Tree Approximation for Belief Updating

Robert Mateescu, Rina Dechter and Kalev Kask

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425
{mateescu,dechter,kkask} @ics.uci.edu

Abstract

The paper presents a parameterized approximation scheme
for probabilistic inference. The scheme, called Mini-
Clustering (MC), extends the partition-based approximation
offered by mini-bucket elimination, to tree decompositions.
The benefit of this extension is that all single-variable beliefs
are computed (approximately) at once, using a two-phase
message-passing process along the cluster tree. The result-
ing approximation scheme allows adjustable levels of accu-
racy and efficiency, in anytime style. Empirical evaluation
against competing algorithms such as iterative belief propa-
gation and Gibbs sampling demonstrates the potential of the
MC approximation scheme for several classes of problems.

Introduction and related wor k

Probabilistic reasoning using Belief networks, computing
the probability of one or more events given some evidence,
is known to be NP-hard (Cooper 1990). However most
commonly used exact algorithms for probabilistic inference
such as join-tree clustering (Lauritzen & Spiegelhalter 1988;
Jensen, Lauritzen, & Olesen 1990) or variable-elimination
(Dechter 1996; Zhang & Poole 1994), exploit the network
structure. These algorithms are time and space exponen-
tial in a graph parameter capturing the density of the net-
work called tree-width. Yet, for large belief networks, the
tree-width is often large, making exact inference impracti-
cal and therefore approximation methods must be pursued.
Although approximation within given error bounds is also
NP-hard (Dagum & Luby 1993; Roth 1996), some approxi-
mation strategies work well in practice.

The paper presents an anytime approximation scheme for
probabilistic inference called mini-clustering (MC), which
allows a flexible tradeoff between accuracy and efficiency.
MC extends the partition-based approximation offered by
mini-bucket elimination (Dechter & Rish 1997) to tree de-
compositions. The benefit of this extension is that all single-
variable beliefs are computed (approximately) at once, us-
ing a two-phase message-passing process along the cluster
tree. We present new empirical evaluation® against compet-
ing algorithms such as iterative belief propagation and Gibbs

Copyright (© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

INote that empirical evaluation of mini-bucket to belief updat-
ing was never carried out.

sampling. The experiments demonstrate the anytime behav-
ior of this methodology and its overall potential: On several
classes of problems (e.g. random noisy-or, grid networks
and CPCS networks) mini-clustering exhibited superior per-
formance.

Related work. Approximation algorithms proposed for be-
lief updating fall into two main categories: 1. Monte Carlo
sampling algorithms. Those algorithms sample the probabil-
ity distribution and compute the probability required based
on the obtained sample. Algorithms in this class are logic
sampling (Henrion 1986), Gibbs sampling (Pearl 1988),
likelihood weighting (Shachter & Peot 1989) and impor-
tance sampling (Cheng & Druzdzel 2000). 2. Algorithms
that weaken or ignore some of the network’s dependencies,
forcing the generated dependencies of the network to be
bounded. The mini-bucket scheme and the currently pre-
sented mini-cluster scheme fall into this second category.

Another algorithm in this class is Iterative belief propa-
gation (IBP), also called loopy belief propagation, that ap-
plies Pearl’s belief propagation algorithm for singly con-
nected networks to loopy-networks (Pearl 1988). It was
recently observed that this algorithm works extremely well
for coding applications (McEliece, MacKay, & Cheng 1997;
Weiss 1997; Welling & Teh 2001). A related algorithm that
removes weak dependencies in a join-tree clustering is given
in (Kjeeaerulff 1994) and another, for stochastic processes is
in (Boyen & Koller 1998).

Hybrid methods exploiting both structure and Monte
Carlo sampling were also introduced (Koller, Lerner, & An-
gelov 1998). Finally, an orthogonal collection of approx-
imation algorithms using variational methods (Jaakkola &
Jordan 1996) does not fall exactly in these two categories.

Preliminaries

Belief networks provide a formalism for reasoning about par-
tial beliefs under conditions of uncertainty. A belief network
is defined by a directed acyclic graph over nodes represent-
ing random variables of interest.

Belief networks. A belief network is a quadruple BN =<
X,D,G, P >?where X = {Xy,...,X,} is a set of ran-
dom variables, D = {Dq,...,D,} is the set of the corre-
sponding domains, G is a directed acyclic graph over X

2Also abbreviated < G, P > when X and D are clear.

and P = {p1,...,pn}, Where p; = P(X;|pa;) (pa; are
the parents of X; in G) denote conditional probability ta-
bles (CPTs). Given a function f, we denote by scope(f) the
set of arguments of function f. The moral graph of a di-
rected graph is the undirected graph obtained by connecting
the parent nodes of each variable and eliminating direction.
Belief updating. The belief updating problem defined over
a belief network (also referred to as probabilistic inference)
is the task of computing the posterior probability P(Y|e) of
query nodes Y C X given evidence e. We will focus on the
basic case when Y consists of a single variable X;. Namely,
computing Bel(X;) = P(X; = z|e), VX, € X, Vz € D,.

Tree-decomposition schemes

We will describe our algorithms relative to a unifying tree-
decomposition framework based on (Gottlob, Leone, &
Scarello 1999). It generalizes tree-decompositions to in-
clude join-trees, bucket-trees and other variants applicable
to both constraint processing and probabilistic inference.

DEFINITION 1 (tree-decomposition, cluster tree) Let
BN =< X,D,G,P > be a belief network. A tree-
decomposition for BN is a triple < T,x,v¥ >, where
T = (V,E) is atree, and x and ¢ are labeling functions
which associate with each vertex v € V two sets, x(v) C X
and ¢(v) C P satisfying:

1. For each function p; € P, there is exactly one vertex
v € V such that p; € ¥ (v), and scope(p;) C x(v).

2. For each variable X; € X, the set {v € V|X; € x(v)}
induces a connected subtree of T'. This is also called the
running intersection property.

We will often refer to a node and its functions as a cluster
and use the term tree-decomposition and cluster tree
interchangeably.

DEFINITION 2 (tree-width, separator, eliminator)

The tree-width (Arnborg 1985) of a tree-decomposition
< T,x,¥ > is mazycv|x(v)|. Given two adjacent vertices
u and v of a tree-decomposition, the separator of « and v is
defined as sep(u,v) = x(u) N x(v), and the eliminator of u
with respect to v is elim(u, v) = x(u) — x(v).

Join-trees and cluster-tree-elimination

The most used tree decomposition method is called join-tree
decomposition (Lauritzen & Spiegelhalter 1988). Such de-
compositions can be generated by embedding the network’s
moral graph, G, in a chordal graph, often using a triangu-
lation algorithm and using its maximal cliques as nodes in
the join-tree. Such a join-tree satisfies the properties of
tree-decomposition.

There are a few variants for processing join-trees for be-
lief updating (Jensen, Lauritzen, & Olesen 1990; Shafer
& Shenoy 1990). The variant which we use here,
called cluster-tree-elimination (CTE) is applicable to tree-
decompositions in general and is geared toward space sav-
ings. It is a message passing algorithm (either two-phase
message passing, or in asynchronous mode). Algorithm
CTE for belief updating denoted CTE-BU is given in Fig-
ure 1. The algorithm pays a special attention to the process-
ing of observed variables since the presence of evidence is a

Algorithm CTE for Belief-Updating (CTE-BU)

Input: A tree decomposition < T, x,v >, T = (V,E) for
BN =< X, D,G, P >. Evidence variables var(e).

Output: Anaugmented tree whose nodes are clusters containing
the original CPTs and the messages received from neighbors.
P(Xi,e), VX; € X.

Denote by H(, , the message from vertex u to v, ne, (u) the
neighbors of w in T excluding v.

cluster(u) = ¥(u) U {H @, |(v,u) € E}.

cluster,(u) = cluster(u) excluding message from v to u.

e Compute messages:
For every node u in T', once u has received messages from all
ney (1), compute message to node v:

1. processobserved variables
Assign relevant evidence to all p; € ¥(u)

2. Computethe combined function:

Ry = Z Hf-

elim(u,v) fEA

where A is the set of functions in cluster,(u) whose scope
intersects elim(u, v).

Add hy,) to H,) and add all the individual functions in
cluster,(u) —

Send Hy, . to node v.

e Compute P(X;,e):
For every X; € X let w be a vertex in T such that X; € x(u).
Compute P(X;,e) ="

X(u)—{Xi}(ercluster(u) f)

Figure 1. Algorithm Cluster-Tree-Elimination for Belief
Updating (CTE-BU)

central component in belief updating. When a cluster sends
a message to a neighbor, the algorithm operates on all the
functions in the cluster except the message from that particu-
lar neighbor. The message contains a single combined func-
tion and individual functions that do not share variables with
the relevant eliminator. All the non-individual functions are
combined in a product and summed over the eliminator.

Example 1 Figure 2 describes a belief network and a join-
tree decomposition for it. Figure 3 shows the trace of run-
ning CTE-BU. In this case no individual functions appear
between any of the clusters. To keep the figure simple, we
only show the combined functions A, . (each of them be-
ing in fact the only element of the set H, ., that represents
the corresponding message between clusters « and v).

Similar to (Dechter, Kask, & Larossa 2001) we can show
that:

THEOREM 1 (Complexity of CTE-BU) The time complex-
ity of CTE-BU is O(deg - (n + N) - d*"*') and the space
complexity is O(N - d*¢P), where deg is the maximum degree
of a node in the tree, n is the number of variables, N is the
number of nodes in the tree decomposition, d is the maxi-
mum domain size of a variable, w* is the tree-width and sep
is the maximum separator size.

e x@={AB,C}
¢ @ ={p(a), p(b|a), p(c|a,b)}

x(2)={B,C,D,F}
@(2)={p(d|b), p(f |c,d}

W27

Figure 2: a) A belief network; b) A join-tree decomposition;

X3 ={B,E,F}
¢ ={p(elb, f)}

e X4 ={E,F,G}
Y@ ={p(gle)}

(b)

Mz (b.0) =% p(a)Ch(bla)Cp(c|a,b)

My (b.0) = g p(d [b) Cp(f [c,d) s, (b,)
Mg (b, f) = Z p(d D) Cp(f |c,d) i, 5 (b,C)
hsp(®) =% plefb, f) 3 (e f)

Naa(e f)= Z p(elb, f) My, 5 (b,)
h(4‘3)(ev f)=pG=g.lef)

Figure 3: Execution of CTE-BU; no individual functions ap-
pear in this case.

Mini-Clustering for belief updating

The time, and especially the space complexity of CTE-BU
renders the algorithm infeasible for problems with high tree-
width. In this section we introduce the mini-clustering,
a partition-based anytime algorithm which computes ap-
proximate values or bounds on P(X;,e) for every vari-
able X; in the network. It is a natural extension of the
mini-bucket idea to tree-decompositions. Rather than
computing the mini-bucket approximation n times, one for
each variable as would be required by the mini-bucket
approach, the algorithm performs an equivalent computa-
tion with just two message passings along each arc of the
cluster tree. The idea is to partition each cluster into
mini-clusters having at most 4 variables, where i is an ac-
curacy parameter. Node « partitions its cluster into
p mini-clusters me(1),...,me(p). Instead of computing
h("‘«a”) = Zelim(u,’u) Hi:l HfEmC(k) fasin CTE-BU, we
can compute an upper bound by migrating the summa-
tion operator into each mini-cluster. However, this would
give [T4_, > etim(uw) L pemer) £ Which is an unnecessar-
ily large upper bound on %, in which each ermc(k) f
is bounded by its sum over elim(u, v). Instead, we rewrite
h('U«,U) = Zelim(u,v) (HfEmc(l) f) ’ (f:Q HfEmc(i) f)
Subsequently, instead of bounding HfEmc(i) f.(i>2) by
summation over the eliminator, we bound it by its maximum
over the eliminator, which yields (3_ ;... u.0) [T 1emeq)) -

[Tk o (maXerim(u,v) [femer) f)- Therefore, if we are in-
terested in an upper bound, we marginalize one mini-cluster
by summation and the others by maximization. Note that the

Procedure M C for Belief Updating (M C-BU(7))

2. Computethe combined mini-functions:
Make an (i)-size mini-clusters partitioning of cluster,(u),
{mc(1),...,me(p)};
héu,v) = Zelim(u,v) ermc(1) f
hl@,v) = MaXelim(u,v) Hf€mc(i) f i=2,...,p
add {h{, ,\|i =1,...,p} to H, .. Send H,) to v.
Compute upper boundson P(X;, e):
Forevery X; € X letu € V be a cluster such that X; € x(u).

Make (z) mini-clusters from cluster(u), {mc(1),...,me(p)};
Compute

Qvwr-x: Hyemeay 1 (IT5 =2 maxy - x, [eme 1)

Figure 4: Procedure Mini-Clustering for Belief Updating
(MC-BU)

summation in the first mini-cluster must be over all variables
in the eliminator, even if some of them might not appear in
the scope of functions in mc(1).

Consequently, the combined functions are approximated

via mini-clusters, as follows. Suppose u € V has re-
ceived messages from all its neighbors other than v (the mes-
sage from v is ignored even if received). The functions
in cluster,(u) that are to be combined are partitioned into
mini-clusters {mc(1), ..., mc(p)}, each one containing at
most 4 variables. One of the mini-clusters is processed by
summation and the others by maximization over the elimi-
nator, and the resulting combined functions as well as all the
individual functions are sent to v.
L ower-bounds and mean approximations. We can also
derive a lower-bound on beliefs by replacing the max oper-
ator with min operator (see above derivation for rationale).
This allows, in principle, computing both an upper bound
and a lower bound on the joint beliefs. Alternatively, if we
yield the idea of deriving a bound (and indeed the empirical
evaluation encourages that) we can replace max by a mean
operator (taking the sum and dividing by the number of el-
ements in the sum), deriving an approximation of the joint
belief.

Algorithm MC-BU for upper bounds can be obtained
from CTE-BU by replacing step 2 of the main loop and the
final part of computing the upper bounds on the joint belief
by the procedure given in Figure 4.

Partitioning strategies. In our current implementation, the
partitioning is done in an arbitrary brute-force manner and
the choice of the first mini-cluster for upper bound computa-
tion is random. Clearly, a more informed approach may im-
prove the accuracy significantly but this exploration is out-
side the scope of the current paper.

Example 2 Figure 5 shows the trace of running MC-BU(3)
on the problem in Figure 2. First, evidence G = g, is as-
signed in all CPTs. There are no individual functions to
be sent from cluster 1 to cluster 2. Cluster 1 contains only
3 variables, x(1) = {A, B,C}, therefore it is not parti-
tioned. The combined function h%m) (b,c) = >, pla) -

1| asc He, Mia®oi=3 p@rpbla)thclab)

a

&

ey (0) = Z p(d |b) g, o, (b,)
hGa (©) = max p(f |c,d)

BC
(2,1

BCDF

5]

iz (D) = Z p(d | b) thy, , (b, €)

@3 1 ()= max p(f |c,d)

BF

H s (b, f) = Z pelb,),z (e f)

ikl

- Hsa Moa(@ =3 plelb.), b) ey (f)

Hz N f)=pG=g.lef)
4| EFG

i

Figure 5: Execution of MC-BU fori = 3

p(bla) - p(cla,b) is computed and the message H (i) =
{h{1.9)(b,c)} is sent to node 2. Now, node 2 can send its
message to node 3. Again, there are no individual functions.
Cluster 2 contains 4 variables, x(2) = {B,C, D, F},and a
partitioning is necessary: MC-BU(3) can choose mc(1) =
{p(db), h1 2)(b,¢)} and me(2) = {p(f|e,d)}. The com-
bined functions h(, 5, (b) = 3=, ;p(d[b) - h(12)(b,) and
hf.z’g) (f) = max. q p(f|c, d) are computed and the message
Ha,;3) = {h{y4)(b), i, 5 (f)} is sent to node 3. The algo-
rithm continues until every node has received messages from
all its neighbors. An upper bound on p(a, G = g.) can now
be computed by choosing cluster 1, which contains variable
A. It doesn’t need partitioning, so the algorithm just com-
putes >, . p(a)-p(bla)-p(cla, b) -h%m) (b) 'h?m) (¢). Notice
that unlike CTE-BU which processes 4 variables in cluster 2,
MC-BU(3) never processes more than 3 variables at a time.

Properties of Mini-Clustering

THEOREM 2 Algorithm MC-BU(i) with max (respectively
min) computes an upper (respectively lower) bound on the
joint probability P(X,e) of each variable and each of its
values.

A similar mini-clustering scheme for combinatorial opti-
mization was developed in (Dechter, Kask, & Larossa 2001)
having similar performance properties as MC-BU.

THEOREM 3 (Complexity of MC-BU(i)) (Dechter, Kask,
& Larossa 2001) The time and space complexity of MC-
BU(i) is O(n - hw* - d*) where n is the number of vari-
ables, d is the maximum domain size of a variable and
hw* = maz,|{f|scope(f) N x(u) # ¢}|, which bounds
the number of functions that may travel to a neighboring
cluster via message-passing.

Accuracy. For a given 4, the accuracy of MC-BU(i) can
be shown to be not worse than that of executing the mini-
bucket algorithm MB(i) n times, once for each variable (an
algorithm that we call nMB(7)). Given a specific execution
of MC-BU(%), we can show that for every variable X, there
exists an ordering of the variables and a corresponding par-
titioning such that MB(i) computes the same approximation

value for P(X;, e) as does M'C — BU (i). In empirical anal-
ysis (Kask 2001) it is shown that MC-BU has an up to linear
speed-up over nMB(3).

Normalization

The MC-BU algorithm using maz operator computes an
upper bound P(X;,e) on the joint probability P(X;,e).
However, deriving a bound on the conditional probability
P(X;le) is not easy when the exact value of P(e) is not
available. If we just try to divide (multiply) P(X;,e) by
a constant, the result is not necessarily an upper bound on
P(X;|e). In principle, if we can derive a lower bound P(e)
on P(e), then we can compute P(X;,e)/P(e) as an up-
per bound on P(X;|le). However, due to compound er-
ror, it is likely to be ineffective. In our empirical evalua-
tion we experimented with normalizing the upper bound as

P(Xi,e)/> x, P(Xi,e) over the values of X;. The result

is not necessarily an upper bound on P(X;|e). Similarly,
we can also normalize the values when using mean or min
operators. It is easy to show that normalization with the
mean operator is identical to normalization of MC-BU out-
put when applying the summation operator in all the mini-
clusters.

Empirical evaluation

We tested the performance of our scheme on random noisy-
or networks, random coding networks, general random net-
works, grid networks, and three benchmark CPCS files with
54, 360 and 422 variables respectively (these are belief net-
works for medicine, derived from the Computer based Pa-
tient Case Simulation system, known to be hard for belief
updating). On each type of network we ran Iterative Belief
Propagation (IBP) - set to run at most 30 iterations, Gibbs
Sampling (GS) and MC-BU(7), with 4 from 2 to the tree-
width w* to capture the anytime behavior of MC-BU.

We immediately observed that the quality of MC-BU in
providing upper or lower bounds on the joint P(X;, e) was
ineffective. Although the upper bound decreases as the ac-
curacy parameter ¢ increases, it still is in most cases greater
than 1. Therefore, following the ideas explained in the pre-
vious section we report the results with normalizing the up-
per bounds (called max) and normalizing the mean (called
mean). We notice that MC-BU using the mean operator is
doing consistently better.

For noisy-or networks, general random networks, grid
networks and for the CPCS networks we computed the ex-
act solution and used three different measures of accuracy:
1. Normalized Hamming Distance (NHD) - We picked the
most likely value for each variable for the approximate and
for the exact, took the ratio between the number of disagree-
ments and the total number of variables, and averaged over
the number of problems that we ran for each class. 2. Abso-
lute Error (Abs. Error) - is the absolute value of the differ-
ence between the approximate and the exact, averaged over
all values (for each variable), all variables and all problems.
3. Relative Error (Rel. Error) - is the absolute value of the
difference between the approximate and the exact, divided
by the exact, averaged over all values (for each variable),

Random Bayesian N=50 K=2 P=2 C=48

0.20

0.18 -
(Ve Y Y — VYV Y — VY
0.16 -

E S
0.14 D e e e ek A SEs St it L St S e G 4
0.12 A

0.10 ¢

Avg abs error

0.08 -

0.06 - ——— #ev=0
° #ev=10

0.04 o ——-¥——— #ev=20
— #ev=30
0.02 A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of iterations

Figure 6: Convergence of IBP

[N=50, P=3, 25 instances |

10 NHD Abs. Error Rel. Error Time
le] 20

30[max[mean| max [mean | max | mean | max [mean
0 1.3E-04 7.9e-01 0.242
IBP 0| 3.6E-04] 2.2E+00 0.184
0 6.8E-04 4.2E+00)| 0.121
0 | 0 [1.3E-03[9.6E-04(8.2E+00[5.8E+00[0.107]0.108|
MC-BU(2)| O 0 [5.3E-04(4.0E-04|3.1E+00|2.4E+00|0.077(0.077
0 | O |[2.3E-04|1.9E-04|1.4E+00|1.2E+00(0.064|0.064
0 | 0 [1.0E-038.3E-04[6.4E+00[5.1E+000.133]0.133]
MC-BU(5)| 0 0 |4.6E-04|4.1E-04(2.7E+00|2.4E+00|0.104|0.105
0 | 0 |2.0E-04|1.9E-04|1.2E+00|1.2E+00{0.098(0.095)
0 | 0 [6.6E-04[5.7E-04|4.0E+00|3.5E+00[0.498[0.509
MC-BU(8)| 0 | O |[1.8E-04|1.8E-04|1.1E+00|1.0E+00|0.394|0.406
0 | 0 |[3.4E-053.4E-05|2.1E-01|2.1E-01(0.300|0.308
0 | 0 [2.6E-04|2.4E-04[1.6E+00|1.5E+00(2.339(2.378]
MC-BU(11)] 0 | O |3.8E-05|3.8E-05|2.3E-01|2.3E-01|1.421(1.439
0 | 0 |6.4E-07|6.4E-07|4.0E-03|4.0E-03(0.613|0.624
0 0 [4.2E-05(4.1E-05|2.5E-01|2.4E-01|7.805(7.875]
MC-BU(14)| 0 | O 0 0 0 0 [2.075/|2.093
0| 0 0 0 0 0 [0.630/0.638

Table 1: Performance on noisy-or networks, w*=16

all variables and all problems. For coding networks, we re-
port only one measure, Bit Error Rate (BER). In terms of
the measures defined above, BER is the normalized Ham-
ming distance between the approximate (computed by an al-
gorithm) and the actual input (which in the case of coding
networks may be different from the solution given by ex-
act algorithms), so we denote them differently to make this
semantic distinction. We also show the time taken by each
algorithm.

In Figure 6 we show that IBP converges after about 5 it-
erations. So, while in our experiments we report its time
for 30 iterations, its time is even better when sophisticated
termination is used. These results are typical of all runs.

The random noisy-or networks and the random networks
were generated using parameters (N,K,C,P), where N is the
number of variables (a square integer for grid networks), K
is their domain size (we used only K=2), C is the number
of conditional probability matrices and P is the number of
parents in each conditional probability matrix. The grid net-
works have the structure of a square, with edges directed
to form a diagonal flow (all parallel edges have the same
direction). They were generated by specifying N (a square
integer) and K (we used K=2). We also varied the number of
evidence nodes, denoted by |e| in the tables. The parameter

[N=50, P=2, 50 instances |

0] NHD Abs. Error Rel. Error Time
|e| 10]
20] max [mean | max | mean | max [mean | max [mean
0.01840 0.00696 0.01505 0.100
I1BP| 0.19550 0.09022 0.34608 0.080
0.27467 0.13588 313327 0.062
0.50400 0.10715] 0.26621 13.023
Gl 0.51400 0.15216 0.57262 12,978
051267 0.18066 4.71805 13.321

0.11400(0.08080|0.03598|0.025640.07950(0.05628|0.055|0.055
MC-BU(2)|0.10600]0.08800(0.04897|0.03957(0.12919|0.10579|0.047(0.048
0.08667|0.07333|0.04443|0.03639|0.13096|0.10694(0.041|0.042
0.10120(0.06480|0.033920.02242|0.07493(0.04937|0.071{0.072
MC-BU(5)|0.06950|0.05850(0.03254|0.02723(0.08613|0.07313|0.063(0.065
0.03933(0.03400|0.02022|0.01831|0.05533|0.04984|0.059|0.060
0.05080(0.02680|0.01872(0.01030|0.04103(0.02262|0.216|0.221
MC-BU(8)|0.01550]0.01450(0.00743|0.005870.01945|0.01547|0.178(0.180
0.00600(0.00400|0.00228|0.00200|0.00597|0.00542|0.129|0.134

Table 2: Performance on random networks, w*=10

[c=22]c=.26]c=.32]0 =.40 [0 = .51 |

BER|[max Jmean| max Jmean| max Jmean| max mean| max [mean| Time
N=100, P=3, 50 instances, w*=7

1BP|0.000{0.000{0.000{0.000]0.002[0.002|0.022]0.022|0.088]|0.088| 0.00
(GS|0.483[0.483]0.483]0.483[0.483]0.483]0.483]0.483[0.483]0.483[31.36
MC-BU(2)[0.002{0.002]0.004(0.004{0.024/0.024{0.068|0.068(0.132|0.131] 0.08
MC-BU(4)[0.001{0.001]0.002(0.002{0.018/0.018{0.046|0.045(0.110{0.110] 0.08
MC-BU(6)[0.000{0.000]0.000{0.000{0.004/0.004{0.038|0.038|0.106|0.106] 0.12
MC-BU(8)[0.000{0.000]0.000{0.000{0.002(0.002{0.023]|0.023(0.091|0.091] 0.19
N=100, P=4, 50 instances, w*=11
1BP|0.000{0.000(0.000{0.000]0.002[0.002|0.013]0.013|0.075]|0.075| 0.00
GS|0.506(0.506]0.506(0.506|0.506(0.506{0.506]0.506{0.506|0.506|39.85
MC-BU(2)[0.006[0.006]0.015[0.015[0.043]0.043]0.093]0.094[0.157{0.157] 0.19
MC-BU(4)[0.006[0.006]0.017(0.017{0.049/0.049{0.104|0.102(0.158|0.158| 0.19
MC-BU(6)[0.005{0.005]0.011(0.011{0.035/0.034{0.071]0.074(0.151|0.150] 0.29
MC-BU(8)[0.002[0.002]|0.004|0.004{0.022|0.022{0.059]0.059(0.121|0.122] 0.71
MC-BU(10)(0.001/0.001|0.001]0.001{0.008]|0.008/0.033[0.032[0.101(0.102| 1.87

Table 3: BER for coding networks

values are reported in each table.

Comment: Note that since our evaluation measures are
based on comparing against exact figures, we had to restrict
the instances to be relatively small or sparse enough to be
managed by exact algorithms.

For all the problems, Gibbs sampling performed consistently
poorly so we only include part of the results in the following
tables.

Random noisy-or networksresultsare summarized in Ta-
ble 1. For NHD, both IBP and MC-BU gave perfect re-
sults. For the other measures, we noticed that IBP is more
accurate for no evidence by about an order of magnitude.
However, as evidence is added, IBP’s accuracy decreases,
while MC-BU’s increases and they give similar results. We
also notice that MC-BU gets better as the accuracy param-
eter ¢ increases, which shows its anytime behavior. We
also observed a similar pattern of behavior when experi-
menting with smaller noisy-or networks, generated with P=2
(w*=10).

General random networks results are summarized in Ta-
ble 2. They are in general similar to those for random noisy-
or networks. NHD is non-zero in this case. Again, IBP has
the best result only for few evidence variables. It is remark-
able how quickly MC-BU surpasses the performance of IBP
as evidence is added. We also experimented with larger net-
works generated with P=3 (w*=16) and observed a similar
behavior.

[N=225, 10 instances, mean _operator |

|e] =0, 10, 20, 30| NHD |Abs. Error|Rel. Error| Time
0.0094] 0.0037 | 0.0080 |0.071
IBP|0.0665| 0.0665 | 0.0761 |0.070
0.1205| 0.0463 | 0.1894 |0.068
0.1462] 0.0632 | 0.1976 | 0.062
05178] 0.1096 | 0.2688 [9.339
GS|0.5047| 0.5047 | 0.3200 |9.392
0.4849| 0.1232 | 0.4009 |9.524
0.4692] 0.1335 | 04156 |9.220
0.1256] 0.0474 | 0.1071 [0.049
MC-BU(2)|0.1312| 0.1312 | 0.1070 |0.041
0.1371| 0.0523 | 0.1205 | 0.042
0.1287) 0.0512 | 0.1201 | 0.053
0.1050] 0.0356 | 0.0775 [0.217
MC-BU(6)|0.0944| 0.0944 | 0.0720 | 0.064
0.0844| 0.0313 | 0.0701 | 0.059
0.0759] 0.0286 | 0.0652 | 0.120
0.0406] 0.0146 | 0.0313 |0.500
MC-BU(10)|0.0358| 0.0358 | 0.0288 |0.368
0.0337| 0.0122 | 0.0272 | 0.484
0.0256| 0.0116 | 0.0265 | 0.468
0.0233] 0.0081 | 0.0173 | 2315
MC-BU(14)|0.0209| 0.0209 | 0.0152 |2.342
0.0146| 0.0055 | 0.0126 |2.225
0.0118] 0.0046 | 0.0105 | 2.350
0.0089] 0.0031 | 0.0065 [10.990
MC-BU(17)|0.0116| 0.0116 | 0.0069 |10.105
0.0063| 0.0022 | 0.0048 |9.381
0.0036| 0.0017 | 0.0038 | 9.573

Table 4: Performance on 15x15 grid, w*=22

[N=54, 50 instances |

0] NHD Abs. Error Rel. Error Time
|e| 10]
20] max [mean | max | mean | max [mean | max [mean
0.01852 0.00032 0.00064 2.450
1BP| 0.15727 0.03307 0.07349 2191
0.20765 0.05934/ 0.14202 1.561
0.49444] 0.07797 0.18034 17.247
G| 051409 0.09002 0.21298 17.208
0.48706 0.10608 0.26853 17.335

0.16667(0.07407|0.02722|0.01221|0.05648(0.02520|0.154{0.153
MC-BU(2)|0.11636|0.07636(0.02623|0.01843(0.05581|0.03943|0.0960.095
0.10529(0.07941|0.02876|0.02196|0.06357|0.04878|0.067|0.067
0.18519(0.09259|0.02488(0.01183|0.05128(0.02454|0.157{0.155
MC-BU(5)|0.10727]0.07682(0.02464|0.01703(0.05239|0.03628(0.112(0.112
0.08059(0.05941|0.02174/0.01705]0.04790|0.03778|0.090|0.087
0.12963(0.07407|0.01487|0.00619|0.03047(0.01273|0.438|0.446
MC-BU(8)|0.06591]0.05000(0.01590|0.01040(0.03394|0.02227|0.369(0.370
0.03235(0.02588|0.00977|0.00770]0.02165|0.01707|0.292|0.294
0.11111{0.07407{0.01133|0.00688|0.02369|0.01434(2.038|2.032
MC-BU(11)|0.02818|0.01500|0.00600|0.00398|0.01295|0.00869(1.567|1.571
0.00353|0.00353|0.00124)0.00101|0.00285|0.00236|0.867|0.869

Table 5: Performance on cpcsb4.erg, w*=15

Random coding networks results are given in Tables 3.
The instances fall within the class of linear block codes, (o
is the channel noise level). It is known that IBP is very ac-
curate for this class. Indeed, these are the only problems
that we experimented with where IBP outperformed MC-BU
throughout. The anytime behavior of MC-BU can again be
seen in the variation of numbers in each column.

Grid networksresultsare given in Table 4. We only report
results with mean operator for a 15x15 grid for which the
induced width is w*=22. We notice that IBP is more accu-
rate for no evidence and MC is better as more evidence is
added. The same behavior was consistently manifested for
smaller grid networks that we experimented with (from 7x7
up to 14x14).

CPCS networks results. We also tested on three CPCS
benchmark files. The results are given in Tables 5, 6 and
7. It is interesting to notice that the MC scheme scales up

[N=360, 5 instances, mean_operator |

|e| =0, 20, 40| NHD |Abs. Error|Rel. Error|Time
0.0000] 0.0027 | 0.0054 | 82
IBP[0.0112] 0.0256 | 3.4427 | 76
0.0363] 0.0629 |736.1080| 60
0.0056] 0.0125 | 0.0861 | 16
MC-BU(8)|0.0041| 0.0079 | 0.0785 | 14
0.0113] 0.0109 | 02997 | 9
0.0000] 0.0072 | 0.0562 | 71
MC-BU(12)|0.0006| 0.0052 | 0.0525 | 71
0.0063] 0.0067 | 0.0796 | 60
0.0000] 0.0015 | 0.0123 | 775
MC-BU(16)|0.0000| 0.0023 | 0.0155 | 784
0.0000] 0.0009 | 0.0080 |548

Table 6: Performance on cpcs360.erg, w*=20

[N=422, 1instance, mean operator |

|e] =0, 20, 40| NHD |Abs. Error|Rel. Error|Time
0.0024] 0.0062 | 0.0150 [2838
IBP|0.0721 0.0562 | 7.5626 (2367
0.0654| 0.0744 | 37.5096 |2150
0.0687] 0.0455 | 1.4341 | 161
MC-BU(3)|0.0373| 0.0379 | 0.9792 | 85
0.0366| 0.0233 | 2.8384 | 48
0.0545] 0.0354 | 0.1531 | 146
MC-BU(7)|0.0249 0.0253 | 0.3112 | 77
0.0262| 0.0164 | 05781 | 45
0.0166] 0.0175 | 0.0738 | 152
MC-BU(11)|0.0448 0.0352 | 0.6113 | 95
0.0340| 0.0237 | 0.6978 | 63
0.0024] 0.0039 | 0.0145 |526
MC-BU(15)|0.0398| 0.0278 | 0.5338 | 564
0.0183] 0.0113 | 0.5248 | 547

Table 7: Performance on cpcs422.erg, w*=23

even to fairly large networks, like the real life example of
CPCS422 (induced width 23). IBP is again slightly better
for no evidence, but is quickly surpassed by MC when evi-
dence is added.

Discussion and conclusion

The paper presents an approximation scheme for probabilis-
tic inference, the single most important task over belief net-
works. The scheme, called mini-clustering, is governed by a
controlling parameter that allows adjustable levels of accu-
racy and efficiency in an anytime style.

We presented empirical evaluation of mini-cluster ap-
proximation on several classes of networks, comparing
its anytime performance with competing algorithms such
as Gibbs Sampling and Iterative Belief Propagation, over
benchmarks of noisy-or random networks, general random
networks, grid networks, coding networks and CPCS type
networks. Our results show that, as expected, IBP is supe-
rior to all other approximations for coding networks. How-
ever, for random noisy-or, general random networks, grid
networks and the CPCS networks, in the presence of ev-
idence, the mini-clustering scheme is often superior even
in its weakest form. Gibbs sampling was particularly bad
and we believe that enhanced variants of Monte Carlo ap-
proach, such as likelihood weighting and importance sam-
pling, should be compared with (Cheng & Druzdzel 2000).
The empirical results are particularly encouraging as we use
an unoptimized scheme that exploits a universal principle
applicable to many reasoning tasks.

The contribution of the current paper beyond recent works

in this area (Dechter & Rish 1997; Dechter, Kask, & Larossa
2001) is in: 1. Extending the partition-based approxima-
tion for belief updating from mini-buckets to general tree-
decompositions, thus allowing the computation of the up-
dated beliefs for all the variables at once. This extension
is similar to the one proposed in (Dechter, Kask, & Larossa
2001) but replaces optimization with probabilistic inference.
2. Providing for the first time empirical evaluation demon-
strating the effectiveness of the partition-based idea for be-
lief updating.

There are many potential ways for improving the MC
scheme. Among the most important, the partitioning step
can be further elaborated. In our present work we used only
a brute-force approach for partitioning. It remains to be seen
if more refined schemes can make the upper/lower bounds
on the joint belief tighter, and if normalizing such results
gives a better estimate of exact belief.

One extension we recently pursued (Dechter, Kask, &
Mateescu 2002) is an iterative version of MC called Iterative
Join-Graph Propagation (IJGP), which is both anytime and
iterative and belongs to the class of generalized belief prop-
agation methods (Yedidia, Freeman, & Weiss 2001). Rather
than assuming an underlying join-tree, IJGP works on a join-
graph that may contain loops. 1JGP is related to MC in a
similar way as IBP is related to BP (Pearl’s belief propaga-
tion). Experimental work shows that in most cases iterating
improves the quality of the MC approximation even further,
especially for low i-bounds.

Acknowledgments

This work was supported in part by NSF grant 11S-0086529
and by MURI ONR award N00014-00-1-0617.

References

Arnborg, S. A. 1985. Efficient algorithms for combinato-
rial problems on graphs with bounded decomposability - a
survey. BIT 25:2-23.

Boyen, X., and Koller, D. 1998. Tractable inference in
complex stochastic processes. In Artificial Intelligence
(UAI°98), 33-42.

Cheng, J., and Druzdzel, M. 2000. AIS-BN: An adaptive
importance sampling algorithm for evidential reasoning in
large bayesian networks. Journal of Artificial Intelligence
Research 13:155-188.

Cooper, G. 1990. The computational complexity of proba-
bistic inferences. Artificial Intelligence 393-405.

Dagum, P., and Luby, M. 1993. Approximating proba-
bilistic inference in bayesian belief networks is np-hard. In
National Conference on Artificial Intelligence (AAAI-93).
Dechter, R., and Rish, I. 1997. A scheme for approx-
imating probabilistic inference. In Artificial Intelligence
(UAI’97), 132-141.

Dechter, R.; Kask, K.; and Larossa, J. 2001. A general
scheme for multiple lower bound computation in constraint
optimization. In Constraint Programming.

Dechter, R.; Kask, K.; and Mateescu, R. 2002. Iterative
join-graph propagation. Technical report, UCI.

Dechter, R. 1996. Bucket elimination: A unifying frame-
work for probabilistic inference algorithms. In Uncertainty
in Artificial Intelligence (UAI’96), 211-219.

Gottlob, G.; Leone, N.; and Scarello, F. 1999. A compari-
son of structural CSP decomposition methods. 1JCAI-99.

Henrion, M. 1986. Propagating uncertainty by logic sam-
pling. In Technical report, Department of Engineering and
Public Policy, Carnegie Melon University.

Jaakkola, T. S., and Jordan, M. I. 1996. Recursive algo-
rithms for approximating probabilities in graphical models.
Advances in Neural Information Processing Systems 9.

Jensen, F.; Lauritzen, S.; and Olesen, K. 1990. Bayesian
updating in causal probabilistic networks by local compu-
tation. Computational Statistics Quarterly 4:269-282.

Kask, K. 2001. Approximation algorithms for graphical
models. Technical report, Ph.D. thesis, Information and
Computer Science, University of California, Irvine.

Kjeeaerulff, U. 1994. Reduction of computational complex-
ity in bayesian networks through removal of weak depen-
dencies. In Uncertainty in Artificial Intelligence (UAI’94).

Koller, D.; Lerner, U.; and Angelov, D. 1998. A general
algorithm for approximate inference and its applciation to
hybrid bayes nets. In Uncertainty in Artificial Intelligence
(UAI°98), 324-333.

Lauritzen, S., and Spiegelhalter, D. 1988. Local compu-
tation with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Statis-
tical Society, Series B 50(2):157-224.

McEliece, R.; MacKay, D.; and Cheng, J.-F. 1997. Turbo
decoding as an instance of pearl’s belief propagation algo-
rithm. IEEE J. Selected Areas in Communication.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann.

Roth, D. 1996. On the hardness of approximate reasoning.
Al 82(1-2):273-302.

Shachter, R. D., and Peot, M. A. 1989. Simulation ap-
proaches to general probabilistic inference on belief net-
works. In Uncertainty in Artificial Intelligene (UAI’89).

Shafer, G. R., and Shenoy, P. 1990. Probability propa-
gation. Anals of Mathematics and Artificial Intelligence
2:327-352.

Weiss, Y. 1997. Belief propagation and revision in net-
works with loops. In NIPS.

Welling, M., and Teh, Y. 2001. Belief optimization for
binary networks: A stable alternative to loopy belief prop-
agation. In UAI’01, 554-561.

Yedidia, J. S.; Freeman, W.; and Weiss, Y. 2001. General-
ized belief propagation. In Advances in Neural Information
Processing Systems 13.

Zhang, N., and Poole, D. 1994. A simple algorithm for
bayesian network computations. In Proc of the tenth Cana-
dian Conference on Artificial Intelligence, 171-178.

