REES: Reasoning Engine(s) Evaluation Shell

Radu Marinescu, Kalev Kask and Rina Dechter

School of Information and Computer Science
University of California, Irvine
{radum,kkask,dechter@ics.uci.edu}

Abstract
We introduce a software environment to support research and development in
the area of both deterministic and non-deterministic reasoning. This environment -
REES (Reasoning Engine(s) Evaluation Shell) has a plug-in oriented architecture
that promotes reuse of existing software components and allows for the comparison
and evaluation of alternative technologies. The third release of the REES system
and technical documentation isnow available at www.ics.uci.edu/~radunvrees.html.

1 Introduction

In a typical application, a design is implemented that meets the set of requirements
at the time of development. Often, after a program is delivered, the user will want
added functionality, or different users will require custom functionality based on their
specific needs. In order to accommodate these situations without a complete re-write,
or causing a develop/compile/test/ship scenario, a framework that allows for future
additions of modules without breaking the existing code base needs to be implemented.
A Plug-In architecture will meet these needs.

To put it simply, a system using this architecture would be capable of looking for
various Plug-In modules when starting up. Once all the Plug-Ins have been located
they are loaded by the main application one by one, or selectively so as to use their
built-in features. These Plug-Ins are normally DLLs (Dynamic Linked Library) in dis-
guise and many comercial applications, even the Windows operating system, currently
use similar technologies to allow third-party developers to integrate with their existing
application to add functionality or robustness, otherwise missing from the application.

The REES system was purposely designed in this manner. The main reason be-
hind this is that different research groups in the community usually develop their own
libraries of algorithms and in most cases they are incompatible with each other, thus
making a joint comparison and evaluation practically impossible. REES provides a
common interface that promotes reuse of already existing components and allows for
comparison and evaluation of alternative technologies, while using a common work-
bench.

REES < >

INTERFACE

Plug-Ins

« Method 1

© II * Method 2
+ Method k

Plug-In

Workspace

s

Figure 1: REES Plug-In Architecture

2 REESArchitecture

The architecture of REES system is described in Figure 1. Constraint based or proba-
bilistic reasoning problems are locally defined and/or loaded into the main workspace
and transferred to the available Plug-Ins for processing. The results produced by
the inference algorithms residing in various Plug-Ins are passed back to the REES
main workspace for further refining and appropriate display. The existence of a pre-
determined interface, implemented by each Plug-In, facilitates easy and complete com-
munication between them and REES. We will now discuss the main components of the
proposed architecture: Workspace, Model, Plug-1n modules.

2.1 Workspace and Models

The Wor kspace is the main component of the system. It encapsulates all the problem
models defined by the user and available for evaluation, as well as the list of cur-
rently loaded Plug-Ins. Using the graphical interface, one has the posibility of defining
new problem models, modifying existing ones or selectively loading/unloading Plug-In
modules for additional functionality.

A Modédl is an abstract representation of a reasoning problem. Within the framework,
such a problem instance may be represented either in parametric form (e.g. we use the
well known (N, K, C, T) parametric model representation) or as a completely defined
instance in terms of variables, domain sizes and relationships between variables (i.e.
functions). Depending on the chosen model representation (paramatric or complete),

the graphical interface assits the user in further refining the model. Options as modifing
the values of some parameters (parametric model) or altering the graph structure of the
network (complete model) are also available.

Together with the problem structure (i.e. constraint/belief network) a list of pro-
cessing algorithms must also be defined. These inference algorithms may all reside in
a single Plug-In library, but in the common case they may be part of different Plug-Ins.
The list of selected algorithms together with their control parameters form the experi-
ment associated with the problem model. In this way, reasoning algorithms developed
within different research groups can be executed and evaluated altogether on the very
same problem instances or benchmarks.

Once a problem model has been completely defined in the current workspace, the
common interface takes care of creating an object that is understood and can be trans-
ferred to any attached Plug-In. This sub-process is called random problem generation
and in both cases it creates a complete problem instance. In case of a parametric model
representation, the parameters completely define the graph structure and the functions
of the problem. In the other case, there is no need for a problem instance generation
and the already existing object can be passed along, as is.

2.2 Plug-Ins

A Plug-Inis an external module (a DLL in our framework) that implements some func-
tionality. Once installed, it can be loaded at runtime by the main application (REES) to
use the functionality provided using exported functions/classes within the DLL. All the
Plug-In modules must conform to a pre-defined interface (see Figure 1). The reason
for that is determined by the fact that a call to a function residing inside the Plug-In can
be issued only after knowing the function name.

As it is defined in this framework, a Plug-In library implements a collection of
deterministic and/or non-deterministic reasoning algorithms. A pre-defined header
structure ensures the compatibility with the main application (REES). In our imple-
mentation, a Plug-In must export the list of implemented algorithms together with their
input/output control parameters as well as the list of functions that form the common
interface.

3 A Closer Look

This section describes in more detail the main features of the REES environment and
shows the basic steps of the entire process, from model creation to experimentation
to viewing and interpreting the results. REES provides an easy to use graphical in-
terface that allows intuitive creation/editing of the problem model, direct adjustment
of the control parameters for all algorithms involved in some experiment as well as
user friendly display of the results produced by the experiments. REES also provides
support for saving either the entire workspace or individual models to a file for later
use.

= Metwork 2 Narme | untitled
=y uptitle 4 C;u‘tp‘u‘t e e —
Type Constraint Optimization Task B I\"iax-.C.SI.i‘ wf .a\;g. s‘téti‘st‘ic‘s. Ty
Ly \,la;‘ahj.e.s. T Fe e ke i et e (s
i Number L | N ———————— T e
S ' TmeshoSobie: B
) DDmaln__Slze : = algorithms
= araph Structure | — o
Type e IO | - i
. Briky 2 R
hurber of constraints | 80 g
by I-Step
= s Time bound
e Rapdomweightedtuplg . .OUtDUt g
Tightness 4 Output ._ t

Figure 2: REES Graphical Interface. (a) Model. (b) Experiment

3.1 Model Definition

The first step in any deterministic/probabilistic reasonig problem is defining the prob-
lem model. To create a new model, simply select Add Model from the main menu
or select the appropriate icon from the toolbar. REES will then begin the process of
helping the user to create the model. The underlying network of the model (either a
constraint network for deterministic reasoning problems or a belief network for proba-
bilistic reasoning problems) can be specified in two ways:

1. Parametric Form. In this case, a parametric model of the problem is created. The
user has the options of specifying the size of the network as number of variables
and domain size, the type of graph structure to be generated (e.g. random, grid,
etc.) as well as the type of functions to be defined over subsets of variables (e.g.
random weighted tuple). Figure 2(a) displays an example of model definition
using REES Graphical Interface. At any time, the system allows the user to
modify the values of all these parameters. Later, the random problem generator
will use all these user defined parameters to build a complete model, as described
in Section 2.1.

2. Complete Form. In this case, the entire model, as represented by the graph struc-
ture and functions defined over subsets of variables, resides in a text file that will
be loaded into the workspace. At this moment, REES system is able to parse
several file formats (e.g. DIMACS), as well as a proprietary format that may
contain additional information for a graphical display of the network!. REES
Net Editor provides easy graphical editing of constraint/belief networks includ-
ing cut/paste/duplicate nodes and edges. All these options and many others are
available from the main menu and toolbar of the application. In this way, the
user is offered the possibility of creating its own model either from scratch or
modifying an existing one.

1REES Net Editor is currently available only for belief networks.

Tirne | wk | ok et |#backl:ra-:ks

BTE 0.00%z | 17.2

BBET-Z | 6.3257 17.2 Q0 1970.7
BEET-3 | 4.34%0 17.2 Q0 1259.3
BEET-4 | 1.5437 17.2 Q0 525.5

I1GR-2 | 0.0064 17,2 a0
IDGR-3 | 0.0123 17.2 &0
IIGP-4 | 0,014 17,2 70

Figure 3: REES Results Display Window.

The model definition is completed once an experiment is defined and attached to it.
Details on how to do it can be followed in the next section.

3.2 Running Experiments

Once a problem model is created, the knowledge it contains can be transferred to the
available Plug-Ins, each one of them implementing a set of inference algorithms as
described in Section 2.2. To create a new experiment, using the current problem model,
simply select New Experiment from the main menu or select the appropriate icon from
the toolbar. A REES wizard will then assist the user in the process of creating the
experiment. A tipical experiment must specify the task it will perform, the number of
problem instances to be generated as well as the set of algorithms together with their
control parameters to be executed. Figure 2(b) shows an example of an experiment
defined on a constraint-based model.

1. Task: Depending on the problem model on which the experiment is defined, sev-
eral tasks may be available (e.g. Max-CSP, Solution Counting, etc. for constraint-
based models, Belief, Most Probable Explanation, etc. for probabilistic models).
Each algorithm exported by a Plug-In must have its header information contain-
ing the task type it is able to perform.

2. Instances: If there is no random behavior specified for this particular model (i.e.
complete model), then there can only be one instance of the underlying network.
If there is either a random structure definition and/or a random function definition
(i.e. parametric model) then REES can create as many problem instances as
indicated by the parameter value.

3. Algorithms: Each algorithm exported by some Plug-In library has a set of control
parameters associated with. The user must set values for all input parameters (if
there are any) and may select one or more output parameters for visualization.
After the execution of the experiment has sucessfully completed, the average
values of the output parameters will be displayed for further analysis.

Once the experiment is created, REES can be instructed to execute it. A detailed log of
the execution can also be recorded so as the user to be able to abort the experiment once
an error is signaled. The results produced by an experiment that completed sucessfully
are displayed in a spreadsheet, each column representing one of the selected output pa-
rameters. This should make comparison between algorithms quite simple and intuitive,
where such a comparison is appropriate.

In Figure 3 we provide an example of results produced by an MPE experiment,
that is finding the Most Probable Explanation in Bayesian models. The problem was
represented as a parametric model that generated 10 random instances of a binary be-
lief network with 100 variables and 90 conditional probability tables. Three algorithms
were chosen for evaluation: BTE (i.e. Bucket Tree Elimination), an exact inference
algorithms based on the well known variable elimination mechanism, BBBT(4) (i.e.
Branch and Bound with mini-Bucket Tree heuristics) a complete Branch and Bound
search algorithm that uses dynamic heuristics generated by a Mini-Bucket Tree Elim-
ination algorithm to guide the search and 1JGP(7) (i.e. Iterative Join Graph Propaga-
tion) an iterative version of graph propagation algorithms. The latter two algorithms are
controlled by a parameter called i-bound. For each algorithm, REES displays the aver-
age values of the selected output parameters, columnwise. They are: average running
time (Time), average induced width of the problem (w*), average accuracy as percent
of exaclty solved instances (% exact) as well as the average number of backtracks for
the branch and bound search algorithm (# backtracks).

4 Conclusions

We have described the REES system as a powerful, easy-to-use, complete application
for working with deterministic and non-deterministic reasoning problems. Its plug-
in oriented arhitecture allows one to experiment with already existing inference algo-
rithms as well as to extend the currently existing collection of algorithms with new
ones. When developing a new algorithm it is very important to rapidly evaluate and
compare its performance against alternative approaches. We think that promoting and
contributing to the REES system would offer a common workbench and ease collabo-
ration among different research groups in the automated reasoning community.

Acknowledgements

This work was supported in part by the NSF grant 11S-0086529 and MURI ONR award
N00014-00-1-0617.

