
Generating Random Solutions for Constraint Satisfaction Problems

Rina Dechter Kalev Kask
University of California, Irvine�

dechter, kkask � @ics.uci.edu

Eyal Bin Roy Emek
IBM Research Laboratory in Haifa�
bin, emek � @il.ibm.com

Abstract

The paper presents a method for generating solutions of a
constraint satisfaction problem (CSP) uniformly at random.
The main idea is to transform the constraint network into
a belief network that expresses a uniform random distribu-
tion over its set of solutions and then use known sampling
algorithms over belief networks. The motivation for this
tasks comes from hardware verification. Random test pro-
gram generation for hardware verification can be modeled
and performed through CSP techniques, and is an application
in which uniform random solution sampling is required.

Introduction and Motivation
The paper presents a method for generating uniformly dis-
tributed random solutions for a CSP. The method we propose
is based on a transformation of the constraint network into
a belief network that expresses a uniform random distribu-
tion over the CSP’s set of solutions. We then can use known
sampling methods for belief networks to generate the de-
sired solution samples. The basic algorithm we propose uses
a variable elimination approach and its complexity is time
and space exponential in the induced-width of the constraint
problem. Because of this complexity the approach will not
be practical in most real life situations and we therefore pro-
pose a general partition-based scheme for approximating the
algorithm.

The random solution generation problem is motivated by
the task of test program generation in the field of functional
verification. The main vehicle for the verification of large
and complex hardware designs is simulation of a large num-
ber of random test programs (Bergeron 2000). The gener-
ation of such programs therefore plays a central role in the
field of functional verification.

The input for a test program generator is a specification
of a test template. For example, tests that exercise the data
cache of the processor and that are formed by a series of
double-word store and load instructions. The genera-
tor generates a large number of distinct well-distributed test
program instances, that comply with the user’s specification.
In addition, generated test programs must meet two inherent
classes of requirements: (a) Tests must be valid. That is,

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

their behavior should be well defined by the specification of
the verified system; (b) Test programs should also be of high
quality, in the sense that they focus on potential bugs.

The number of potential locations of bugs in a system
and the possible scenarios that can lead to their discovery
is huge: In a typical architecture, there are from �����	�
�
�
 to
�����

��
�
�
 programs of 100 instructions. It is impossible to ex-
actly specify all the test programs that we would like to use
out of the above combinations, and even harder to generate
them. This means that users of test generators intention-
ally under-specify the requirements of the tests they gener-
ate, and expect the generators to fill in the gaps between the
specification and the required tests. In other words, a test
generator is required to explore the unspecified space and to
help find the bugs for which the user is not directly look-
ing (Hartman, Ur, & Ziv 1999).

There are two ways to explore this unspecified space,
systematically or randomly. A systematic approach is im-
possible when the explored space is large and not well-
understood. Therefore, the only practical approach is to gen-
erate pseudo-random tests. That is, tests that satisfy user
requirements and at the same time uniformly sample the de-
rived test space (Fournier, Arbetman, & Levinger 1999).

The validity, quality, and test specification require-
ments described above are naturally modeled through con-
straints (Bin et al. ; Chandra & Iyengar 1992). As an ex-
ample of a validity constraint, consider the case of a trans-
lation table: �������
����������� �"! , where � � stands for the
effective address and ��� stands for the real (physical) ad-
dress. For CSP to drive test program generation, the program
should be modeled as constraint networks. The requirement
to produce a large number of random, well-distributed tests
is viewed, under the CSP modeling scheme, as a require-
ment to produce a large number of random solutions to a
CSP. This stands in contrast to the traditional requirement of
reaching a single solution, all solutions, or a ’best’ solution
(Dechter 1992; Kumar 1992).
Related work. The problem of generating random solutions
for a set of constraints, in the context of hardware verifica-
tion, is tackled in (Yuan et al. 1999). The Authors deal with
Boolean variables and constraints over them, but do not use
the CSP framework. Instead, they construct a single BDD
that represents the entire search space, and develop a sam-
pling method which uses the structure of the BDD. A BDD

based constraint satisfaction engine imposes a restriction on
the size of the problems that can be solved, since the BDD
approach often requires exponential time and space. No ap-
proximation alternative was presented. As far as we know,
in the CSP literature the task of random solution generation
was not addressed.

Preliminaries
DEFINITION 1 (Constraint Networks) A Constraint Net-
work (CN) is defined by a triplet � ��������� ! where

�
is a

set of variables
� � � �

�
�	� � � �
��� � , associated with a set

of discrete-valued domains,
� � � �

�
�	� � � ���
� � , and a set

of constraints
� � � �

�
�	� � � ����� � . Each constraint

���
is

a pair ��� �
� � � ! , where � � is a relation � ���������
where����� ��������! �����#" , defined on a subset of variables � ���$�

called the scope of
���

. The relation denotes all compati-
ble tuples of

�����
allowed by the constraint. The constraint

graph of a constraint network, has a node for each variable,
and an arc between two nodes iff the corresponding vari-
ables participate in the same constraint. A solution is an as-
signment of values to variables % � �&% � �	� � � � % � ! , % �('$�
� ,
such that no constraint is violated.

EXAMPLE 1 Consider a graph coloring problem that has
four variables (A, B, C, D), where the domains of � and

�
are

� � ��)*��+ � and the domains of , and
�

are
� � ��) � . The

constraint are not-equal constraints between adjacent vari-
ables. The constraint graph is given in Figure 4 (top, left).

Belief networks provide a formalism for reasoning about
partial beliefs under conditions of uncertainty.

DEFINITION 2 (belief network) Let
� � � �

�
�	� � � �
��� �

be a set of random variables over multi-valued domains,�
�
�	� � � ���
�

, respectively. A belief network is a pair �.- ��/ !
where - � � ��� � ! is a directed acyclic graph over the vari-
ables, and 0 � � /1� � , and

/��
denote Conditional Probabil-

ity Tables (CPTs)
/�� � � / � ����2 3 � � !	� , where

3 � � is the set
of parents nodes pointing to

�4�
in the graph. The belief net-

work represents a probability distribution
/ �&% � �	� � � � � % � !"�5 �� 6

�
/ �&% ��2 %*798 � ! where an assignment (

�
� �:% � �	� � � �
��� �% �) is abbreviated to % � �&% � �	� � � � % � ! and where % � denotes

the restriction of a tuple % over a subset of variables � . The
moral graph of a directed graph is the undirected graph ob-
tained by connecting the parent nodes of each variable and
eliminating direction.

DEFINITION 3 (Induced-width) An ordered graph is a pair
�.- ��; ! where - is an undirected graph and

; � � � �	� � � �
��� is
an ordering of the nodes. The width of a node in an ordered
graph is the number of the node’s neighbors that precede it
in the ordering. The width of an ordering

;
, denoted < � ; ! , is

the maximum width over all nodes. The induced width of an
ordered graph, <>= � ; ! , is the width of the induced ordered
graph obtained as follows: nodes are processed from last
to first; when node

�
is processed, all its preceding neigh-

bors are connected. The induced width of a graph, <@? , is
the minimal induced width over all its orderings (Arnborg
1985).

D

G

A

B C

F

Season

Rain
Automated

Sprinkler

Wet

Manuel
Watering

Slippery

A

B

D

F

C

G

F

A

B

C

G

D

(a) (b) (c)

Figure 1: (a) Belief network (b) its moral graph (c) Induced width

EXAMPLE 2 The network in Figure 1a expresses proba-
bilistic relationship between 6 variables � � , ���A������B�� - .
The moral graph is in Figure 1b and the induced-width
along

; � ��� � , ���A������B�� - ! is 2, as shown in Figure 1c.

The Random Solution Task
Given a constraint network C � � ��������� ! we define the
uniform probability distribution

/1D �EC ! over
�

such that for
every assignment F% � �&% � �	� � � � % � ! to all the variables,GIHKJMLN	O 6QPSRT U�VXW T if

LN is a solution

 otherwise

Where
2 �9Y�Z 2 is the number of solutions to C . We consider in

this paper the task of generating random solutions to a CSP,
from a uniform distribution over the solution space. A naive
approach to this task is to randomly generate solutions from
the problem’s search space. Namely, given a variable or-
dering, starting with the first variable

�
� , we can randomly

assign it a value from its domain (choosing each value with
equal probability). For the second variable,

��[
we compute

values that are consistent with the current assignment to
�
�

and choose one of these values with equal probability, and
so forth.

This approach is of course incorrect. Consider a con-
straint network over Boolean variables where the constraints
are a set of implications: \ � � �^]_, � �^] �A� �^]��� �`] � � . When applying the naive approach to this for-
mula along the variable ordering � � , ���A����� � , we select
the value � � � or � � � with equal probabilities of 1/2. If
the value � � � is chosen, all the other variables must be set
to � , as there is a single solution consistent with � � � . On
the other hand, if � � � is generated, any assignment to the
rest of the variables is a solution. Consequently, the naive
approach generates solutions from the distribution:G1J 8 �ba �Xc �Xd���e O 6QP �
f

[
(a=1,b=1,c=1,d=1,e=1)

�
f �Mg otherwise

rather than from the uniform distribution
/�D �&\ ! . From the

example it is clear that the naive method’s accuracy will not
improve by making the problem backtrack-free.

On the other extreme lies the brute-force approach.
Namely, generate (by some means) all the solutions and sub-
sequently uniformly at random select one. The brute-force
approach is correct but impractical when the number of so-
lutions is very large. We next present a range of schemes
that lie between the naive approach and an exact approach,
which permits trading accuracy for efficiency in anytime
fashion.

Algorithm elim-count
Input: A constraint network

���������
	��
���
, ordering � .

Output: Augmented output buckets including the
intermediate count functions. The number of solutions.
1. Initialize: Partition

�
into �
���������
� , ����� , �
����������� ,

where �
����������� contains all constraints whose latest (highest)
variable is

� � . We denote a function in a bucket !� ,
its scope "#� .)
2. Backward: For $&%(' downto) , do

Generate the function &* : +* �-,/.103254 ��687:9<;�=
>@? 0 A� .
Add +* to the bucket of the latest variable inBDC � E1� "#�#FHG � * I .

3. Return the number of solutions, � and the set of output
buckets with the original and computed functions.

Figure 2: Algorithm elim-count

Uniform Solution Sampling Algorithm
Our idea is to transform the constraint network into a be-
lief network that can express the desired uniform probability
distribution. Once such a belief network is available we can
apply known sampling algorithms for belief networks (Pearl
1988). The transformation algorithm is based on a variable
elimination algorithm that counts the number of solutions of
a constraint network and the number of solutions that can be
reached by extending certain partial assignments. Clearly,
the task of counting is known to be difficult (J / -complete)
but when the graph’s induced-width is small the task is man-
ageable.

We describe the algorithm using the bucket-elimination
framework. Bucket elimination is a unifying algorithmic
framework for dynamic programming algorithms (Bertele
& Brioschi 1972; Dechter 1999). The input to a bucket-
elimination algorithm consists of relations (functions, e.g.,
constraints, or conditional probability tables for belief net-
works). Given a variable ordering, the algorithm partitions
the functions into buckets, where a function is placed in the
bucket of its latest argument in the ordering. The algorithm
processes each bucket, from the last variable to the first, by a
variable elimination operator that computes a new function
that is placed in an earlier bucket.

For the counting task, the input functions are the con-
straints, expressed as cost functions. A constraint � � over
scope � is a cost function that assigns � to any illegal tuple
and � otherwise. When the bucket of a variable is processed
the algorithm multiplies all the functions in the bucket and
sums over the bucket’s variable. This yields a new func-
tion that associates with each tuple (over the bucket’s scope
excluding the bucket’s variable) the number of extensions
to the eliminated variable. Figure 2 presents algorithm
elim-count, the bucket-elimination algorithm for counting.
The complexity of elim-count obeys the general time and
space complexity of bucket-elimination algorithms (Dechter
1999).

THEOREM 1 The time and space complexity of algorithm
elim-count is K � �!LNM9% 3 �&< = � ; ! ! where � � 2 � 2

and < = � ; ! is
the induced-width of the network’s ordered constraint graph

along
;
. O

Let F% � � �&% � �	� � � � % � ! be a specific assignment to the first
set of P variables and let Q

"R denotes a new function that
resides in bucket

� R and was generated in bucket
� "

, forSUT�V
.

THEOREM 2 Given an assignment F% � � �&% � �	� � � � % � ! , the
number of consistent extensions of F% � to full solutions is15XWZY �[]\ ��^ R ^ � � � _ ��^ " ^ �a` Q

"R �9F% ! .
EXAMPLE 3 Consider the constraint network of Example 1
and assume we use the variable ordering � �����A� , � �"! , the
initial partitioning of functions into buckets is given in the
table below in the middle column.

Processing bucket � we generate the function (We use the
notation Q � for the function generated by eliminating vari-
able

�
) QHb �., ��� ! �dc b � ���

� , !�L � ��� ��� ! and place
it in the bucket of , . Processing the bucket of , we com-
pute QHe � �A��� ! ��c e � �., ��� !�LNQHb �., ��� ! and place it in
the bucket of

�
. Next we process

�
generating the functionQHf � � ! � c f � �

�A��� !3L8Q e � �A��� ! placed it in bucket
�

and finally we compute (when processing bucket
�

) all the
solutions QHg ��c g Q f �

� ! . The output buckets are:

Bucket Original constraints New constraintsa D c R e@h J b O i J b �je O � i J b �@g Oa D c R e@h J e O i J e � f O Y�k J e �jg Oa D c R e@h J f O i J f �jg O Y�l J f �jg Oa D c R e@h J g O Y�m J g Oa D c R e@h J
 O Y�n
The actual Q functions are displayed in the following ta-

ble: Y�k J a �bd O : (b, d)

Y�l J c �Xd O : (c, d)

Y�m J d O : (d)

Y�n
2: (1,1) or (2,2) 2 : (2,1) or (1,2) 5: (1) 10

1: (1,2) or (2,1) 3 : (3,1) or (3,2) 5: (2)

1 : (1,1) or (2,2)

We next show, using the example, how we use the output
of the counting algorithm for sampling. We start assigning
values along the order

�����A� , � � . The problem has 10 so-
lutions. According to the information in bucket

�
, both as-

signments
� � � and

� �) can be extended to 5 solutions,
so we choose among them with equal probability. Once a
value for

�
is selected (lets say

� � �) we compute the
product of functions in the output-bucket of

�
which yields,

for any assignment to
�

and
�

, the number of full solutions
they allow. Since the product functions shows that the as-
signment � � � � ��� �) ! has 2 extensions to full solutions,
� � � � ��� � + ! has 3 extensions while � � � � ��� � � ! has
none, we choose between the values 2 and 3 of

�
with ra-

tio of 2 to 3. Once a value for
�

is selected we continue
in the same manner with , and � . Algorithm solution-
sampling is given in Figure 3. Since the algorithm oper-
ates on a backtrack-free network created by elim-count, it is
guaranteed to be linear in the number of samples generated.

The Transformed Belief Network
Given a constraint network C � � ��������� ! and its output-
buckets generated by elim-count applied along ordering

;
,

1We abuse notation denoting by �<op � the function �<oprq � ,
where " is the scope of .

Algorithm solution-sampling
Input: A constraint network

���������
	��
���
, an ordering � . The

output buckets along � , produced by elim-count.
Output: Random solutions generated from

� 9 ���&�
.

1. While not enough solutions generated, do
2. For $&%) to ' , do

Given the assignment
op * ��� p � � � � � p * � and �
��������� *

with functions G< � � �� � ����� I , compute the
frequency function of � ��� *�� � � � 2 C C �<op * ��� *�� � �
and generate sample for

� *�� � according to � .
3. Endwhile.
4. Return the generated solutions.

Figure 3: Algorithm solution-sampling

, J � � d O is the belief network defined over
�

as follows. The
directed acyclic graph is the induced graph of the constraint
problem along

;
where all the arrows are directed from ear-

lier to later nodes in the ordering. Namely, for every vari-
able

���
the parents of

�4�
are the nodes connected to it in

the induced-graph that precede it in the ordering. The con-
ditional probability table (CPT) associated with each child
variable

���
can be derived from the functions in the output-

bucket by G1J � � \ 798 � O 6 � � Y � J � � � 798 � O�
	 � � � Y � J � � � 798 � O (1)

where Q " are both the original and new functions in the
bucket of

���
.

EXAMPLE 4 In our example, the parents of � are , and
�

,
the parents of , are

�
and

�
, the parents of

�
is
�

and�
is a root node (see Figure 4). The CPTs are given by the

following table:G1J 8 \ a �Xd O (d, b, a)
G1J a \ c �Xd O (c, d, b)

G1J c \ d O (d, c)

1/2 (1,1,2) 1 (1,1 or 2,2) 2/5 (1,2)

1/2 (1,1,3) 1 (2,1 or 2,1) 2/5 (2,1)

1/2 (2,2,1) 2/3 (3,1,1) 3/5 (1,3)

1/2 (2,2,3) 1/3 (3,1,2) 3/5 (2,3)

1 (1,2,3) 1/3 (3,2,1)

1 (2,1,3) 2/3 (3,2,2)

The conversion process is summarized in Figure 4.We can
show

THEOREM 3 Given a constraint network C and an ordering;
of its variables, the Belief network , J � � d O (defined by Eq.

1), expresses the uniform distribution
/�D �EC ! .

Given a belief network that expresses the desired distri-
bution we can now use well known sampling algorithms to
sample solutions from the belief network. In particular, the
simplest such algorithm that works well when there is no
evidence, is Logic sampling (Henrion 1986). The algorithm
samples values of the variables along the topological order-
ing of the network’s directed graph. Given an assignment to
the first �NP�� � ! variables it assigns a value to

�4�
using the

probability distribution
/ � �4��2 3 � � ! , as the parents of

�4�
are

already assigned. We can show that

Proposition 1 Given a constraint network C . Algorithm
solution-sampling applied to the output-buckets of elim-

1,2

R P

P(C|D)

P(D)

P(A|B,D)

P(B|C,D)

1,2,3

1,2

1,2,3C

A A

BD D

C

B

b�
 i J b �je O � i J b �jg O� ��� �� ��� G1J b \ e �:g O 6 ��� k�� l���� ��� k�� n �! k ��� k�� l���� ��� k�� n �

e"
 i J e � f O � Y k J e �jg O� ��� �� ��� G1J e \ f �jg O 6 ��� l � m���� # k � l � n �! l ��� l � m���� # k � l � n �

f
 i J f �jg O � Y l J f �jg O� ��� �$ ��� G1J f \ g O 6 ��� m%� n ��� # l � m%� n �! l ��� m%� n ��� # l � m%� n �

g&

Y�m J g O ��� G1J g O 6 # m � n �! n # m � n �

Figure 4: The conversion process

count along
;
, is identical to logic sampling on the belief

network , J � � d O . O
Mini-bucket Approximation for Sampling

The main drawback of bucket elimination algorithms is that,
unless the problem’s induced-width is bounded, they are
time and space exponential. Mini-Bucket Elimination is an
approximation designed to reduce the space and time prob-
lem of full bucket elimination (Dechter & Rish 1997) by
partitioning large buckets into smaller subsets called mini-
buckets, which are processed independently. Here is the
rationale. Let ' � �	� � � � ' " be the functions in (*),+ V M��X7 and
let � � �	� � � � � " be the scopes of those functions. When elim-
count processes (*),+ V M��X7 , it computes the function Q 7 �
c � 0 5 " � 6 � Q � . The scope of Q 7 is - 7 �/.

" � 6
� � � � � � 7�� .

The Mini-Bucket algorithm, on the other hand, creates a
partitioning 021 � � 0 � �	� � � � 0 h � where the mini-bucket 043
contains the functions

� Q53 R �	� � � � Q63 [� . We can rewrite the
expression for Q 7 as follows: Q 7 �dc � 0 5 h3 6 � 5 3 � Q63 � .
Now, if we migrate the summation inside the multiplica-
tion we will get a new function 7 7 defined by: 7 7 �5 h3 6 � c � 0 5 3 � Q63 � . It is not hard to see that 7 7 is an upper
bound on Q 7 : Q 798 7 7 . Thus, the approximation algo-
rithm can process each mini-bucket separately (by using the
summation and product operators), therefore computing 7 7
rather than Q 7 .

A tighter upper-bound for Q 7 can be obtained by bound-
ing all the mini-buckets but one, by a maximization in-
stead of summation, namely, Q 7:8 � c � 0 5 3 R Q63 R !5L
� 5 h3 6 [<;>=@? � 0 5 3 � Q63 � ! . Alternatively, we can minimize
over the mini-bucket’s variables, except one mini-bucket to
yield a lower bound (replacing max by min), or apply aver-
aging, yielding a mean-value approximation.

The quality of the approximation depends on the degree of
partitioning into mini-buckets. Given a bounding parameter
i, the algorithm creates an i-partitioning, where each mini-
bucket includes no more than i variables2. The choice of

2We assume that i is at least as large as the size of scopes of

Algorithm MBE-count(i)
Input: A constraint network

� � �����
	��Z���
an ordering � ; pa-

rameter i
Output: A bound on (upper, lower or approximate value) of the
count function computed by elim-count. A bound on the number
of solutions
1. Initialize: Partition the functions in

�
into �
����������� , ����� ,�
�����������

2. Backward For $&%(' downto) , do� Given functions � � �� � � � � � C in �
��������� * , generate an
���j�

-
partitioning, ��� � G�� � � � � � � � ? I . For � � containing � R � � � � ���
generate � � ,/.1032 ?� E1� �	 � . For each ��	�
�� � ,
��) con-

taining �	 R � � � � �	 � generate function 	 , 	 ����� W 2 ?� E1� �	 � ,
where ��	 � BDC � E1��� ���Z$ � � �	 � � F G � * I (where

�
is max, min or

mean). Add 	 to the bucket of the largest-index variable in its
scope.
4. Return the ordered set of augmented buckets and number of
solutions.

Figure 5: Algorithm, MBE-count(i)

P -partitioning affects the accuracy of the mini-bucket algo-
rithm. Algorithm MBE-count(i) described in Figure 5, is pa-
rameterized by this i-bound. The algorithm outputs not only
a bound on the number of solutions but also the collection
of augmented buckets. It can be shown ((Dechter & Rish
1997)),

THEOREM 4 Algorithm MBE-count(i) generates an upper
(lower) bound on the number of solutions and its complexity
is time K � �+L8M9% 3 �NP ! ! and space K � � L8M9% 3 �NP � � ! ! , where �
is the number of functions. O
EXAMPLE 5 Considering our example and assuming P �) ,
processing the bucket of � we have to partition the two
functions into two separate mini-buckets, yielding two new
unary functions: Q b �., ! � c b � ���

� , ! , QHb � � ! �;>=@? b � ��� ��� ! placed in bucket , and bucket
�

, respec-
tively (only one, arbitrary, mini-bucket should be processed
by summation). Alternatively, we get Q b � � ! � � if
we process by min operator, Q b � � ! �)

by summation
and QHb � � ! � �\ g J b O \ L c b � ���

��� ! �)���+
, by mean

operator. Processing bucket , we compute QXe � � ! �c e � �., ��� !+L Q b �., ! placed in bucket of
�

, and pro-
cessing

�
generates Q f � � ! � c f � �

�A��� !&L Q e � � !
placed in bucket

�
. Finally we compute, when process-

ing bucket
�

, an upper bound on the number of solutionsQ g � c g QHf �
� ! L�Q b � � ! . The output buckets are given

by the table below

Bucket Original constraints New constraintsa D c R e@h J b O i J b �je O � i J b �@g Oa D c R e@h J e O i J e � f O Y�k J e Oa D c R e@h J f O i J f �jg O Y�l J f Oa D c R e@h J g O Y�k J g O � Y�m J g Oa D c R e@h J
 O Y�n

input functions.

The actual Q functions using the max operator are:

Y�k J a O 6�[Y�l J c O 6����
��

[
if (c=1)[
if (c=2)�
if (c=3)Y k J d O 6 � Y m J d O 6QP g if (d=1)g if (d=2)

Y n 6
�
[

We see that the bound is quite good. Note that had we pro-
cessed both mini-bucket by summation we would get a bound
of 24 on the number of total solutions, 0 solutions using min
and 8 solutions using the mean operator.

Given a set of output buckets generated by MBE-count(i)
we can apply algorithm solution-sampling as before. There
are, however, a few subtleties here. First we should note
that the sample generation process is no longer backtrack-
free. Many of the samples can get into a ”dead-end” because
the generated network is not backtrack-free. Consequently,
the complexity of solution-sampling algorithm is no longer
output linear. The lower the i-bound, the larger the time
overhead per sample.

Can we interpret the sampling algorithm as sampling over
some belief network? If we mimic the transformation algo-
rithm used in the exact case, we will generate an irregular
belief network. The belief network generated is irregular
in that it is not backtrack-free, while by definition, all be-
lief networks are backtrack-free, because regular CPTs must
sum to 1.

An irregular belief network includes an irregular CPT/ � ����2 3 � � ! , where there could be an assignment to the par-
ents

3 � � such that
/ �&% � 2 ��798 � ! � � for every value % � or

���
.

An irregular belief network represent the probability distri-
bution

/ �&% � �	� � � � % � ! �! -L 5 �� 6 � / �&% ��2 %*798 � ! where is a
normalizing constant. It is possible to show that the sam-
pling algorithm that follows MBE-count(i) is identical to
logic sampling over such an irregular network created by
the transformation applied to the output buckets generated
by MBE-count(i).

EXAMPLE 6 The belief network that will correspond to the
mini-bucket approximation still has

��� , as the parents of
� ,
�

is the parent of , and
�

is the parent of
�

. The
probability functions that can be generated for our example
are given below. For this example, sampling is backtrack-
free. For variable � , after normalization, we get the same
function as the exact one (see Example 4). The CPT for , ,�

and
�

are:G1J a \ c O (c,b)
G1J c \ d O (d,c)

G1J d O (d)

1 (1,2) or (2,2) 1/3 (1,2) or (2,1) 1/2 (1)

1/2 (3,1) or (3,2) 2/3 (1,3) or (2,3) 1/2 (2)

It is interesting to note that if we apply the sampling al-
gorithm to the initial bare buckets, which can be perceived
to be generated by MBE-count(0), we just get the naive-
approach we introduced at the outset.

Empirical evaluation
We provide preliminary empirical evaluation, demonstrating
the anytime behavior of the mini-bucket scheme for sam-
pling. We used as benchmark randomly generated binary
CSPs generated according to the well-known four-parameter

1,2

1,2,3

1,2 P(B|C)

~R P

P(C|D)

P(D)

P(A|B,D)1,2,3

C

AA

B D

C

D B

b>
 i J b �@e O �� ��� ��
i J b �jg O� ��� � � G1J b \ e �jg O 6 ��� k�� l���� ��� k�� n �! k ��� k�� l���� ��� k�� n �

e
 i J e � f O � Y k J e O� ��� �� � G1J e \ f O 6 ��� l � m���� # k � l��! l ��� l � m���� # k � l��

f
 i J f �@g O � Y l J f O� ��� �$ � G1J f \ g O 6 ��� m%� n ��� # l � m��! l ��� m%� n ��� # l � m��

g

Y�m J g O � Y�k J g O � G1J g O 6 # m � n ��� # k � n �! n # m � n ��� # k � n �

Figure 6: The conversion process

model (Q �������A���) where Q is the number of variables,
�

is the number of values,
�

is the tightness (number of disal-
lowed tuples) and

�
is the number of constraints. We also

tested the special structure of square grid networks.
Measures. We assume that the accuracy of the distribu-
tion obtained for the first variable is representative of the
accuracy of the whole distribution. We therefore compare
the approximated distribution associated with the first vari-
able in the ordering (the probability of the first node in the
ordering) computed by MBE-count(i) against its exact dis-
tribution, using several error measures. The primary mea-
sure is the KL distance which is common for comparing
the distance between two probabilities (Chow & Liu 1968).
Let

/ �&% ! be a probability distribution and
/ 8 �&% ! its ap-

proximation. The KL-distance of
/

and
/ 8 is defined as��� � /���/ 8�! � c N / �&% !MZ.Y�7 � / �&% ! ��/ 8 �&% ! ! . It is known that��� � /���/ � !�� � , and the smaller

��� � /���/ 8�! , the closer/ 8��&% ! is to
/ �&% ! , with

��� � /���/ 8�! � � iff
/ � / 8 . We also

compute the absolute error3 and the relative error4. Finally,
for comparison we also compute the KL distance between
the exact distribution and the uniform,

����D
of the first vari-

able.
Benchmarks and results. We experimented with random
problems having 40 and 50 variables with domains of 5 val-
ues and 8x8 grids with domains of 5 values. All problems
are consistent. We had to stay with relatively small problems
in order to apply the exact algorithm. The results with ran-
dom CSPs are given in Tables 1 and 2, and results with 8x8
grids are given in Table 3. In the first column we have tight-
ness T, in the second column the KL-distance between the
exact distribution and uniform distribution (

����D
), and in

the remaining columns various values of the i-bound. First
we report the average time of MBE-count(i) per problem for
each i. The remainder of the table consists of horizontal
blocks, corresponding to different values of T. In columns
corresponding to values of i-bound, we report, for each value
of i, KL-distance between the exact probability and MBE(i)
probability (

��� �
), absolute error and relative error, aver-

3 �
	 7�� �-, ��
 � � p � �j� F � 	 � p � �j�
 ��� .
4 ��� > 	 �-, � �
 � � p � �j� F � 	 � p � �j�
 � � � p � �j��� ��� .

4 E��
� , � E�� , � E��
� . ��� =10.8. ��� instances.� =4 � =5 � =6 � =7 � =8 � =9 � =10

time 0.05 0.09 0.33 1.3 5.2 20 86�! H �! � �! � �! � �! � �! � �! � �! �
T abs-e abs-e abs-e abs-e abs-e abs-e abs-e

rel-e rel-e rel-e rel-e rel-e rel-e rel-e

0.398 0.223 0.184 0.144 0.086 0.091 0.063 0.020
8 0.106 0.095 0.081 0.058 0.058 0.045 0.026

1.56 1.13 0.86 0.65 0.64 0.48 0.21
0.557 0.255 0.323 0.303 0.132 0.109 0.082 0.085

9 0.110 0.125 0.112 0.074 0.064 0.053 0.045
37 28 23 5.16 1.76 0.99 0.61

0.819 0.643 0.480 0.460 0.340 0.295 0.401 0.228
10 0.164 0.124 0.123 0.108 0.105 0.098 0.064

28 7.51 9.41 5.41 4.31 2.69 0.81
1.237 0.825 0.803 1.063 0.880 0.249 0.276 0.193

11 0.203 0.184 0.209 0.166 0.088 0.098 0.068
1.33 1.65 2.71 1.15 0.88 1.24 0.33

Table 1: Accuracy and time on Random CSPs.

4 E���� , � E�� , � E+����� . ��� =12.7. ��� instances.� =6 � =7 � =8 � =9 � =10 � =11

time 0.44 1.64 6.60 29 125 504�! H �! � �! � �! � �! � �! � �! �
T abs-e abs-e abs-e abs-e abs-e abs-e

rel-e rel-e rel-e rel-e rel-e rel-e

1.044 0.372 0.599 0.442 0.631 0.295 0.278
10 0.127 0.147 0.135 0.100 0.098 0.041

52 120 81 79 8.12 0.91
0.923 0.502 0.285 0.137 0.215 0.214 0.464

10.5 0.150 0.109 0.069 0.073 0.079 0.143
1.97 1.93 0.44 1.60 1.28 3.73

1.246 0.781 0.851 0.550 0.490 1.670 -
11 0.208 0.186 0.156 0.134 0.177 -

116 81 44 91 100 -
1.344 0.577 0.660 0.333 0.231 0.088 -

11.5 0.160 0.180 0.180 0.061 0.042 -
5.69 3.40 3.02 2.70 0.94 -

Table 2: Accuracy and time on Random CSP.

aged over all problem instances.
The first thing to observe from the tables is that even the

weakest (but most efficient) level of approximation is supe-
rior to the naive uniform distribution, sometimes substan-
tially. We also see from Table 1 that as i increases, the run-
ning time of MBE(i) increases, as expected. Looking at each
horizontal block, corresponding to a specific value of T, we
see that as i increases, the KL-distance as well as absolute
and relative error decrease. For large values of i,

�����
is as

much as an order of magnitude smaller than
����D

, indicat-
ing the quality of the probability distribution computed by
MBE-count(i). We see similar results from Table 2.

Conclusion
The paper introduces the task of generating random, uni-
formly distributed solutions for constraint satisfaction prob-
lems. The origin of this task is the use of CSP based methods
for the random test program generation.

The algorithms are based on exact and approximate vari-
able elimination algorithms for counting the number of so-
lutions, that can be viewed as transformation of constraint
networks into belief networks.

The result is a spectrum of parameterized anytime algo-
rithms controlled by an i-bound that, starts with the naive
approach on one end and the exact approach on the other.
As i increases, we are likely to have more accurate sam-

8x8 grid, � E�� . ��� =10. �
� instances.� =4 � =5 � =6 � =7 � =8 � =9 � =10

time 0.01 0.04 0.12 0.56 1.8 5.7 16�! H �! � �! � �! � �! � �! � �! � �! �
T abs-e abs-e abs-e abs-e abs-e abs-e abs-e

rel-e rel-e rel-e rel-e rel-e rel-e rel-e

0.013 0.001 3e-4 2.3e-5 2.2e-5 1e-6 0 0
5 0.016 0.008 0.002 0.002 3.3e-4 4.6e-5 1e-6

0.091 0.044 0.012 0.010 0.002 2.7e-4 4e-6
0.022 0.002 7.2e-4 1.1e-4 1.2e-4 7e-6 0 0

7 0.021 0.012 0.005 0.005 0.001 2.1e-5 4e-6
0.133 0.076 0.026 0.025 0.006 0.001 3e-5

0.049 0.009 0.002 4.1e-4 2.8e-4 3.8e-5 5e-6 0
9 0.045 0.022 0.009 0.007 0.003 0.001 6e-5

0.440 0.215 0.069 0.056 0.020 0.006 5e-4
0.073 0.020 0.005 0.003 0.002 6.8e-4 9.4e-5 1e-6

11 0.060 0.031 0.021 0.017 0.009 0.003 3e-4
1.63 0.342 0.265 0.223 0.118 0.039 0.003

Table 3: Accuracy and time on 8x8 grid CSPs.

ples that takes less overhead to generate during the sampling
phase. Our preliminary evaluations show that the scheme
provides substantial improvements over the naive approach
even when using its weakest version. More importantly,
it demonstrate the anytime behavior of the algorithms as a
function of the i-bound. Further experiments clearly should
be conducted on the real application of test program gener-
ation. In the future we still need to test the sampling com-
plexity of the approximation and its accuracy on the full dis-
tribution.

Our approach is superior to ordinary OBDD-based algo-
rithms which are bounded exponentially by the path-width,
a parameter that is always larger than the induced-width.
However, another variants of BDDs, known as tree-BDDs
(McMillan 1994) extends OBDDs to trees that are also time
and space exponentially bounded in the induced-width (also
known as tree-width). As far as we know all BDD-based al-
gorithms for random solution generation, use ordinary OB-
DDs rather than tree-BDDS.

The main virtue of our approach however is in presenting
an anytime approximation scheme which is so far unavail-
able under the BDD framework.

Acknowledgement
This work was supported in part by NSF grant IIS-0086529
and by MURI ONR award N00014-00-1-0617.

References
Arnborg, S. A. 1985. Efficient algorithms for combinato-
rial problems on graphs with bounded decomposability - a
survey. BIT 25:2–23.
Bergeron, J. 2000. Writing Testbenches: Functional Veri-
fication of HDL Models. Kluwer Academic Publishers.
Bertele, U., and Brioschi, F. 1972. Nonserial Dynamic
Programming. Academic Press.
Bin, E.; Emek, R.; Shurek, G.; and Ziv, A. What’s between
constraint satisfaction and random test program generation.
Submitted to IBM System Journal, Aug. 2002.
Chandra, A. K., and Iyengar, V. S. 1992. Constraint solv-
ing for test case generation. In International Conference
on Computer Design, VLSI in Computers and Processors,

245–248. Los Alamitos, Ca., USA: IEEE Computer Soci-
ety Press.
Chow, C. K., and Liu, C. N. 1968. Approximating dis-
crete probability distributions with dependence trees. IEEE
Transaction on Information Theory 462–67.
Dechter, R., and Rish, I. 1997. A scheme for approximat-
ing probabilistic inference. In Proceedings of Uncertainty
in Artificial Intelligence (UAI’97), 132–141.
Dechter, R. 1992. Constraint networks. Encyclopedia of
Artificial Intelligence 276–285.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence 113:41–85.
Fournier, L.; Arbetman, Y.; and Levinger, M. 1999. Func-
tional verification methodology for microprocessors using
the Genesys test program generator. In Design Automation
& Test in Europe (DATE99), 434–441.
Hartman, A.; Ur, S.; and Ziv, A. 1999. Short vs long size
does make a difference. In HLDVT.
Henrion, M. 1986. Propagating uncertainty by logic sam-
pling. In Technical report, Department of Engineering and
Public Policy, Carnegie Melon University.
Kumar, V. 1992. Algorithms for constraint-satisfaction
problems: A survey. A.I. Magazine 13(1):32–44.
McMillan, K. L. 1994. Hierarchical representation of
discrete functions with application to model checking. In
Computer Aided Verification, 6th International conference,
David L. Dill ed., 41–54.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann.
Yuan, J.; Shultz, K.; Pixley, C.; Miller, H.; and Aziz,
A. 1999. Modeling design constraints and biasing in
simulation using BDDs. In International Conference on
Computer-Aided Design (ICCAD ’99), 584–590. Wash-
ington - Brussels - Tokyo: IEEE.

