
Teaching Software Engineering Through Simulation
 Emily Oh

University of California, Irvine
127B Computer Science Trailer

Irvine, CA 92697-3430
1-949-824-3100

emilyo@ics.uci.edu

ABSTRACT
The common software engineering education method of theory
presented in lectures along with application of these theories in an
associated class project is insufficient, on its own, to effectively
communicate the complex, fundamental dynamics underlying
real-world software engineering processes. This paper introduces
and lays out plans for SimSE, a detailed, graphical, fully
interactive educational software engineering simulation
environment that teaches the software process in a practical
manner without the time and scope constraints of an actual class
project. Once completed, this tool will enable students to form a
concrete understanding of the software process by allowing its
users to explore different approaches to managing the software
process and giving them insight into the complex cause and effect
relationships underlying the process.

1. INTRODUCTION
The software engineering industry is still noting a large disparity
between the software engineering skills taught at a typical
university or college and the skills that are desired of a software
engineer by a typical software development organization
[5, 11, 13, 16]. This problem seems to stem from the way software
engineering is usually taught: a series of concepts and theories are
presented in lectures and put into (limited) practice in an
associated class project. Although this seems like a reasonable
approach at first, lectures and projects alone fail to communicate
the following five issues critical to any real world software
engineering project: it is non-linear, often encounters multiple,
conflicting goals, involves choosing among multiple viable
alternatives, involves multiple stakeholders, and may exhibit
dramatic consequences.

All of these issues relate to the overall process of software
engineering. It is difficult to teach this process in lectures due to
the fact that students participate passively (by simply sitting and
listening to the instructor) while the ideas presented remain
abstract. Although class projects involve more active participation
by students, time and scope constraints and the dominating focus
on deliverables prevent the above issues from being adequately
highlighted and communicated to the students. Nonetheless,
educating students in these issues is essential to creating a full
understanding of the depth and complicated nature of software
engineering—preparing them for a future that lies ahead in
industry. Essentially, then, what is needed is a way to teach the
software process in a practical manner without the drawbacks of
an actual class project.

2. SIMULATION GAMES
Simulation/adventure games, such as The Sims [8] and SimCity
[7], provide a tremendous source of experience and technology
that can successfully be adapted to illustrate the software process.
In these games, players strive to fulfill certain—sometimes
conflicting—goals by living “virtual lives” in an environment
where they are forced to make constant decisions. It is interesting
to observe that, in experiencing the consequences of their
decisions, players implicitly undergo an experience similar to the
software process. In particular, simulation games exhibit strengths
in addressing exactly those dimensions that make teaching the
software engineering process so difficult:
• They are non-linear. Multiple situations that demand the

player’s attention occur simultaneously, and random factors
in the simulation cause every run to be unique.

• They have multiple, conflicting goals. Numerous goals that
at times interfere with each other must be optimized,
generally leading to the attainment of some goals and only
the partial fulfillment of others.

• They allow for the exploration of alternatives. In case of a
wrong decision, a player may quit a game without saving and
return to a previously saved state of the game to explore a
different alternative.

• They generally involve multiple stakeholders. In multi-user
games, different players each try to optimize their own
results. In single-user games, the game typically provides the
stakeholders.

• They exhibit dramatic consequences. Decisions made by
the player can have drastic effects in the game world,
illustrated via graphical depictions.

Aside from sharing these process characteristics with software
engineering, simulation in general has proven to be an effective
educational technique in several different subject domains
(airplane pilot training, hardware design, military training).
Simulation facilitates learning through experimentation and
“play” in a virtual world where unknown situations are introduced
and practiced, alternatives are explored, and experiences are
repeated, all in a “safe” environment.

3. HYPOTHESIS
This research project is based on the hypothesis that a game-like,
educational software engineering simulation environment is a
solution to the problem of adequately teaching the software
engineering process. Specifically, simulation games provide an
ideal platform upon which to teach software engineering, due to
the fact that they exhibit all of the desired characteristics required
for teaching the software engineering process, and illustrate many
examples of good and effective design that can be utilized to

create an environment that is conducive to learning [12]. Of
course, simulation should not replace existing educational
techniques, but rather, serve a complementary role. In particular,
lectures are still required to introduce the topics to be simulated
and class projects are still required to demonstrate and reinforce
some of the lessons learned in the lectures and simulations.

4. APPROACH
I am in the preliminary stages of addressing the above hypothesis
by designing and building SimSE, an educational software
engineering simulation environment. The basic architecture of this
environment contains three main components: (1) a generic
simulation engine, (2) a graphical user interface, and (3)
simulation models. Each is discussed next.

4.1 Simulation Engine
The simulation engine is the component that drives the simulation
by executing a particular model in a step-by-step fashion. In
particular, it takes the current state of the simulation, the model,
and any relevant user input, and uses these to calculate the new
state of the simulation. It then provides this information to the
encompassing simulation environment, which in turn graphically
displays the result.

Because the functionality needed by a simulation engine for
this environment is similar to that of many existing simulation
engines (e.g., SimPack [2], CSIM [1], or SESAM’s engine [6]), I
intend to evaluate the applicability of these engines and reuse an
appropriate solution for my purposes. However, it is likely that
the chosen engine will need to be modified, due to two unique
requirements of this environment. First, because of its focus on
educational use, SimSE requires automated mechanisms to pause,
examine, rollback, and continue simulations, encouraging
students to fully explore alternative scenarios. Second, in order to
promote exploration further, the simulation engine should provide
parallel timelines, where each timeline represents a different
simulation that evolves independently. Through this feature,
students can study the effects of varying certain parameters while
keeping other parameters the same, gaining a deeper insight into
the cause and effect relationships underlying software engineering
phenomena.

4.2 Graphical User Interface
One of the most important features of SimSE is that it will be
graphical. Learning through visual clues has proven to be far more
effective than simply studying textual output [9, 14]. For example,
consider a simulation trying to teach Brooks’ Law, which states
that adding people to a project that is late will make that project
even later, due to the increased need for communication among
personnel [3]. Using a text-based simulation environment like
SESAM will only reveal the end effect of this law: the numbers
show that the project will indeed be later [6]. However, to a
student it remains unclear as to why the project is later. This is
where SimSE will leverage its visual front-end: when a student
decides to add people to a project that is late, the simulation
environment will graphically show that the number of meetings
(both face-to-face and as a group) increases – the student will see
personnel assembling in meeting rooms at a greater frequency; it
will show complaints from employees that they are unable to get
their work done due to these meetings; and it will eventually show
that the project is indeed delivered at a later date.

Because it has been shown that a two-dimensional graphical
user interface can be as engaging and effective for teaching
purposes as a three-dimensional user interface (and due to the
time constraint of completing my dissertation), I plan to base
SimSE’s interface on a tile-based, top-level view of the
organization being simulated. Each tile will represent a particular
part of the organization, and may contain either stationary
artifacts, such as desks, walls, coffee machines, or computers, or a
(mobile) participating character, such as a programmer, designer,
or project manager. To implement this interface, I plan to utilize
one of the several game development kits that are available for
building two-dimensional simulation environments [4, 10, 15].

4.3 Models
Because their main purpose is to represent the real-world
phenomena that the simulation environment is trying to teach, the
models used in driving a simulation are key to any successful
learning experience. Thus, the most significant part of this
research will involve determining what the requirements are for
educationally successful models, and then building a base set of
models that meet these requirements. In particular, the models
will fall into two classes: small specific models and large generic
models. Depending on instructional needs and personal
preferences, an instructor will be able to choose a subset of these
models for use in a class.

Small specific models provide targeted lessons on specific
activities (e.g., “inspections” or “integration testing). These
models are designed to develop a student’s understanding of the
issues involved in carrying out a particular task. For instance, a
student going through a simulation of the inspections model has
the goal of ensuring that the task is completed on time and follows
the standard interaction procedures that typically characterize the
inspection process. During the process, they may run into such
complications as lack of personnel due to the presence of a major
deadline, erratic behavior of employees, or a chaotic meeting that
dissolves before the inspection is complete, due to lack of
planning and organization on the student’s part.

Large generic models introduce an overall view of the
software process (e.g., “waterfall model” or “spiral model”), and
train students in issues arising in large-scale software processes.
These models are at a significantly higher level of complexity than
the small models described above. Generally, the objective is for a
student to complete one or more software projects in which time,
expenditures, and quality must be optimized in parallel. In a
simulation of such a model, students will be made aware that
certain decisions made early in the process may have effects that
only show up after some kind of time delay (e.g., raising
expenditures to deliver a requirements document on time may
result in a shortage of funds later on at testing time, resulting in a
poor quality product that was not adequately tested).
Consequently, students will have to continuously make decisions
about such questions as whether to raise expenditures to speed up
the process or whether to drop the level of quality in an effort to
save time.

In order to represent models in such a way that the
simulation engine can execute them, they must be specified in a
particular, shared modeling language. This language, currently
being developed, must model four basic features: the goal to be
achieved (e.g., “develop a particular product at minimal cost and a
defect rate of less than one percent”), the setting in which the
simulation takes place (e.g., the layout of the simulated

organization, its initial set of assets, and available personnel), the
underlying rules of the simulation (specifying the behavior of a
particular software process, including the available actions, the
relations among actions and progress towards achieving certain
goals, technological variances, and random effects), and the visual
effects to be displayed (e.g., pop-up “bubbles”, one or more
characters performing an action, personnel moving around).

5. EVALUATION
Once SimSE is built, empirical evaluations will be performed to
determine whether the hypothesis underlying the research holds
true. In particular, SimSE will be put into use in an introductory
software engineering class in order to understand whether its use
helps students in achieving a better understanding of the software
process. In particular, I will be using three different techniques to
evaluate the effectiveness of SimSE. First, the students will be
presented with surveys, both during the class and afterward.
Second, I will compare the grades of one session of the course, in
which students will be introduced to the simulation materials, to
the grades of another session, in which students will not be
introduced to those materials. Finally, I will track the grades these
students earn in subsequent software engineering classes and do
the same comparison. If successful, the plan is to package SimSE
such that further experiments and evaluations can be performed in
collaboration with other universities.

6. CONTRIBUTIONS
This research contributes to both the body of software engineering
education and the practice of software engineering in general.
Software engineering education will gain a new method of
teaching that, when used alongside lectures and projects, is aimed
at effectively introducing students to the software process as
experienced in real-world software engineering projects. In turn,
the practice of software engineering will benefit from receiving
graduates that are equipped with this valuable knowledge, and
thus, are hopefully better prepared for positions in industry.
Furthermore, we believe industrial organizations will also be able
to leverage our environment: by using SimSE with models that
reflect their organization and processes therein, new employees
can be more quickly and successfully trained.

7. REFERENCES
[1] Mesquite Software Homepage. 2001.

http://www.mesquite.com/htmls/csim18.htm

[2] SimPack Homepage. 2001. http://www.simpack.de/

[3] Brooks, F.P., The Mythical Man-Month: Essays on Software
Engineering. 2 ed. 1995: Addison-Wesley. 336.

[4] Carlin, B., GameForm. 2001.
http://home.swipnet.se/carlin/gameform

[5] Diaz-Herrera, J.L. and G.M. Powell, Educating Industrial-
strength Software Engineers, in Proceedings of the Eleventh
Conference on Software Engineering Education and
Training. 1998, IEEE Computer Society. p. 139-150.

[6] Drappa, A. and J. Ludewig, Simulation in Software
Engineering Training, in Proceedings of the 22nd
International Conference on Software Engineering. 2000,
ACM. p. 199-208.

[7] Electronic Arts, SimCity 3000. 1998.

[8] Electronic Arts, The Sims. 2000.

[9] Higbee, K.L., Recent Research on Visual Mnemonics:
Historical Roots and Educational Fruits. Review of
Educational Research, 1979. 49: p. 611-629.

[10] Marty, B., The Scrolling Game Development Kit. 2001.
http://gamedev.sourceforge.net/

[11] McMillan, W.W. and S. Rajaprabhakaran, What Leading
Practitioners Say Should Be Emphasized in Students’
Software Engineering Projects, in Proceedings of the
Twelfth Conference on Software Engineering Education and
Training, H. Saiedian, Editor. 1999, IEEE Computer
Society. p. 177-185.

[12] Randel, J.M., et al., The Effectiveness of Games for
Educational Purposes: A Review of Recent Research.
Simulation and Gaming, 1992. 23(3): p. 261-276.

[13] Shaw, M., Software Engineering Education: A Roadmap, in
The Future of Software Engineering, A. Finkelstein, Editor.
2000, ACM. p. 373-380.

[14] Shneiderman, B., Designing the User Interace: Strategies for
Effective Human-Computer Interaction. 2nd ed. 1992:
Addison-Wesley Publishing Company.

[15] Wiering, M., TileStudio. 2001. http://www.cs.kun.nl/is/ts/

[16] Wohlin, C. and B. Regnell, Achieving Industrial Relevance
in Software Engineering Education, in Proceedings of the
Twelfth Conference on Software Engineering Education and
Training, H. Saiedian, Editor. 1999, IEEE Computer
Society. p. 16-25.

