports this expectation.

To alleviate this, however, further work is necessary
especially towards developing easy-to-use modeling tools,
appropriate templates and modeling tasks, and unified and
simplified notations.

ACKNOWLEDGMENT
The system engineering project has been developed by

Patrick Schnell, Markus Schulz, and Stefan Weidele. We
would like to thank them for their intellectual curiosity to
try such a task and for their dedication to carrying it
through.

REFERENCES
[1] M. L. Kellner, R. J. Madachy, and D. M. Raffo, “Software Process

Modeling and Simulation: Why? What? How”? Journal of Systems
and Software 46, Elsevier, New York, 1999, pp. 91-105.

[2] M. Ferrari, R. Taylor, and K. VanLehn, “Adapting Work Simulations
for Schools,” The Journal of Educational Computing Research, 21(1),
1999, pp. 25-53.

[3] A. Drappa and J. Ludewig, “Simulation in Software Engineering
Training,” Proceedings of the 22nd International Conference on
Software Engineering, ICSE, Limerick, Ireland, June 2000,
pp. 199-208.

[4] J.S. Collofello, “University/Industry Collaboration in Developing a
Simulation Based Project Management Training Course,”
Proceedings of the Thirteenth Conference on Software Engineering
Education and Training, S. Mengel and P.J. Knoke, Eds.: IEEE
Computer Society, 2000, pp. 161-168.

[5] H. Sharp and P. Hall, “An Interactive Multimedia Software House
Simulation for Postgraduate Software Engineers,” Proceedings of the
22nd International Conference on Software Engineering, ACM, 2000,
pp. 688-691.

[6] D. Pfahl, M. Klemm, and G. Ruhe, “A CBT Module with Integrated
Simulation Component for Software Project Management Education
and Training,” Journal of Systems and Software 59, Elsevier, New
York, 2001, pp. 283 298.

[7] E. Oh Navarro and A. van der Hoek, “Software Process Modeling for
an Interactive, Graphical, Educational Software Engineering
Simulation Game,” Proceedings of the 5th International Workshop on
Software Process Simulation and Modelling (ProSim 2004),
Edinburgh, May 2004, S. 171-176.

 4

[8] Th. Birkhölzer, L. Dantas, C. Dickmann, J. Vaupel, „Interactive
Simulation of Software Producing Organization's Operations based on
Concepts of CMMI and Balanced Scorecards,“ Proceedings of the 5th
International Workshop on Software Process Simulation and
Modelling (ProSim 2004), Edinburgh, May 2004, S. 123-132.

[9] E.O. Navarro and A. van der Hoek, “Design and Evaluation of an
Educational Software Process Simulation Environment and
Associated Model,” Proceedings of the Eighteenth Conference on
Software Engineering Education and Training, Ottawa, Canada,
IEEE, 2005 (to appear).

