
Software Process Modeling for an
Interactive, Graphical, Educational Software Engineering Simulation Game

Emily Oh Navarro and André van der Hoek

School of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425 USA
emilyo@ics.uci.edu, andre@ics.uci.edu

Abstract

SimSE is an educational software engineering simula-

tion game that uses a unique software process modeling
approach. This approach combines both predictive and
prescriptive aspects to support the creation of dynamic,
interactive, graphical models for software engineering
process education. This paper describes the different con-
structs in a SimSE process model, the associated model
builder tool, and discusses the underlying tradeoffs and
issues involved in this approach.

1. Introduction

SimSE is an interactive, graphical, educational soft-
ware engineering simulation game designed to teach stu-
dents the process of software engineering [13]. In tradi-
tional software engineering educational approaches, stu-
dents are exposed to software engineering concepts and
theories in lectures, but have limited opportunity to put
these ideas into practice in an associated small software
engineering project. SimSE aims to fill this gap by pro-
viding students with virtual experiences of realistic, large-
scale software engineering processes.

SimSE is a single-player game in which the player
takes on the role of project manager of a team of develop-
ers. As the player manages the process to complete (a
particular aspect of) a software engineering project, they
can, among other things, hire and fire employees, assign
tasks to them, monitor their progress, and purchase tools.
Because a visually interesting graphical user interface is
considered essential to any successful educational simula-
tion [7], the user interface of SimSE is fully graphical,
displaying a virtual office in which the software engineer-
ing process takes place. This display includes typical of-
fice surroundings, such as desks, chairs, computers, and
meeting rooms, as well as information about employees
(e.g., productivity, current task, energy level), artifacts
(e.g., size, completeness, correctness), customers (e.g.,
satisfaction level), projects (e.g., budget, time), and tools
(e.g., number of users, productivity increase factor). Play-
ers use this information to make decisions and take ac-
tions, driving the simulation accordingly.

One of the fundamental goals of the SimSE project is
to support customization of the software process models it
simulates. Real-world software processes vary with dif-
ferent application domains, organizations, and cultures,
and therefore SimSE must be able to portray different
processes as well. Furthermore, instructors using SimSE
may belong to different schools of thought regarding best
software engineering practices, and may have different
teaching objectives that require different types of models.
Therefore, an integral part of SimSE is a software process
modeling language with associated tool support.

The educational, interactive, and graphical nature of
SimSE imposes three unique requirements upon its proc-
ess modeling language: First, it must be both predictive—
allow the modeler to specify causal effects that the
player’s actions will have on the simulation, and prescrip-
tive—support the specification of the allowable next steps
the player can take at a given time. Second, it must also
be interactive, meaning that it should operate on a step-
by-step basis, accepting user input and providing feed-
back constantly throughout the simulation. Finally, it
must allow the modeler to specify the graphical represen-
tations of the elements in the model. However, a survey
of existing process modeling approaches revealed that
most are either predictive [1, 10] or prescriptive [4, 12],
but not both; few are interactive [4, 12]; few support
graphics [8, 11]; and none fulfill all of these require-
ments. The closest fit is the modeling language used in
SESAM, another educational software engineering simu-
lation environment [5]. However, despite the fact that the
SESAM language is highly flexible and expressive, the
model building process is learning- and labor-intensive
and requires writing code in a text editor. Furthermore,
the user interface for the simulation is text-based so the
modeling language has no support for graphics.

SimSE’s software process modeling approach com-
bines and refines the applicable features in existing proc-
ess modeling languages to create predictive, prescriptive,
interactive, graphical models for use in SimSE. The re-
mainder of this paper details this modeling approach. Sec-
tion 2 describes the different components of a SimSE
model, the associated model builder tool, and discusses
issues and tradeoffs involved in the approach. We con-

clude in Section 3 with our current progress and direc-
tions for future work.

2. Approach

2.1 Modeling Constructs

A SimSE model consists of five parts: Object types de-

fine templates for all objects that participate in the simula-
tion. The start state of a model is the collection of objects
present at the beginning of a simulation. Actions refer to
the activities that objects in the simulation can participate
in. Rules define the effects that actions have on the rest of
the simulation. Graphics refer to the graphical representa-
tions of all objects in the simulation and the layout of the
virtual office. The remainder of this subsection discusses
each of these modeling constructs in further detail.

Object types. The first step in building a SimSE model is
to define the object types to be used in the model. Each
major entity participating in the simulation will be an
instantiation of an object type. Every object type defined
must descend from one of five meta-types: Employee,
Artifact, Tool, Project, or Customer. Each of these meta-
types have very limited semantics in and of themselves,
except for where objects of each type are displayed in the
GUI of the simulation, and how the player can interact
with each type of object. Specifically, only objects de-
scended from Employee and Customer will display over-
head pop-up messages during the game, and only objects
descended from Employee will have right-click menus
associated with them so the player can command their
activities.

An object type consists of a parent meta-type, a name,
and a set of typed attributes. For each attribute, in addi-
tion to the type (String, Double, Integer, or Boolean), the
following metadata must be specified: key (a Boolean
value indicating whether or not this attribute is the key
attribute for the object type), visible (a Boolean value
denoting whether or not this attribute should be visible to
the player of the simulation), minVal (the minimum value
for this attribute – for Double and Integer attributes only),
and maxVal (the maximum value for this attribute – also
for Double and Integer attributes only). Two sample ob-
ject types, a Programmer Employee and a Code Artifact,
are shown in Figure 1. (Note that the format of this ex-
ample and the examples throughout this paper are shown
in a “shorthand” version of the actual SimSE modeling
language format, which is XML-like and difficult to read.
However, since this language is completely hidden from
the user by our model building tools, we have accordingly
omitted it from this paper. See Section 2.3 for a more
extensive discussion of this issue.)

Figure 1: Sample Programmer and Code Object Types.

Start state. Once the object types for a simulation have
been defined, the start state for that simulation can be
specified. The start state refers to the set of objects that
are present when the simulation begins. Each one of these
objects must be an instantiation of one of the object types
defined for the model, and starting values for all attributes
must be assigned. Figure 2 shows sample instantiated
objects for the Programmer and Code object types from
Figure 1.

Figure 2: Sample Instantiated Programmer and Code

Objects.

Actions. The next part of a SimSE model is the set of
actions in which the objects in the simulation can partici-
pate. For example, a “Code” Artifact, with one or more
“Programmer” Employees and one or more “IDE” (inte-
grated development environment) Tools could participate
in a “Coding” action, in which the programmers build a
piece of code using an IDE. This example is shown in

Object Programmer
 Employee
{
 name = “Roger”
 energy = 0.9

productivity =
 0.6

 error rate =
 0.3
 hired = true
}

Code Artifact Programmer Employee
{
 name:
 type: String
 visible: true
 key: true
 energy:
 type: Double
 visible: true
 minVal: 0.0
 maxVal: 1.0
 key: false
 productivity:
 type: Double
 visible: true
 minVal: 0.0
 maxVal: 1.0
 key: false
 error rate:
 type: Double
 visible: true
 minVal: 0.0
 maxVal: 1.0
 key: false
 hired:
 type: Boolean
 visible: true
 key: false
}

{
 name:
 type: String
 visible: true
 key: true
 numUnknownErrors:
 type: Integer
 visible: false
 minVal: 0.0
 maxVal: boundless
 key: false
 numKnownErrors:
 type: Integer
 visible: true
 minVal: 0.0
 maxVal: boundless
 key: false
 size:
 type: Double
 visible: true
 minVal: 0.0
 maxVal: boundless
 key: false
 percentComplete:
 type: Double
 visible: true
 minVal: 0.0
 maxVal: 100.0
 key: false
}

Object Code Artifact
{
 name = “My Code”

numUnknownErrors =
 18
numKnownErrors =
 7
size = 25600
percentComplete =
 10.2

}

detail in Figure 3. As another example, an Employee
could participate in a “break” action, referring to the ac-
tivity of taking a break, during which he or she rests and
does not work.

For each action, the following information is specified:
a n

ar manner as an
act

ules. After all of the action types have been defined, the

ree types of rules in a SimSE model:
cre

 de-
str

ame; one or more participants—roles in the action that
can be filled by one or more objects of (a) specified ob-
ject type(s), an action trigger, and an action destroyer. An
action trigger refers to what causes the action to begin to
occur in the simulation. Three distinct classes of triggers
exist: autonomous, user-initiated, and random. Autono-

mous triggers specify a set of conditions (based on the
attributes of the participants in the action) that cause the
action to automatically begin, with no user intervention.
For instance, an Employee may automatically take a
break when his or her energy level drops below a certain
threshold. User-initiated triggers also specify a set of con-
ditions, but include a menu item text string, which will
appear on the right-click menu for an Employee when
these conditions are met. This menu item corresponds to
this action, and when the menu item is selected, the action
begins. For example, in the Coding action shown in
Figure 3, a menu item with the text “Start coding” will
appear on the menus of all Programmer and Tester
employees who meet the specified conditions (hired and
health level greater than or equal to 0.7) and are not
already participating in a Coding action with the potential
piece of code. Random triggers specify both a set of
conditions and a frequency that indicates the percent
chance of the action occurring whenever the specified
conditions are met. For the sake of space, in Figure 3
participants in the trigger and destroyer are not shown if
there are no conditions attached to them.

An action destroyer works in a simil

Action Coding
{
 Participant Coder
 {
 quantity: at least 1
 allowable types: Programmer, Tester
 }

 Participant CodeDoc
 {
 quantity: exactly 1
 allowable types: Code
 }

 Participant IDE
 {
 quantity: at least 1
 allowable types: Eclipse, JPad
 }

 Trigger
 {
 type: User-initiated
 menuText: “Start coding”
 overheadText: “I’m coding now!”
 conditions
 {
 Coder:
 Programmer:
 hired == true
 Tester:
 hired == true
 health >= 0.7

 IDE:
 Eclipse:
 purchased == true
 licenseValid == true
 JPad:
 purchased == true
 licenseValid == true
 }

}

Destroyer
{
 type: Autonomous
 overheadText: “I’m finished coding!”
 conditions
 {

 CodeDoc:
 Code:
 percentComplete == 100.0
 }
}

}

ion trigger, but has the opposite effect: whereas a trig-
ger starts an action, a destroyer stops an action. Destroy-
ers can be of the same types as triggers (autonomous,
random, or user-initiated), but have one additional type:
timed. A timed destroyer specifies a “time to live” value
for an action—once an action starts, it exists for a number
of simulation clock ticks equal to this value, and is then
automatically destroyed. The “Coding” action shown in
Figure 3 has associated with it an autonomous destroyer
that will cause the action to stop when the code is 100%
complete.

R
next task in building a SimSE model is to attach rules to
each action type. A rule defines an effect of an action–
how the simulation is affected when that action is active.
Two example rules attached to the “Coding” action are
shown in Figure 4.

We distinguish th
ate objects rules, destroy objects rules, and effect

rules. As its name indicates, a create objects rule causes
new objects to be created in the game. For example, as
shown in Figure 4, a “Coding” action might have associ-
ated with it a create objects rule that creates a new Code
Artifact object with its size and number of errors equal to
zero. This would indicate that a new Code Artifact comes
into existence as a result of programmers participating in
a “Coding” action. A create objects rule is only fired
once, at the point when its associated action begins.

In contrast to a create objects rule, the firing of a
oy objects rule results in the destruction of existing

objects. For instance, a “Fire” action might have associ-Figure 3: Sample “Coding” Action.

ated with it a destroy objects rule that removes an Em-
ployee from the game, indicating that they have been
fired. Like create objects rules, destroy objects rules are
also fired only once, at the start of the action.

An effect rule is the most powerful and expressive
typ

eler can use a number
of

Graphics. Because the user interface of SimSE is fully

2.2 Discussion

 designing SimSE’s software process modeling ap-
pro

Figure 4: Sample Rules Attached to the “Coding” Action

e of rule in SimSE. Rules of this type specify the com-
plex effects of an action on its participants’ states, includ-
ing the values of their attributes and their participation in
other actions. For instance, the effect rule attached to the
“Coding” action, shown in Figure 4: a) causes the size of
the code to increase by the additive productivity levels of
all of the programmers currently working on it; b) causes
the number of unknown errors in the code to increase
based on the error rates of the currently active coders; and
c) updates the completeness level of the code. At the
same time, it decreases the energy and productivity levels
of the coders as they work, and resets their error rates
based on their current energy levels. As another example,

a “Break” action might have an effect rule attached to it
that: a) increases the energy of an employee; and b) deac-
tivates the employee from all other actions in which he or
she is currently participating for the duration of the
“Break” action. Unlike create objects rules and destroy
objects rules, an effect rule is fired once every clock tick
that its associated action is active.

In specifying an effect, the mod

Coding Action Rules
{
 CreateObjectsRule
 {
 createdObjects
 {
 Object Code Artifact
 {
 name =“My Code”
 numUnknownErrors = 0
 numKnownErrors = 0
 size = 0.0
 percentComplete = 0.0
 }
 }
 }

 EffectRule
 {
 Coder:
 Programmer:
 name = // no effect
 energy = this.energy – 0.05
 productivity = this.productivity –
 0.0375
 errorRate = (1 - this.energy) * 0.4
 hired = // no effect
 Tester:
 // etc…

 CodeDoc:
 Code:
 name = // no effect
 numUnknownErrors =
 this.numUnknownErrors +
 allActiveProgrammerCoders.errorRate
 numKnownErrors = // no effect
 size = this.size +
 allActiveProgrammerCo-
 ders.productivity
 percentComplete = (this.size /
 allSEProjectProjects.targetCodeSize)
 * 100
 }
}

different constructs, including participant attribute val-
ues, the number of participants in an action, the number
of other actions a participant is involved in, the time
elapsed in the simulation, random values, user inputs,
numbers, and mathematical operators.

graphical, graphics are an integral part of our modeling
approach, and are woven throughout the different parts of
a model. For instance, each action trigger and destroyer
can have associated with it a string of text to appear in
pop-up bubbles over the heads of that action’s Employee
participants when the action either begins (trigger) or
ends (destroyer). For example, “I’m coding now” may
appear over the head of all “Coder” participants when
they are beginning a “Coding” action (see Figure 3).
Likewise, effect rules can have specified with them rule
inputs that cause a dialog to appear during the simulation,
prompting the user for input. For example, an effect rule
attached to a “Give Bonus” action might prompt the user
to enter the amount of the bonus they wish to give. In
addition to these graphical aspects woven throughout the
model, specific images must be assigned to each object in
the start state, and the layout of the “office” must be
specified. Because these graphical features of the model-
ing approach are rather trivial, and consist of simply as-
signing image filenames to objects and specifying coordi-
nates for images, an example of these is omitted from this
paper.

In
ach, it became apparent that some tradeoffs would

have to be made. We acknowledge that it is not as generic
or flexible as some general purpose modeling and simula-
tion approaches [2, 8], or even domain-specific languages
designed specifically for modeling software proc-
esses [6, 9]. However, aside from the fact that none of
these approaches met the unique needs of our educational
game domain, we felt that such a level of genericity and
flexibility was unnecessary for our purposes. The process
by which we designed our modeling approach under-
scores this: We surveyed the software engineering litera-
ture and extracted the widely accepted process lessons
and rules that would conceivably go into a SimSE model,
and then designed the modeling approach with these rules

in mind. Although they include a wide range of different
types of phenomena, from management issues, to organ-
izational behavior theories, to corporate culture, to the
traditional software engineering theories (e.g., Brooks’
Law [3]), all of the rules that we have collected thus far
can be modeled and simulated in SimSE. We will con-
tinue to gather more rules, see how well they can be mod-
eled in SimSE, and refine the modeling approach accord-
ingly.

We also believe that the educational nature of SimSE
ma

.3 Model Builder

o facilitate a high-level, rapid, and relatively easy

mo

inherent dif-
fic

kes a low-level modeling approach inappropriate—too
much detail and realism may overwhelm the user and
distract from the lessons that the model is trying to teach.
Another danger is that lessons may get expressed at too
low of a level and not be brought out obviously enough in
the simulation to be educationally effective [7]. At the
expense of realism, effects need to be obvious and “over
the top” at times in order to effectively illustrate and en-
force the concepts being taught. Finally, although limited
in some ways, the specificity of our modeling approach
promotes a simplicity that makes it more usable and eas-
ier to learn than some more generic approaches.

2

T

del building process, we have developed a model
builder tool. This model builder completely hides the un-
derlying modeling language from the modeler, and pro-
vides a graphical user interface for specifying the object
types, start state, actions, rules, and graphics for a model.
Figure 5 shows the user interface for the object builder,
the part of the model builder that supports defining object
types. For the sake of space, the interfaces for the other
parts of the model builder are not shown, but they are
similar in appearance to the object builder in that they all
facilitate building a model using buttons, drop-down lists,
menus, and dialog boxes—no programming is required.
Once a model is specified, the model builder then gener-
ates Java code for a complete, executable, customized
simulation game based on the given model.

Although the model builder removes the
ulties of a programming language (e.g., syntax), we

recognize that the difficulty of collecting software engi-
neering phenomena and rules and translating these into
SimSE actions and rules still remains. To assist with this,
we plan to provide example models, with accompanying
documentation, as a part of SimSE so that instructors can
use and adapt these models for their own purposes, rather
than write one from scratch. We anticipate that these
models, along with the model builder, will be valuable
tools for instructors, who generally do not have a lot of

Figure 5: Object Builder User Interface.

time, and may not have a great deal of skill in, or desire
for programming simulation models.

3. Conclusions and Future Work

he educational, graphical, and interactive nature of
the

. URL

nformation about SimSE is available at:

http://www.ics.uci.edu/~emilyo/SimSE

T
 SimSE software engineering simulation game necessi-

tates a rather unique modeling approach. Our new predic-
tive and prescriptive modeling language, along with its
associated model builder tool, supports the rapid creation
of interactive, graphical simulation models for software
engineering education. We are currently nearing comple-
tion of a first version of SimSE, and, in parallel, are
building two initial models: a high-level model in which
an overall software engineering process is simulated us-
ing a waterfall model and a number of general lessons
about the process as a whole are taught, and a second,
more detailed model that teaches the roles and regulations
of the inspection process by making the student organize
and perform a code inspection. We plan to continue to
build different types of models to demonstrate both spe-
cific situations, such as the roles of various forms of test-
ing by making a student deliver high quality code, and
overarching practices, such as the tradeoffs among differ-
ent lifecycle models by letting the student vary the model
by which to develop a product. Finally, we plan to evalu-
ate the teaching potential of SimSE and the models we
have developed by conducting experiments involving
undergraduate computer science students at UC Irvine.

4

More i

. Acknowledgements

We thank Ethan Lee, Calvin Lee, and Beverly Chan
for

-
da

. References

. Abdel-Hamid, T. and S.E. Madnick, Software Project Dy-
namics: an Integrated Approach. 1991, Upper Saddle
River, NJ: Prentice-Hall, Inc.

nference on Software Engineering. 2000:

5.

eering. 2000, ACM. p. 199-

6.

of the Sixth International Workshop on Software

7.

rch, 1999. 21(1): p. 25-53.

the First Interna-

9.

e 15th International Conference on Software Engi-

10.

roSim 2003). 2003: Port-

11.

12. chi, Specifying Process-Oriented Hy-

oftware

5

 their contributions to the implementation of SimSE.
Effort partially funded by the National Science Foun

tion under grant numbers CCR-0093489 and IIS-
0205724. The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of the National Science
Foundation. Effort also funded by the UC Irvine
CORCLR program.

6

1

2. Birtwistle, G.M., Discrete Event Modelling on Simula.
1979, Houndmills, Basingstoke, Hampshire: MacMillan
Education Ltd.

3. Brooks, F.P., The Mythical Man-Month: Essays on Soft-
ware Engineering. 2 ed. 1995, Boston, MA: Addison-
Wesley. 336.

4. Cass, A.G., et al., Little-JIL/Juliette: A Process Definition
Language and Interpreter, in Proceedings of the 22nd In-
ternational Co
Limerick, Ireland. p. 754-757.
Drappa, A. and J. Ludewig, Simulation in Software Engi-
neering Training, in Proceedings of the 22nd International
Conference on Software Engin
208.
Emmerich, W. and V. Gruhn, FUNSOFT Nets: A Petri-Net
Based Software Process Modeling Language, in Proceed-
ings
Specification and Design. 1991, IEEE Computer Society.
p. 175-184.
Ferrari, M., R. Taylor, and K. VanLehn, Adapting Work
Simulations for Schools. The Journal of Educational Com-
puting Resea

8. Howell, F. and R. McNab, simjava: a Discrete Event Simu-
lation Package for Java with Applications in Computer
Systems Modelling, in Proceedings of
tional Conference on Web-based Modelling and Simula-
tion. 1998, Society for Computer Simulation: San Diego,
CA.
Kaiser, G.E., S.S. Popovich, and I.Z. Ben-Shaul, A Bi-level
Language for Software Process Modeling, in Proceedings
of th
neering. 1993, ACM. p. 132-143.
Lakey, P., A Hybrid Software Process Simulation Model
for Project Management, in Proceedings of the 6th Process
Simulation Modeling Workshop (P
land, Oregon, USA.
MAPICS Inc., AweSim, 2004:
http://www.pritsker.com/awesim.asp.
Noll, J. and W. Scac
pertext for Organizational Computing. Journal of Network
and Computer Applications, 2001. 24(1): p. 39-61.

13. Oh, E. and A. van der Hoek, Adapting Game Technology to
Support Individual and Organizational Learning, in Pro-
ceedings of the 13th International Conference on S
Engineering and Knowledge Engineering. 2001, Knowl-
edge Systems Institute: Buenos Aires, Argentina. p. 347-
354.

