
Calico: A Tool for Early Software Design Sketching

Nicolas Mangano, Alex Baker, Mitch Dempsey, Emily Oh Navarro, André van der Hoek
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3440 USA

{nmangano, abaker, mdempsey, emilyo, andre}@ics.uci.edu

Abstract

In this position paper, we present Calico, a sketch-

ing tool supporting early software design activities. We
first provide background information about early de-
sign, including the types of models designers use and
the behaviors that they typically exhibit. We then de-
scribe Calico’s main features, and how they were de-
signed to support these models and behaviors. We con-
clude with our experiences to date and a look at our
future work.

1. Introduction

In numerous design disciplines, the role and impor-
tance of sketching are well understood and appreci-
ated. Mechanical engineers, architects, and graphic
designers, to name a few, all are known to use sketch-
ing as a way of exploring and working out initial ideas
towards a proposed design [7].

Software engineers sketch, too. Indeed, they too can
be found doodling on a piece of paper, or discussing a
vague drawing of sorts at a whiteboard [2, 6].

One of the times when such sketching is particu-
larly prevalent is during early software design, when a
solution is not readily obvious and must in fact be
“found”. During this time, designers rapidly consider
and evaluate many ideas, potential approaches, and
alternatives, without necessarily working out each of
these in a great amount of detail. It is no surprise, then,
that designers of software typically abandon the tradi-
tional and more restrictive modeling languages and
tools they have at their disposal, in favor of the fluid
and flexible experience offered by sketching.

With a few exceptions [2, 6], the role of sketching
in software design has received little attention to date.
In this position paper, we briefly lay out our approach
to correcting this. Specifically, we have developed
Calico, a sketching tool for use on an electronic white-

board (or tablet PC) and explicitly geared towards ena-
bling software designers in the creative activity of
early, conceptual software design. Calico provides a
level of fluidity similar to the whiteboard or pen and
paper, enriched with additional functionality to make
the design experience more effective.

2. Approach

We draw inspiration from the general design litera-
ture, which has amassed considerable evidence on how
designers behave when faced with a (complex) design
problem – irrespective of which discipline they actu-
ally practice. Specifically, the following four observa-
tions drove our development of Calico:

• Designers use low-detail in sketching designs. The
sketches are never intended to be complete, in-
stead serving as mental aids that help designers to
understand, reflect upon, and evolve the ideas that
appear in their “mind’s eye” [8].

• Designers frequently shift focus. Shifts take place
among breadth of alternatives, along depth of de-
tail [9], and between problem and solution do-
main [3]. The sketches produced, thus, can vary
broadly and are often revisited for further revision.

• Designers produce sketches that are ambiguous. It
is known that this ambiguity, whether consciously
or subconsciously introduced, leaves room for (of-
ten key) design improvements later on [3].

• Designers use a variety of languages in express-
ing their design. Often approximations of more
formal languages are used, as in box-and-arrow
diagrams that resemble software architectures or
data flows. Sometimes even ad-hoc and im-
promptu languages emerge as informal symbols
that are reused across a design exercise [6].

Figure 1. Calico user interface layout (palette retracts when not in use).

While these observations resulted from studies in-
volving non-software designers, other preliminary
studies indicate that software designers likely exhibit
similar behaviors [2, 6]. We have therefore designed
Calico specifically to amplify these behaviors and help
software designers in creating, exploring, and manipu-
lating their early software designs along these lines.

3. Calico

The basic operation of Calico is as follows. Design-
ers work on a large canvas that is presented to them on
an electronic whiteboard (or tablet PC). On this canvas
(see Figure 1), they can sketch whatever they want,
whether it involves figures, drawings, lists, text, anno-
tations, or any other desired graphical or textual ele-
ment. Everything they do is freehand. The basic opera-
tion of Calico therefore reduces to the same experience
a designer would have on a regular whiteboard, mini-
mally impeding the process of design they would nor-
mally follow.

Because Calico is a computer tool, however, it be-
comes possible to provide functional advances over a
whiteboard. At a most basic level, we implemented:
(1) undo and redo, (2) zooming, and (3) panning. The
first feature, undo and redo, helps in ameliorating the
effects of erroneous actions. The second and third pro-
vide the designer with a more malleable space in which
to operate, enabling them to focus on details or create
drawings larger than a single screen. These features are
not the most critical, clearly, but they do provide im-
portant utility as compared to a traditional whiteboard.

The key advance underneath Calico that truly sets it
apart from a traditional whiteboard is the ability to
create scraps from any part of the canvas. These scraps
are irregular in shape, indicated simply by a designer
holding “right click” and circumscribing an area. This
lifts the drawing strokes that are contained within that
area from the background onto the scrap, visually as-
signing a certain importance to the raised region. Any
raised parts of the sketch are easier to recognize and as
a consequence the overall sketch can be more readily
understood at a glance.

Beyond providing visual cues, scraps offer a num-
ber of other affordances. First, a scrap can be of any
shape, which enables designers to assign informal
meaning to differently shaped scraps. As we discussed
in Section 2, informal languages can naturally emerge
during design exercises. In combination with palettes
(described below), scraps are the mechanism through
which Calico supports the emergence of such lan-
guages.

Second, the amorphic nature of scraps, along with
the free, uninterpreted strokes allowed by Calico, en-
courages the property of ambiguity. Generally, in early
design, formal diagrams are not necessary, and in fact
would hinder the design process by requiring too much
detail and interrupting the creative flow [4]. Our own
observations of design sessions confirm this. Numer-
ous aspects of the drawings we have seen remain am-
biguous, yet perfectly useful to the designers. Scraps
support this ambiguity, since they remain informal, can
be left incomplete, do not take on a “standard” shape,

Figure 2. Scraps in Calico.

and often are used without even properly labeling
them.

Third, scraps support fluid exploration of ideas and
combination of ideas into design alternatives. Scraps
follow the metaphor of being pieces of paper, and can
be moved, grouped, related with arrows, and dupli-
cated and erased with simple pen-based strokes that are
essentially modeless (see Figures 2 and 3). Diagrams
are very rapidly created and manipulated by affording
the designer a level of interactivity that does not exist
on the traditional whiteboard. The arrows that establish
relationships are especially important in this respect.
They persist with moving scraps, enabling the various
kinds of box-and-arrow diagrams typically produced
by software designers to be rearranged without losing
their topology.

Exploration is also supported by transparent scraps.
Transparent scraps enable incremental changes that do
not directly modify current scrap contents. By overlay-

ing a transparent scrap onto another scrap, a designer
can make changes that can easily be rejected by re-
moving the transparent scrap and thereby returning the
diagram to its original state. If the changes are as de-
sired, however, the contents of the transparent scrap
can be dropped onto the underlying scrap to combine
the two. Stacks involving multiple transparent scraps
are also supported, mimicking the layering process that
architects typically use in building design and we sus-
pect to be useful in early software design as well.

Fourth, scraps form the basis for palettes. In numer-
ous existing drawing programs, palettes containing sets
of predefined shapes are provided. In Calico, palettes
are initially empty (although we anticipate adding sev-
eral predefined palettes) and are instead populated by a
designer. The informal language of shapes that
emerges during a design session can thereby be cap-
tured for use in the current session or even in future
sessions. Reuse takes place simply by dragging scraps

Figure 3. Calico canvas with example contents.

onto the palette to store them for later use and dragging
them from the palette onto the canvas to obtain a copy
of the scrap (or group of scraps).

In addition to scraps, Calico provides a second ad-
vance that sets it apart. It provides the designer with a
grid of canvases rather than a single canvas (see Figure
4). This grid allows them not only to explore different
aspects of a design in different grid locations, but to
also explore alternatives while keeping a historical trail
of changes. When designing on one canvas, a simple
tab allows the designer to copy the entire canvas to an
adjacent grid location (left, right, top, bottom). In that
grid location, they then can make any changes, while
the original grid location remains unchanged. This

relates to transparent scraps, but provides analogous
functionality at a much larger scale. Through frequent
use of canvas copying, a designer can keep a historical
trail of alternatives that they have explored at a higher
level of granularity, and also return to any earlier time
in the exploration to start a new branch and add its
explorations to the trail.

In our experience, the grid becomes a primary or-
ganizing facility for the overall design exercise. Dif-
ferent aspects of a design can be worked out in differ-
ent regions of the grid, and each can encompass a set
of mini trails representing alternatives explored for that
aspect. These various aspects can then be brought to-
gether by rearranging cells in the grid, for instance
through co-locating the best choices for each alterna-
tive.

4. Recording Design Histories

The fact that our approach is electronic, rather than
physical, presents another potent opportunity: we can
easily record detailed logs of Calico’s usage. By visu-
alizing and analyzing these usage logs we can gain
insight into the process by which software design
drawings were created.

Figure 4. Calico grid (select portion).

This logging is implemented by recording a series
of “snapshots”. Whenever the user takes an action in
the tool, whether it is to draw on the canvas, move
around the grid, or undo an operation, Calico stores a
snapshot of the resulting canvas state, with annotations
about the action itself. These snapshots can then be
visualized in a variety of ways. Figure 5 depicts a pre-
liminary viewer that we are developing. It draws each
snapshot as a small colored square, organized into col-
umns representing 10-second time spans. By clicking a

Figure 5. Calico history viewer. Timeline at top, canvas state at a particular moment in time at bottom.

square, we can see the state of the canvas, the location
in the grid, and its context in the session. In addition,
the design session can be moved through sequentially
or animated as a real-time playback.

This ability to record and view logs provides sev-
eral opportunities for future work. The log readers
might be adapted to allow developers to revisit their
own work or understand the work of others. The logs
might be used in education; if students used Calico to
design the instructor could gain insight into their proc-
ess through their logs, or students could be exposed to
experts’ recorded design processes. Perhaps most
promisingly, by deploying Calico in an industrial set-
ting, we can gather logs from work on real-world pro-
jects and use them to understand how software design-
ers work. We have already gathered several such logs
and are currently working to analyze them.

5. Preliminary Experience

Calico has dramatically evolved since we first be-
gan building a prototype. The first two prototypes that
we constructed, in fact, were unusable even by our-
selves in our own design meetings. The experiences
we gained from attempting to use these prototypes,
however, have significantly shaped the version that we
have described in this paper. This version is now in
regular use in our own design meetings, and we find
ourselves using most of the features (exceptions are the
palette, which was only just recently included, and
zooming and panning, which seem to be subject to
personal preferences – in our case, we prefer to use the
grid for extra space, but in small trials involving others
we have seen zooming and panning used).

We now have deployed Calico to another research
group at UC Irvine as well as to a local software engi-
neering company (a second local company will follow
shortly). Through questionnaires and analysis of de-
sign histories produced at the deployed sites, we an-
ticipate obtaining comprehensive and detailed feed-
back on the value and use of Calico. Given that these
deployments have been very recent, and that early de-
sign does not take place every day, we have to date
gathered just two sessions. We anticipate being able to
share some early results at the workshop in terms of
analyzing these and forthcoming design sessions.

6. Related Work

Previous work in sketching can be largely classified
in two categories. A first category attempts to provide
a front-end to more formal drawing. Grundy and Hosk-
ing have developed a generic sketch-based front-end to

the drawing of arbitrary diagrams [10], for instance,
though earlier work exists by other authors that aims to
translate sketched items on the screen to the formal
counterparts in different kinds of domains (e.g., web
pages in DENIM [14], GUIs in SILK [13], and UML
in Knight [5] and SUMLOW [1]).

A second category involves tools that focus more
on the creative process afforded by electronic white-
boards and sketching. Often focusing on collaboration,
these tools have previously developed some features
that are similar to some of those provided by Calico (as
examples we mention post-it notes in PostBrainStorm
[11], the ability to scrape drawings from a canvas onto
a “scrap” [12], and the desire to maintain informal
drawings [15].

Our work expressly does not compete with that of
the first category – we are not interested in producing
formal drawings from sketches. Instead, we aim to
support the creative endeavor like the tools in the sec-
ond category. With respect to those tools, the particular
set of features offered by Calico is unique and includes
what we believe are some unique capabilities (detailed
scrap behavior, palettes, the grid, recording and replay-
ing design histories) that make it particularly powerful.

7. Conclusions and Future Work

The overall goal of Calico is best described as aim-
ing to amplify the designerly process [3]. Ideally, Cal-
ico helps software designers be more creative, consider
multiple alternatives rapidly, and work in familiar
ways while at the same time making it easier to work
in those ways.

Calico, particularly its user interface and associated
interaction model, is designed with a set of features
that carefully choreograph to provide a fluid sketching
experience in support of these goals. Our experiences
in using Calico indicate that we now prefer Calico and
the electronic whiteboard as compared to using the
regular whiteboard. We look forward to the opinions
and experiences from the trial deployments, and we
anticipate being able to report on those at the work-
shop.

Our immediate future work includes leveraging the
grid to support multiple designers jointly manipulating
a single software design while working at multiple
possibly geographically distributed electronic white-
boards. Additionally, we want to study the design his-
tories that we will amass from our trial deployments.
These provide critical opportunities to not only learn
about how software designers use Calico, but also
about how they approach software design problems in
general. An understanding of the latter could have sig-

nificant impact on our teaching of software design and,
naturally, also will feed into future Calico features.

Availability

The current version of Calico is available at the fol-

lowing web site: http://calico.bhnet.us.

Acknowledgments

This effort is partially funded by the National Sci-
ence Foundation under grant numbers DUE-0536203
and IIS-0534775. Equipment kindly provided through
a Hitachi Software Engineering America, Ltd. gift and
a Hewlett-Packard Technology for Teaching Grant.

References

1. Chen, Q., J. Grundy, and J. Hosking, An E-

Whiteboard Application to Support Early De-
sign-Stage Sketching of UML Diagrams. Pro-
ceedings of the 2003 IEEE Symposium on
Human Centric Computing Languages and
Environments, 2003: p. 219-226.

2. Cherubini, M., et al., Let's go to the white-
board: how and why software developers use
drawings. Proceedings of the SIGCHI confer-
ence on Human factors in computing systems,
2007: p. 557-566.

3. Cross, N., Designerly Ways of Knowing.
2006: Springer.

4. Csikszentmihalyi, M., Flow: The Psychology
of Optimal Experience. 1991, New York,
New York: Harper Perennial.

5. Damm, C.H., K.M. Hansen, and M. Thomsen,
Tool Support for Cooperative Object-
Oriented Design: Gesture Based Modelling
on an Electronic Whiteboard. Proceedings of
the SIGCHI conference on Human factors in
computing systems, 2000: p. 518-525.

6. Dekel, U. and J.D. Herbsleb, Notation and
representation in collaborative object-
oriented design: an observational study. SIG-
PLAN Not., 2007. 42(10): p. 261-280.

7. Ellen Yi-Luen, D. and D.G. Mark, Thinking
with Diagrams in Architectural Design. Artif.
Intell. Rev., 2001. 15(1-2): p. 135-149.

8. Ferguson, E., Engineering and the Mind's
Eye. 1992, Ma. and London: Cambridge.

9. Goel, V., Sketches of Thought. 1995, Cam-
bridge, Massachusetts: The MIT Press.

10. Grundy, J. and J. Hosking, Supporting Ge-
neric Sketching-Based Input of Diagrams in a
Domain-Specific Visual Language Meta-Tool.
Proceedings of the 29th International Confer-
ence on Software Engineering, 2007: p. 282-
291.

11. Guimbretière, F., Fluid Interaction for High
Resolution Wall-Size Displays, in Department
of Computer Science. 2002, Stanford Univer-
sity. p. 157.

12. Kramer, A., Translucent patches---dissolving
windows. Proceedings of the 7th annual ACM
symposium on User interface software and
technology, 1994: p. 121-130.

13. Landay, J.A. and B.A. Myers, Sketching In-
terfaces: Toward More Human Interface De-
sign. Computer, 2001. 34(3): p. 56-64.

14. Newman, M., et al., DENIM: An Informal
Web Site Design Tool Inspired by Observa-
tions of Practice. Human-Computer Interac-
tion, 2003. 18(3): p. 259-324.

15. Plimmer, B. and M. Apperley, Interacting
with Sketched Interface Designs: An Evalua-
tion Study. CHI '04 Extended Abstracts on
Human Factors in Computing Systems, 2004:
p. 1337-1340.

	1. Introduction
	2. Approach
	3. Calico
	4. Recording Design Histories
	5. Preliminary Experience
	6. Related Work
	7. Conclusions and Future Work
	Availability
	Acknowledgments
	References

