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Abstract

The paper investigates the behavior of iterative belief propagation algo-
rithm (IBP) in Bayesian networks with loops. In multiply-connected net-
work, IBP is only guaranteed to converge in linear time to the correct
posterior marginals when evidence nodes form a loop-cutset. We pro-
pose an �-cutset criteria that IBP will converge and compute posterior
marginals close to correct when a single value in the domain of each
loop-cutset node receives very strong support compared to other values
thus producing an effect similar to the observed loop-cutset. We inves-
tigate the support for this criteria analytically and empirically and show
that it is consistent with previous observations of IBP performance in
multiply-connected networks.

1 Introduction

The paper investigates the correctness of iterative belief propagation (IBP) algorithm in
Bayesian networks with loops. Pearl [10] proposed iterative belief propagation algorithm
for singly connected Bayesian networks and demonstrated that algorithm converges in the
number of iterations equal to the diameter of the network to the correct posterior values. In
general, IBP does not always converge and does not produce correct posterior values for
Bayesian networks with loops. It can be applied to networks with loops to derive approxi-
mate inference where exact methods such as bucket-elimination [3] and tree-clustering [4]
become impractical due to exponential growth in time and memory required.

Empirically, IBP was demonstrated to perform very well for several classes of loopy net-
works, including noisy-or networks (used in diagnostics), pyramid networks (used in im-
age recognition) [8], and especially coding networks [11, 9, 5] where it was shown to
outperform other approximation schemes such as variational decoder [5] and mini-bucket
approximation algorithm [7].

Our theoretical understanding of the behavior of IBP in networks with loops is limited. For
general types of networks, the main contribution has been made by Weiss [13, 12] who
proved (for Markov model) that IBP always converges in a single-loop networks, defined
the error in posterior marginals produced by IBP as a function of eigenvalues of a matrix



computed from conditional probability tables (CPTs) of all the variables in a loop, and
established the correlation between the accuracy of IBP and its convergence rate. How-
ever, the error expression proposed by Weiss is hard to interpret in terms of basic network
attributes.

We investigate the accuracy of IBP in a directed Bayesian networks with binary nodes as
a function of loop size, CPT values, prior beliefs, and evidence support. Analytically, we
derive an expression for the error value in the posterior belief of a sink node in a single-loop
Bayesian network without evidence (section 4) and then extend our conclusions empirically
to several classes of loopy networks with evidence (section 5). As a result, we propose
an �-cutset criteria that guarantees convergence of IBP and a certain level of accuracy in
posterior marginals computed by IBP in Bayesian networks with loops when �-support is
provided for loop-cutset nodes(section 3).

2 Background

DEFINITION 2.1 (graph concepts) We will skip the definitions of basic belief network con-
cepts (which can be found in [10]) and belief networks due to lack of space.

A node X in a directed graph D is called a root if no edges are directed into X. A node
X in a directed graph D is called a leaf if all of its adjacent edges are directed into X.
The underlying graph G of a directed graph D is the undirected graph formed by ignoring
directions of edges in D. A cycle in G is a path whose two end-points coincide. A loop in
D is a subgraph of D whose underlying graph is a cycle. A vertex v is a sink with respect
to loop L if two edges adjacent to v in L are directed into v. A vertex that is not a sink
with respect to a loop L is called an allowed vertex with respect to L. A loop-cutset of
a directed graph D is a set of vertices that contains at least one allowed vertex in each
loop in D. (We borrowed loop-cutset definition from [1]). A graph is singly connected
(also called a polytree), if its underlying undirected graph has no cycles. Otherwise, it is
multiply connected.

3 Iterative Belief Propagation Algorithm

Iterative Belief Propagation (IBP) computes an approximate belief BEL(x) = P (X =
xjE), where E is observed evidence, for every variable X in the network. Belief is propa-
gated by sending messages between the nodes. During each iteration (t+ 1), each node X
sends causal support messages �(t+1)Yj

(x) to each child Yj :
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In equations 1 and 2, � and � are normalization constants such that
P

ui
�X (ui) = 1 andP

X
�Yj (X) = 1. Normalization is recommended to avoid numerical underflow although

it does not affect the results produced by IBP ([10, 2]). Message �X (X) is introduced to
incorporate evidence information into the equation (similar to [8]). The posterior belief is
computed for each node X by combining �X (ui) messages received from its parents ui
and �Yj (X) messages received from its children:

BEL(x) = ��
t(X)�t(X) (5)

An activation schedule (variable ordering) A specifies the order in which the nodes are
processed (activated). After all nodes are processed, the next iteration of belief propagation
begins.

Belief propagation was proposed by Pearl [10] for singly-connected networks where it
is guaranteed to converge to correct posterior marginals for all nodes in linear time. In
multiply-connected networks, IBP is only guaranteed to converge to correct posterior
marginals if evidence nodes form a loop-cutset. If node X is observed, �t(X) = 0 for
all values of X except its observed value. As a result, �Yj (X) messages become inde-
pendent from any other messages received by X from its parents and children and �X (ui)
messages become independent from the � messages X received from its children. Thus, an
observed loop-cutset node X effectively breaks the loop by stopping the flow information
between its parents and its children.

Now, assume that node X is not observed but receives very strong support for one value
in its domain, x0, from prior beliefs j1 � P (X = x

0)j < � and/or support messages from
its children j1 � �Yk(X = x

0)j < � (assume that � has been normalized). We will call it
�-support. Then lim�!0�

t(X = x
0) ! 1 generating effect similar to the observed nodes.

Therefore, we propose following conjecture:

Conjecture 1 (�� cutset) Let G be a multiply-connected Bayesian network. Let Xi, i =
1; :::;m, form a loop-cutset in G. Then, for any � 2 (0; 1), there exists such value �0 2

(0; 1) that if each loop-cutset node Xi receives an �0-support j1 � P (Xi = x
0
i)j < �0 or

j1 � �Yk(Xi = x
0
i)j < �0 for normalized �Yk(Xi), then IBP will converge and compute

posterior marginals within specified error limit �.

4 Single Loop Bayesian Network without Evidence

In this section, we will analyze the performance of belief propagation algorithm in a single-
loop Bayesian network with binary nodes as shown in fig 1. Without evidence, the posterior
marginals of all nodes except the sink node will be computed correctly ([2]). Thus, we
focus here on computing the error produced by IBP in the posterior marginal values of sink
node D. Let G(D) be correct posterior belief:

G(D) =
X

Bn;Cm
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X

A

P (BnjA)P (CmjA)P (A) (6)

In the absence of evidence, one iteration of belief propagation is sufficient for convergence
given activation schedule such that parents of a node are processed first and normalization
of the belief BEL(D) is not required (� = 1) ([2]). Then, we can easily derive the
posterior marginal belief G�(D) computed by IBP:
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Figure 1: A single loop Bayesian network.

Using notation:
P (A) = (�; 1� �)

�
i
0 = P (Bi = 0jBi�1 = 0); �i1 = P (Bi = 0jBi�1 = 1)



j

0 = P (Cj = 0jCj�1 = 0); 
j1 = P (Cj = 0jCj�1 = 1)

we can express error � = G
�(D) � G(D) in the posterior marginals of node D computed

by IBP as follows (see [2] for a complete proof):
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From equation 8, it is clear that the accuracy of IBP improves as:

1. Prior beliefs for a root node approach boundary values: lim�!0;1 � = 0

2. Number of nodes in a loop increases: limn!1;m!1 � = 0

3. Conditional probabilities for the same value of X in different rows of CPT get
closer: limj�k

0
��k

1
j!0;j
k

0
�
k

1
j!0 � = 0.

It is also easy to see that when one of the allowed nodes is observed, � = 0. When node A
is initialized, either � = 0 or (1� �) = 0. When one of the nodes Bi or Cj is observed, it is
equivalent to having �0(Bi) = �1(Bi) = 0j1 or 
0(Cj) = 
1(Cj) = 0j1 yielding � = 0.

5 Empirical Results

In this section, we empirically investigate accuracy and convergence of IBP in networks
with loops. In all experiments, unless specified otherwise, conditional probabilities were
represented by noisy-or with ’leak’ term fixed at 0.005 and individual noise factors �i were
chosen uniformly from the range [0,1]. The number of iterations for approximate inference
was fixed at 20. All experimental results are consistent with conclusions in section 4 and
proposition 1.



5.1 Single Loop with Evidence
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Figure 2: Average error in P (XjE) is
plotted against P (A = 0).
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Figure 3: Average error in P (XjE) is
plotted against �Y2(C2).

Single loop networks (see fig 1) containing 4, 6, 8, and 10 nodes were constructed. The
child of a sink node was always observed. The average error value was averaged over
1000 instances. As the loop size increased, the maximum average error value decreased by
the order of magnitude: 0.002 for a 4-node loop, 0.0002 for a 6-node loop, 0.00002 for a
8-node loop, and 0.000002 for a 10-node loop.

For all nodes and all loop sizes, the average error value rapidly decreased as P (A) was
approaching 0 and 1 as predicted analytically in equation 8 (results for a 6-node loop are
presented in fig 2). For all nodes, except root node, the average error value peaked at
P (A) = 0:5, as expected, since � = 0:5 is the maximum of the function f(�) = �(1� �).
The average error for a root node consistently had a minimum at P (A) = 0:5 which we
cannot explain analytically at this point and plan to investigate in the future. For all nodes
and all loop sizes, the average error was approaching zero as �Ym (Cm)! 0; 1 (results for
a 6-node loop are presented in fig 3).

5.2 2-layer noisy-or networks
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Figure 4: Average error in P (XjE) is
plotted against root node priors.
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Figure 5: Percent of converged nodes is
plotted against root node priors.

We measured the accuracy and convergence of IBP in 2-layer noisy-or networks. Number
of root nodes m and total number of nodes n was fixed in each test set (indexed m � n).



Each leaf node Yj was added to the list of children of root node Ui with probability 0.5. All
leaf nodes were observed. Results (in figures 4 and 5) were averaged over 100 instances.
All data indicate that as priors of loop-cutset nodes approach 0 and 1, the average error
value approaches 0 and the number of converged nodes reaches 100%.

5.3 Random noisy-or networks
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Figure 6: Average error in P (XjE) is
plotted against �Yk(Xk).
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Figure 7: Percent of converged nodes is
plotted against �Yk(Xk).

Random m� n networks of size n were constructed by designating first m nodes as roots,
last m nodes as leaves, and then adding each node Xi, i > m, to the list of children of
node Xj , j > i, with probability 0.2. Results were averaged over 100 instances. Loop-
cutset nodes were selected using mga algorithm proposed in [1]. For each loop-cutset
node, an extra child node Yk was added with a symmetrical CPT. To control �Yk(Xk)
messages, P (Ykjpa(Yk)) was varied. All leaf nodes were observed. As results demonstrate
(figures 6 and 7), the average error approaches 0 and convergence of IBP reaches 100% as
�Yj (X) ! 0; 1.

6 Related work and conclusions

Empirical study of the performance of belief propagation algorithm [7, 5] in different types
of coding networks including Humming codes, low-density parity check, and turbocodes,
demonstrated that accuracy of IBP is considerably better when noise level � is low. Those
results correlate very well with proposition 1 since lower noise level means that code nodes
receive stronger support for one value from their observed children lim�!0 �(Ui)! 0; 1.

An investigation into the distribution of cycle lengths in coding networks has demonstrated
that a node has a low probability (less than 0.01) of being in a cycle of length less than or
equal to 10 [6]. Furthermore, the CPTs derived for edges with low Gaussian noise � define
very strong correlation between parent/child node values. Thus, observed child node will
send quite strong support for the observed value to the parent. Both of the above observa-
tions combined with our empirical findings, provide an insight into excellent performance
of IBP in coding networks. Coding networks have good parameters for two different factors
influencing convergence and accuracy of IBP: large loop size and strong �-support.

The work presented here has two novelties. First, it provides a direct analytical connection
between loop size, root priors, and evidence support and the error in the posterior marginals
computed by IBP. We derived an exact expression for the error value only for a special case



of a node in a single-loop network without evidence. However, the empirical evidence leads
us to the same conclusions as our analytical findings which indicates that the mechanics
behind the performance of IBP in single-loop network and multiple-loop networks with or
without evidence is the same.

The second novelty is extending well-known loop-cutset criteria that guarantees conver-
gence and correctness of IBP in loopy networks when evidence nodes constitute a loop-
cutset to instances where loop-cutset nodes are not observed, but receive an �-support. The
proposed �-cutset criteria guarantees the convergence and certain degree of accuracy when
� is sufficiently small. The next step in our research is to devise means of estimating the
threshold � value that will guarantee the convergence of IBP and desired degree of accuracy
in posterior marginals computed by IBP.
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