
A General Scheme for Multiple Lower Bound

Computation in Constraint Optimization?

Rina Dechter1 and Kalev Kask1 and Javier Larrosa2

1 University of California at Irvine (UCI)

fdechter, kkaskg@ics.uci.edu
2 Universitat Politecnica de Catalunya (UPC)

larrosa@lsi.upc.es

Abstract. Computing lower bounds to the best-cost extension of a tu-
ple is an ubiquous task in constraint optimization. A particular case of

special interest is the computation of lower bounds to all singleton tu-

ples, since it permits domain pruning in Branch and Bound algorithms.
In this paper we introduce MCTE(z), a general algorithm which allows

the computation of lower bounds to arbitrary sets of tasks. Its time and

accuracy grows as a function of z allowing a controlled tradeo� between
lower bound accuracy and time and space to �t available resources. Sub-

sequently, a specialization of MCTE(z) called MBTE(z) is tailored to

computing lower bounds to singleton tuples. Preliminary experiments on
Max-CSP show that using MBTE(z) to guide dynamic variable and value

orderings in branch and bound yields a dramatic reduction in the search

space and, for some classes of problems, this reduction is highly cost-
e�ective producing signi�cant time savings and is competative against

specialized algorithms for Max-CSP.

1 Introduction

One of the main successes in constraint satisfaction is the development of local
consistency properties and their corresponding consistency enforcing algorithms
[18, 11]. They allow to infer and make explicit constraints that are implicit in

the problem. Most useful in practice are consistency enforcing algorithms that

�lter out values that cannot participate in a solution. Filtering algorithms can

be embedded into a search-based solver, propagating the e�ect of the current as-

signment towards future variables by pruning infeasible values under the current

assignment [19, 3, 6].

Several attempts have been made in recent years to extend the notion of local

consistency to constraint optimization problems [4, 5, 20]. The main di�culty

being that inferred soft constraints cannot be carelessly added to the problem,

due to the non-idempotency of the operator used to aggregate costs. A whole line

of research mitigates this problem by extending only directional local consistency

? Extended version, This work was supported in part by NSF grant IIS-0086529 and
by MURI ONR award N00014-00-1-0617

to soft constraints and focuses on its most practical use: detecting lower bounds
for the best extension of tuples [22, 9, 16, 20, 13]. When there is an upper bound

on the maximumcost of a solution, tuples having a lower bound higher than this

bound cannot participate in an optimal solution and can be viewed as infeasible

(i.e., a nogood). As in the CSP context, lower bounds for values (singleton tuples)

are of special interest, because they can be used to �lter out infeasible values.

This paper, introduces MCTE(z), a general decomposition method for mul-
tiple lower bound computation, and MBTE(z), its specialization to singleton

tuples. Our scheme is built on top of cluster-tree elimination (CTE), a tree-

based decomposition schema which uni�es several approaches for automated

reasoning tasks. Algorithm MCTE(z) approximates CTE using a partitioning

idea similar to mini-buckets [9]. The parameter z controls its complexity (which

is exponential in z) as well as its accuracy, and can therefore be tuned to best

�t the available resources.

After describing CTE and introducing MCTE (sections 3 and 4), we describe

in Section 5, MBTE(z), an instantiation of MCTE(z) which is designed to com-

pute lower bounds for singleton tuples. As we show in the empirical section,

MBTE(z) facilitates a parameterized dynamic look-ahead method for variable

and value ordering heuristics in branch and bound. The parameter controls its

pruning power and overhead, and can therefore adjust branch and bound to

di�erent levels of problem hardness: while low accuracy su�ces for easy prob-

lems, higher accuracy may be more cost-e�ective when problems grow harder

and larger.

The singleton optimality problem can be solved by n runs of the mini-bucket

elimination MBE(z) [9] which we will call nMBE(z). We contrast MBTE(z)

against this alternative nMBE(z). We argue that for the same level of accuracy

(same parameter z), MBTE(z) is considerably more e�cient (up to linear speed-

up). Time e�ciency is of the essence when the ultimate goal is to use these

algorithms at every node of a branch and bound search. Indeed, our prelimi-

nary experiments on Max-CSP (Section 7) support theory-based expectations

regarding MBTE(z)'s accuracy as a function of z as well as its speed-up relative

to nMBE(z). Most signi�cantly, however, we demonstrate the potential of em-

bedding MBTE(z) in Branch and Bound in algorithm called BBBT(z) , showing

a dramatic pruning power in search space relative to competitive Branch and

Bound algorithms, which, for some (but not all) problem classes is highly cost-

e�ective.

2 Preliminaries

De�nition 1 (sum of functions, variable elimination). Let f and g be two
functions de�ned over var(f) and var(g), respectively. Then,

1. The sum of f and g, denoted (f+g), is a new function de�ned over var(f)[
var(g) which returns for each tuple the sum of values given by f and g,
(f + g)(t) = f(t) + g(t)

2. The elimination of xi from f by minimization, denoted minxi f , is a new
function de�ned over var(f)�fxig which returns for each tuple the minimum
cost extension to f , (minxi f)(t) = mina2Di

ff(t; a)g where Di denotes the
domain of variable xi and f(t; a) denotes the evaluation of f on the tuple
t extended with value a assigned to xi. We use (minS f)(t), to denote the
elimination of a set of variables S � var(f).

De�nition 2 (lower bound function). Let f and g be two functions de�ned
over the same scope (same set of arguments). We say that g is a lower bound of
f , denoted g � f , i� g(t) � f(t), for all t.

De�nition 3 (constraint optimization problem (COP), constraint graph).

A constraint optimization problem (COP) is a triplet P =< X;D;F >, where
X = fx1; : : : ; xng is a set of variables, D = fD1; : : : ; Dng is a set of �nite do-
mains and F = ff1; : : : ; fmg is a set of constraints. Constraints can be either
soft (i.e, cost functions) or hard (i.e, sets of allowed tuples). Without loss of
generality we assume that hard constraints are represented as (bi-valued) cost
functions. Allowed and forbidden tuples have cost 0 and 1, respectively. var(fi)
denotes the scope of function fi. The constraint graph of a problem P has the
variables as its nodes, and two nodes are connected if they appear in a scope of
a function in F .

De�nition 4 (optimization tasks,global and singleton). Given a COP in-
stance P , a set of optimization tasks is de�ned by Z = fZig

k
i=1, where Zi � X

and for each Zi the task is to compute a function gi over Zi, such that gi(t) is the
best cost attainable by extending t to X. Formally, gi(t) = minX�Zi(

Pm

j=1 fj).
A global optimization is the task of �nding the best global cost, namely Z = f;g.
Singleton optimization is the task of �nding the best-cost extension to every sin-
gleton tuple (xi; a), namely Z = ffx1g; fx2g; : : : ; fxngg.

Bucket elimination (BE) [7] is a decomposition algorithm for global optimiza-

tion. The algorithm starts by partitioning the set of constraints into n buckets,

one per variable. Then variables are processed one by one. For each variable xi,

a new constraint hi is computed from its bucket, summarizing the e�ect of xi
on the rest of the problem. Variable xi is eliminated and replaced by hi. After

the last elimination, only an empty-scope constraint (i.e, a constant function)

containing the cost of the best solution remains in the problem. The time and

space complexity of bucket-elimination algorithms is time and space exponential

in a graph parameter called induced-width (to be de�ned later).

Mini-bucket elimination (MBE) [9] is an approximation of BE that mitigates

its high time and space complexity. When processing variable xi, its bucket

is partitioned into mini-buckets. Each mini-bucket is processed independently,

producing bounded arity functions which are cheaper to compute and store.

This paper extends the idea of mini-bucket elimination from variable-elimination

based architecture to tree-decomposition-based.

3 Cluster-Tree Elimination (CTE)

In this Section we present cluster-tree elimination (CTE), a general decompo-

sition method for a variety of reasoning tasks. The algorithm is not new, it is

a unifying description of variants of such algorithms appearing in the past 2

decades both in the constraints community and the probabilistic reasoning com-

munity [17, 8, 21, 12]. Nevertheless, we �nd it necessary to describe the scheme

in some detail since it will allow presenting our approximation in the most gen-

eral setting. We also provide re�ned complexity analysis. CTE is based on the

concept of tree-decomposition. We use notation borrowed from [12].

De�nition 5 (tree-decomposition, separator, eliminator). Given a COP
instance P , a tree-decomposition is a triplet < T; �; >, where T = (V;E) is a

tree, and � and are labeling functions which associate with each vertex v 2 V
two sets, �(v) � X and (v) � F that satisfy the following conditions:

1. For each function fi 2 F , there is exactly one vertex v 2 V such that
fi 2 (v). Vertex v satis�es that var(fi) � �(v).

2. For each variable xi 2 X, the set fv 2 V jxi 2 �(v)g induces a connected
subtree of T . This is called the running intersection property.

Let (u; v) be an edge of a tree-decomposition, the separator of u and v is de�ned
as sep(u; v) = �(u) \ �(v); the eliminator of u and v is de�ned as elim(u; v) =

�(u)� sep(u; v).

De�nition 6 (tree-width, hyper-width, maximum separator size). The
tree-width of a tree-decomposition is tw = maxv2V j�(v)j � 1, its hyper-width is
hw = maxv2V j (v)j, and its maximum separator size is s = max(u;v)2E jsep(u; v)j

De�nition 7 (valid tree-decomposition).We say that the tree-decomposition
< T; �; > is valid for a set of optimization tasks Z = fZig

k
i=1 if there is a

non-empty set of vertices for each task Zi de�ned as fv 2 V j �(v) = Zig. Such
vertices are called solution-vertices1.

Example 1. Consider a constraint optimization problem P with six variables

fx1; : : : ; x6g and six constraints ff1; : : : ; f6g with scopes: var(f1) = fx5; x6g,

var(f2) = fx1; x6g, var(f3) = fx2; x5g, var(f4) = fx1; x4g, var(f5) = fx2; x3g

and var(f6) = fx1; x2g, respectively. Figure 2 depicts two di�erent tree-decompositions

for P . The tree on the left is valid for Z = ffx1; x5; x6g; fx1; x2; x5g) (v1 and v2
are solution-vertices for the �rst and second tasks, respectively), the tree on the

right is valid for Z = ffx1; x4g; fx2; x6gg.

In the tree of Fig. 2.a, the separator of v2 and v3 is sep(v2; v3) = fx1; x2g,

the eliminator of v2 and v3 is elim(v2; v3) = fx5g, the eliminator of v3 and v2 is

elim(v3; v2) = fx3; x4g.

1 Normally, solution-vertices are only implicitly required. In our formulation we require
them explicitly in order to simplify the algorithmic presentation.

Procedure CTE

Input: A COP instance P , a set of tasks Z = fZig
k

i=1 and a valid tree-

decomposition < T; �; >.

Output: An augmented tree such that each solution-vertex for Zi contains the
solution to task Zi.

Repeat

1. Select and edge (u; v) such that m(u;v) has not been computed

and u has received messages from all adjacent vertices other than v

2. m(u;v) minelim(u;v)(
P

g2cluster(u);g 6=m(v;u)
g)

(where cluster(u) = (u) [fm(w;u)j(w;u) 2 Tg)
Until all messages have been computed

Fig. 1. Algorithm cluster-tree elimination (CTE)

Algorithm CTE (Figure 1) computes the solution to a set of tasks by pro-

cessing a valid tree-decomposition. It works by computing messages that are

sent along edges in the tree. Message m(u;v) is a function computed at vertex u

and sent to vertex v. For each edge, two messages are computed. One in each

direction. Message m(u;v) can be computed as soon as all incoming messages to

u other than m(v;u) have been received. Initially, only messages at leaves qualify.

As leaves compute their messages, their adjacent vertices also qualify for com-

putation. The process goes on until all messages have been computed. The order

in which qualifying messages are computed is irrelevant.

The set of functions associated with a vertex u augmented with the set of

incoming messages is called a cluster,

cluster(u) = (u) [(w;u)2T m(w;u)

A message m(u;v) is computed as the sum of all functions in cluster(u) excluding

m(v;u) and the subsequent elimination of variables in the eliminator of u and v.

Formally,

m(u;v) = min
elim(u;v)

(
X

g2cluster(u);g 6=m(v;u)

g)

The algorithm terminates when all messages are computed. A solution to task

Zi is contained in any of its solution-vertices, as the sum of all functions in the

cluster,
P
g2cluster(u) g.

Example 2. Figure 2 shows the execution trace of CTE with the two tree-

decompositions, as the messages sent along the tree edges. For instance, in

Figure 2.a only messages from leaves, m(v1;v2) and m(v3;v2), can be initially com-

puted. Lets suppose that CTE starts computingm(v1;v2). Since (v1) = ff1; f2g

and the eliminator of v1 and v2 is elim(v1; v2) = fx6g, the message is computed

as m(v1;v2) = minx6 (f1 + f2). At this point we can compute either m(v3;v2) or

m(v2;v3). The later is computed by summing all functions in (v2) with m(v1;v2),

3�

1�

2�

},{)(521 ��� =χ
)},(),,({)(5236511 ������� =ψ

},{)(413 ��� =χ
)},({)(4143 ���� =ψ

},,,{)(63212 ����� =χ
),,({)(5232 ���� =ψ

)},(),,(216325 ������

(b)(a)

3�

1�

2�

},,{)(6511 ���� =χ
)},(),,({)(6126511 ������� =ψ

},,{)(5212 ���� =χ
)},(),,({)(2165232 ������� =ψ

},,,{)(43213 ����� =χ
)},(),,({)(3254143 ������� =ψ

)(54},{),(4323 ������ [[YY +=

)(),(63}{),(21532 YY[YY ������� ++=

)(21}{),(621 ������ [YY +=

)(),(63}{),(23212 YY[YY ������� ++=
)(21}{),(621 ������ [YY +=

)(),(63}{),(23212 YY[YY ������� ++=

)(54},{),(4323 ������ [[YY +=
)(),(63}{),(21532 YY[YY ������� ++=

Fig. 2. Execution-trace of CTE on two di�erent tree-decompositions.

and eliminating variables in elim(v2 ; v3) = fx5g. The process goes on until all

four messages have been computed.

Once messages are computed, solutions are contained in the solution-vertices.

For instance, the solution to task fx1; x2; x5g is contained in cluster(v2) as

m(v1;v2)+m(v3;v2)+f3+f6. Similarly, the solution to task fx1; x5; x6g is contained

in cluster(v1) as f1 + f2 +m(v2;v1).

Theorem 1 (correctness [17, 8, 21]). Algorithm CTE is correct. Namely,
for each solution-vertex v of Zi,

P
g2cluster(v) g = minX�Zi(

Pn

j=1 fj)

We can show that,

Theorem 2 (complexity). The complexity of CTE is time O(r � (hw + dg) �

d
tw+1) and space O(r�ds), where r is the number of vertices in the tree-decomposition,
hw is the hyper-tree width, dg is the maximum degree among the vertices, tw is
the tree-width, d is the largest domain size in the problem and s is the maximum
separator size.

Proof. Regarding time, let TCTE(u; v) be the time required by CTE to compute

m(u;v). It can be shown that TCTE(u; v) is bounded by cu � d
j�(u)j, where cu is

the size of cluster u, cu = j (u)j+ jf(v; u) 2 Egj. It is clear that j�(u)j � tw and

cu � hw+dg. Therefore, TCTE(u; v) is O((hw+dg)�d
tw). There are r�1 edges,

yielding 2(r� 1) di�erent messages. Therefore, the total complexity is bounded

by,

d
tw
� 2r � (ht + dg)

Regarding space, message m(u;v) is de�ned over sep(u; v), which has size

bounded by the maximum separator size s. Therefore, the message has at most

d
s entries. There are 2(r � 1) di�erent messages to store, which yields O(r � ds)

entries. ut

Procedure MiniBucketsApprox

Input: a set of functions G, a set of ordered variables V , parameter z

Output: a set of functions fhjgkj=1 that provide a lower bound asP
k

j=1
h
j � minV (

P
g2G

g)

for each xi 2 V from last to �rst do

G
0 fg 2 G j xi 2 var(g)g

compute P(G0) = fPjg
k

j=1 a z-partition of G0

h
j minxi(

P
g2Pj

g), for j = 1::k

G (G�G0) [fhjg
Returns: G

Fig. 3. Procedure MiniBucketsApprox(V;G; z).

Since CTE is time and space exponential in tw and s, respectively, low width

tree-decompositions are desirable(note that tw + 1 � s). Finding the minimum

width decomposition-tree is known to be NP-complete [1], but various approxi-

mation algorithms are available [2].

4 Mini-Cluster-Tree Elimination (MCTE)

The time and especially the space complexity of CTE renders the method infea-

sible for high-width tree-decompositions. One way to decrease the algorithm's

complexity is to bound the size of the messages' arity to a prede�ned size z.

This idea, called mini-buckets, was �rst introduced in the bucket elimination

context [9]. Here we extend it from approximating variable elimination to the

more general setting of approximating tree-decomposition algorithms.

Let G be a set of functions having variable xi in their scope. Suppose we

want to compute a target function as the sum of functions in G and subsequently

eliminate variable xi (i.e, minxi(
P
g2G g)). If exact computation is too costly, we

can partition G into sets of functions P(G) = fPjg
k
j=1 called mini-buckets, each

one having a combined scope of size bounded by z. Such a partition is called a z-
partition. If more than one partition is possible, any one is suitable. Subsequently,

a bounded arity function hj is computed at each mini-bucket Pj as the sum of

all its included functions and the elimination of xi (i.e, h
j = minxi(

P
g2Pj

g)).

The result is a set of functions fhjgkj=1 which provides a lower bound to the

target function. Namely,
P

j h
j � minxi

P
g2G g.

If more than one variable has to be eliminated, the process is repeated for

each, according to a prede�ned ordering. Procedure MiniBucketsApprox(V;G; z)

(Fig. 3) describes this process. Each iteration of the loop performs the elimination

of one variable.2

2 Another option is to eliminate all variables at once from each mini-bucket (i.e, hj =

minV (
P

g2Pj
g)). While correct, it will provide less accurate lower bounds.

Applying this idea to CTE yields a new algorithm called mini-cluster-tree
elimination (MCTE(z)) The algorithm can be obtained by replacing line 2 in

CTE by:

2. M(u;v) MiniBucketApprox(elim(u; v); cluster(u) �M(v;u); z)

(where cluster(u) = (u) [fM(w;u)j(w; u) 2 Tg)

It works similar to CTE except that each time that a message has to be com-

puted, the set of functions required for the computation are partitioned into

mini-buckets, producing a set of mini-messages that are transmitted along the

corresponding edge. Thus, in MCTE(z), a message is a set of bounded arity func-
tions, M(u;v) = fm

j

(u;v)
g (note that we use upper-case to distinguish MCTE(z)

messages from CTE messages). A cluster is now the union of all messages and

all functions in a node, cluster(u) = (u) [(w;u)2T M(w;u) The message M(u;v)

is computed by calling MiniBucketsApprox(V;G; k) with V = elim(u; v) and

G = cluster(u)�M(v;u). When all messages have been computed a lower bound

to task Zi is contained in its solution-vertex v as the sum of all the functions in

its cluster,
P
g2cluster(v) g.

Example 3. Figure 4 shows the execution-trace of MCTE(2) with our running

example and the tree-decomposition of Fig. 2.a. For instance, the computation of

M(v3;v2) requires a 2-partition of (cluster(v3)�M(v2;v3)) = ff4(x1; x4); f5(x2; x3)g.

The only 2-partition here is P1 = ff4g and P2 = ff5g, which yields a two-

functions message M(v3;v2) = fminx4(f4);minx3(f5)g.

Lemma 1. [9] LetH be the result of a call to procedureMiniBucketsApprox(V;G; z).
Then, X

h2H

h � min
V

(
X

g2G

g)

Theorem 3 (correctness). MCTE(z) is correct. Namely, given a valid tree-
decomposition, lower bounds for every task Zi can be computed. Speci�cally, if u
is a solution-vertex of task Zi then,

P
g2cluster(u) g � minX�Zi(

Pn

j=1 fj)

Proof (sketch).
Consider a tree-decomposition < T; �; > and the corresponding executions

of CTE and MCTE(z). Let (u; v) be an arbitrary edge and m(u;v) and M(u;v) =

fm
j

(u;v)
gkj=1 the messages computed by CTE and MCTE(z), respectively. From

Theorem 1, we have that m(u;v) = minX�Zi (
Pn

j=1 fj). Therefore, it su�ces to

prove that
Pk

j=1m
j

(u;v)
� m(u;v).

Let H = [(v;w)2E;w 6=uM(v;w) and I = [(v;w)2E;w 6=um(v;w). By de�nition,

fm
j

(u;v)
gkj=1 = MiniBucketsApprox(elim(u; v); (u) [H; z)

and

m(u;v) = min
elim(u;v)

(
X

g2 (u)[I

g)

Let D be the longest path from node u to a leaf, without passing through

node v. The proof is by induction over D(u; v).

{ D = 0: node u is a leaf and H = I = ;. From the de�nition of M(u;v) and

the previous Lemma we have that

kX

j=1

m
j

(u;v)
� min
elim(u;v)

(
X

g2 (u)

g)

The right-hand part is m(u;v). Therefore, the claim is proved.

{ D > 0: From the de�nition of M(u;v) and the Lemma we have that

kX

j=1

m
j

(u;v)
� min
elim(u;v)

(
X

g2 (u)[H

g)

From the induction hypothesis,
P
m
j

(v;w)
� m(v;w), for all (v; w) 2 E;w 6= u.

Therefore,

min
elim(u;v)

(
X

g2 (u)[H

g) � min
elim(u;v)

(
X

g2 (u)[I

g)

The right-hand part is m(u;v). Therefore, the claim is proved.

ut

In order to analyze the complexity of MCTE(z) we de�ne a new labeling �,

which depends on the tree-decomposition structure.

De�nition 8 (�, induced hyper-width (hw�)). Let P =< X;D;F > be a
COP instance and < T; �; > be a tree-decomposition. We de�ned a labeling
function

� over nodes in the tree as, �(v) = ff 2 F j var(f) \ �(v) 6= ;g,
where v 2 T . The induced hyper-width of a tree-decomposition is de�ned as,
hw

� = maxv2V j
�(v)j

Observe that �(u) is a superset of (u) which includes those cost functions

not in (u) that may travel to cluster u via message-passing. It can be shown

that the induced hyper-width bounds the maximumnumber of functions that can

be in a cluster, and therefore the number of mini-buckets in a cluster. Namely

hw
� � maxv2V jcluster(v)j. Note that hw � hw

� � m, where hw is the hyper-

width and m is the number of input functions.

Lemma 2. Algorithm MiniBucketsApprox(V;G; z) is time O(jGj � dz)

Proof. The set of functions G de�nes a constraint optimization problem P
0 =<

X
0
; D

0
; G >, where the implicit set of variables X0 is the set of variables men-

tioned in G. Observe that running MiniBucketsApprox(X0
; G; z) is equivalent to

running MBE(z) on P 0. In [14] it was proved that MBE(z) is timeO(r�dz), where

r is the number of input functions. Therefore, MiniBucketsApprox(X0
; G; z) is

O(jGj � dz). MiniBucketsApprox(V;G; z) cannot be more costly, since only a sub-

set V of X0 is eliminated. ut

3�

1�

2�

},,{)(6511 ���� =χ
)},(),,({)(6126511 ������� =ψ

},,{)(5212 ���� =χ
)},(),,({)(2165232 ������� =ψ

},,,{)(43213 ����� =χ
)},(),,({)(3254143 ������� =ψ

),({ 4}{),(
1

),(42323 ������ [YYYY ==

),({ 1}{),(
1

),(62121 ������ ����� ==)}(2}{),(
2

621 ����� ��� =

)}(5}{),(
2

323 ����� ��� =

),({ 3),(
1

}{),(
1

),(2153232 ������� ������� +==
}),(

2
),(

3
2312 YYYY �� =

),({ 6),(
2

}{),(
1

),(2321212 ������� ������� +== ,6),(
2

12 �� �� =
}),(

2
),(

3
2132 YYYY �� =

),(3}{),(
2

212 ����� ��� =

Fig. 4. An execution trace of MCTE(2).

Theorem 4 (complexity). Given a problem P and a tree-decomposition T

having induced hyper width hw�, MCTE(z) is time and space O(r � hw� � dz),

where r is the number of nodes in T , and d bounds the domain size.

Proof. Let TMCTE(u; v) denote the time required by MCTE(z) to compute

M(u;v). SinceM(u;v) is computed by callingMiniBucketsApprox withG = cluster(u)�

M(v;u), and jcluster(u) �M(v;u)j � hw
�, the previous Lemma establishes that

TMCTE(u; v) is O(hw
� � dz). MCTE computes 2(r� 1) messages. Therefore, the

total complexity is

O(dz � r � hw�)

ut

Clearly, increasing z is likely to provide better lower bounds at a higher

cost. Therefore, MCTE(z) allows trading lower bound accuracy for time and

space complexity. There is no guaranteed improvement however. The actual

lower bounds provided by MCTE(z) depend on z and the z-partitions used

during the execution.

5 MBTE(z): Computing Bounds to Singleton Tuples

There are a variety of ways in which valid tree-decompositions can be obtained.

We analyze a special decomposition called bucket-trees, which is particularly

suitable for the multiple singleton optimality task. The concept of bucket-tree is

inspired from viewing bucket-elimination algorithms as message-passing along a

tree [7]. A bucket-tree can be de�ned over the induced graph relative to a variable

ordering.

De�nition 9 (induced graph, induced width [7]). An ordered constraint

graph is a pair (G; o), where G is a constraint graph and o = x1; :::; xn is an

ordering of its nodes. Its induced graph is obtained by processing the nodes recur-
sively, from last to �rst. When node xi is processed, all its earlier neighbors are
connected. The induced width w

�(o) is the maximum number of lower indexed
neighbors over all vertices of the induced graph.

De�nition 10 (bucket-tree).Given an ordered induced graph G�(o) of a prob-
lem P along o, a bucket-tree < T; �; > is de�ned as follows. i: There is a vertex
vi associated with each variable xi. The parent of vi is vj i� xj is the latest ear-
lier neighbor of xi in G

�(o) (namely, xj is the closest earlier neighbor of xi in
G
�(o)). ii: �(vi) contains xi and every earlier neighbor of xi in G

�(o). 3. (vi)
contains every constraint having xi as the highest variable in its scope.

Notice that in a bucket-tree, vertex v1, the root, is a solution-vertex for the

task fx1g.

The bucket-tree can be augmented with solution-vertices for each singleton-

optimality task. A vertex ui with �(ui) = fxig and (ui) = ; is added for

i = 2::n. Vertex vi is the parent of ui. Subsequently, we de�ne algorithmBucket-
tree elimination (BTE) to be CTE applied to the augmented bucket-tree.

Example 4. Figure 5 shows the execution-trace of BTE on our running example.

Observe that messages from u-nodes to v-nodes do not need to be sent because

they are null functions ((ui) = ;).

Observe that BTE computes the exact singleton optimality problem. Ob-

serve also that BTE can be viewed as a two-phases algorithm. : a �rst phase in

which top-down messages are computed and a second phase in which bottom-

up messages are computed. The �rst phase (top-down) is equivalent to bucket
elimination (BE) [7]: Cluster vi is the bucket of xi. Incoming messages are new

functions derived from higher buckets and added to the bucket of xi. Computing

message m(vi;p(vi)), where p(vi) is the parent of vi, performs the elimination of

variable vi and produces a new function (the message) that is sent to a lower

bucket (the parent of vi).

Next, Mini bucket tree elimination (MBTE(z)) is de�ned by approximating

BTE via mini-buckets or, equivalently, by executing MCTE(z) over the aug-

mented bucket-tree. BTE and MBTE(z) process the same tree-decomposition

but in MBTE(z) clusters are z-partitioned, producing mini-bucket-based mes-

sages (BTE and MBTE are not explicitly described). From Theorem 4 we can

conclude,

Theorem 5 (complexity).Given a variable ordering, the complexity of MBTE(z)
is O(n � hw� � dz), when n is the number of variables and hw� is the bucket-tree
induced hyper-width.

MBTE vs nMBE: Given a variable ordering, it is easy to see that the variable-

elimination based, mini-bucket elimination MBE(z) is equivalent to the top-

down message-passing of MBTE(z). In particular, running MBE(z) n times, an

algorithm that we call nMBE(z), each time having a di�erent variable initiating

the ordering, is an alternative for the singleton optimality problem. MBTE and

6�

)(),(3}{),(56525 YY[YY ������ +=

)(21}{),(656 ������ [YY +=

)(),(3}{),(52265 YY[YY ������ +=

2�

5�

1�

3�

4�

6�

3�

4�

2�

5�

)(),(21},{),(655166 YY[[XY ������� ++=

)(),(),(3},{),(52562155 YYYY[[XY ������� ++=

)(),(5}{),(32233 YY[XY ������ +=

)(5}{),(323 ����� [YY =

)(),(),(6}{),(2521132 YYYY[YY ������� ++=

),(),(6),(232152 YYYYYY ���� ++=

)(),(),(),(6}{),(212325122 YYYYYY[XY �������� +++=

)(),(),(6}{),(2325212 YYYY[YY ������� ++=

),(),(1421 YYYY �� =
)(4}{),(414 ����� [YY =

),(),(1241 YYYY �� =

)(),(4}{),(41144 YY[XY ������ +=

Fig. 5. An execution trace of BTE for the task of computing the best extension of all

singleton tuples. If only top-down messages are considered, the algorithm is equivalent
to BE

nMBE are closely related in terms of accuracy. Speci�cally, if MBE(z) is executed

each time with the appropriate variable orderings, both approaches will produce

exactly the same bounds, when using the same bucket-partitioning strategy.

Clearly, however, MBTE(z) is always more e�cient than multiple executions

of MBE(z), since MBE(z) repeats message computation at di�erent executions.

The following Theorem summarizes these properties.

Theorem 6. Let P be a constraint optimization problem and o a variable or-
dering. Lets consider the execution of MBTE(z) over the bucket-tree relative to
o.

{ (Accuracy) For each variable xi, there is an ordering oi initiated by xi such
that executing MBE(z) with oi produces the same lower bound as MBTE(z)

for task fxig, provided that both algorithms use the same criterion to select
z-partitions.

{ (time comparison) Let nMBE(z) be applied using the n previously de�ned
oi orderings. Then, every message computed by MBTE(z) is also computed

by nMBE(z), and there are some messages that are computed multiple times
(up to n) by nMBE(z).

Proof (sketch). We only de�ne ordering oi. Checking that MBE(z) with oi pro-

duces the same lower bounds and computes the same messages comes quite

straightforward. We need some operations over sequences. Let � and S be a

sequence and a subset of variables, respectively (for instance � = (x3; x8; x2; x5)

and S = fx2; x3g), then: �
0 is its reverse (�0 = (x5; x2; x8; x3)), � # S is the

projection of the sequence onto the set (� # S = (x3; x2)) and � # S is the

projection onto the complementary of S (� # S = (x8; x5))

Let o = �; xi; � (namely, � and � are the subsequences that come prior and

posterior to xi in the ordering o). Let anc(i) be the set of ancestors of variable

xi in the bucket-tree relative to o. We de�ne:

{
 = � # anc(i)

{ � = � # (anc(i) \ (vi))

{ � = � # anc(i)� (vi)

The ordering oi is de�ned as oi = xi; �; �
0
;
; � ut

Thus, MBTE(z) is never worse than nMBE(z). Since the complexity of run-

ning MBE(z) n times is O(n �m � dz) and MBTE(z) is O(n �hw� � dz), signi�cant

gains are expected when hw� is smaller relative to m.

6 Comparison of MBTE with Soft Arc-consistency

Soft arc-consistency (SAC) [20] is the most general of a sequence of bounds for

singleton optimization based in di�erent forms of arc-consistency. In this Sec-

tion we show through two examples that there is no dominance relation between

them. Therefore, a potencial superiority of one over the other can only be empir-

ically demonstrated. In our discussion, we consider the most general algorithm

for SAC. Namely, the algorithm that after achieving soft arc-consistency, is al-

lowed to iterate non-deterministically projecting and extending cost functions in

order to increase, if possible, the available bounds.

Example 5. Consider a COP instance with three variables x1; x2; x3, two values

per domain a; b and a soft constraint fi;j(xi; xj) for each pair of variables such

that its micro-structure is depicted in Figure 6.a. Non-zero costs between pairs

of values are represented by links. All links indicate cost 1 (the default), except

the link between values a of variables x2 and x3, which has cost 2.

Lets consider the singleton bound for the tuple (x1; a). SAC can project the

f23 onto x2 producing the equivalent problem depicted in Figure 6.b (unary costs

are depicted next to their values). Then, the algorithm can project what remains
in f23 onto x3 (Figure 6.c) . Subsequently, unary costs in variables x2 and x3
can be extended towards f21 and f31 (Figure 6.d). Finally, f21 and f31 can be

projected onto x1 (Figure 6.e). The resulting lower bound for the tuple (x1; a) is

2. It can be easily observed that MBTE(2) computes a lower bound of 1, only.

The reason of the superiority of SAC in this example is that MBTE(2) need

to transform the problem into an acyclic structure and each cost function has

a single path to be propagated through. On the other hand, SAC works with

the (possibly cyclic) constraint graph and may propagate di�erent projections

of the same function through di�erent paths that may eventually converge. In

the example, SAC projects information from f23 to x2 and x3. This information

converges in x1. MBTE(2), depending on the variable ordering will project f23
to either x2 or x3, but not to both of them.

Example 6. Consider a COP instance with three variables, two-value domains

and three binary functions fij, one for each pair of variables. Function fij assigns

cost 0 to tuples with the same value for the two variables, and cost 1 to tuples

with di�erent variables. SAC is completely useless in this problem (no projection

or extension is possible) Lets consider MBTE(3) with the lexicographic order-

ing. It can be shown that it obtains a lower bound of one 1 for all singleton

tuples. It could be argued that the superiority of MBTE is because larger scopes

are allowed (as a matter of fact, in this example MBTE(3) provides exact val-

ues for singleton optimization). However, it is not the case, the reason is that

SAC can only project cost functions one by one, while MBTE can sum several

functions as long as the arity does not surpass z and then project from the

result. In a simplistic way, SAC is only allowed to compute bounds by usingP
f2F minV f , while MBTE can perform minV

P
f2F f . Clearly, there are many

situations where
P
f2F minV f produces null functions, while minV

P
f2F f pro-

duces non-null functions. This fact allows MBTE to outperform SAC in some

problem instances.

7 Empirical Results

We performed a preliminary experimental evaluation of the performance of

MBTE(z) on solving the singleton optimality task. i) we have investigated the

performance of MBTE(z) against its obvious brute-force alternative { nMBE(z),

and showed that MBTE(z) achieves a signi�cant speedup over nMBE(z). ii) we

demonstrated that as expected, MBTE(z) accuracy grows as function of z, thus

allowing a trade-o� between accuracy and complexity. iii) we evaluated the ef-

fectiveness of MBTE(z) in improving Branch and Bound search.

All our experiments are done using the Max-CSP task as a sample domain.

Max-CSP is an optimization version of Constraint Satisfaction and its task is

to �nd an assignment that satis�es the most constraints. We use its formulation

as a minimization problem where each constraint is a cost function that assigns

a cost 1 to each nogood and cost 0 to each allowed tuple. We used the well

known four parameter random model, < N;K;C; T >, where N is the number

of variables, K is the domain size, C is the number of constraints, and T is the

tightness of each constraint (see [15] for details).

2�3�
�

� �

�2

1� � �

2�3�
�

� �

�

1� � �

1

2�3�
�

� �

�

1� � �

(a) (b)

(d)

2�3�
�

� �

�

1� � �

(e)

2

2�3�
�

� �

�

1� � �

11

(c)

Fig. 6. Tree iterations of SAC.

7.1 Speedup of MBTE(z) vs. nMBE(z)

We have run a number of experiments in order to investigate the speedup of

MBTE(z) over nMBE(z). We will be comparing two algorithms: MBTE(z) and

nMBE(z). For every problem instance, we run both MBTE(z) and nMBE(z),

and record their running times tMBTE(z) and tnMBE(z). The speedup is de�ned

as tnMBE(z)=tMBTE(z). Given a problem instance, we use a min-degree ordering
of the variables3 for creating the bucket-tree for the MBTE algorithm.

In Tables 1 and 2 we have the results of experiments with two sets of Max-

CSP problems: N = 100, K = 3, 200 � C � 400 and N = 50, K = 5, 75 � C �

135. In these experiments the value of T is irrelevant since the complexity of the

algorithms do not depend on it. Each row in the table corresponds to problems

with a �xed number of constraints (column 1). In column 2 we have the average

induced width along the min-degree ordering. In columns 3 through 8 we report

the average speed-up for di�erent values of z. In our experiments, the average

CPU time per problem for nMBE(z) ranges from a fraction of a second (z = 2)

to as much a 5 minutes (z = 7).

We observe that the speedup is sometimes as large as an order of magnitude.

We also see that the speedup is correlated with the induced width w� - the larger

the induced width the smaller the speedup. Another interesting observation from

Table 1 is that, when the constraint graph is sparse (C = 200), the speedup

3 The variable with the smallest degree is placed at the end of the ordering, all its

neighbors are connected and it is removed from the graph. The process is repeated
until every variable has been selected.

N = 100, K = 3. 50 instances.

C w
�
z=2 z=3 z=4 z=5 z=6 z=7

200 21.2 10.8 10.1 9.20 8.36 7.77 7.82
250 27.9 6.87 6.86 6.60 6.29 6.10 6.16

300 33.7 4.49 4.97 5.04 5.06 5.14 5.28

350 38.9 3.42 4.02 4.22 4.35 4.50 4.73

400 43.0 2.65 3.36 3.68 3.88 4.07 4.34

Table 1. Speedup of MBTE(z) over nMBE(z).

N = 50, K = 5. 50 instances.

C w
�
z=2 z=3 z=4 z=5 z=6 z=7

75 7.10 7.63 6.63 6.36 6.49 7.11 8.93

90 9.48 5.98 4.64 4.59 4.76 5.11 5.44
105 11.1 4.49 3.68 3.64 3.79 3.97 4.34

120 13.9 3.72 3.17 3.12 3.32 3.44 3.70

135 16.3 3.29 2.73 2.67 2.81 3.02 3.21

Table 2. Speedup of MBTE(z) over nMBE(z).

decreases as z increases, while for dense graphs (C = 400) the speedup increases

with z.

7.2 Accuracy of MBTE(z)

One of the main advantages of MBTE(z) is that it represents a whole family of

algorithms, parameterized by z. When incorporated within a search algorithm as

a heuristic function, MBTE(z) allows a trade-o� between complexity of heuristic

computation and its accuracy. Small values of z yield heuristics that are easy

to compute, but have low accuracy. Higher values of z yield heuristics that are

harder to compute, but have higher accuracy.

In Tables 3 and 4 we have the results of experiments with two sets of Max-

CSP problems: N=50, K=3, C=90, 1 � T � 8, and N=40, K=5, C=65, 10 �

T � 20. On each problem instance we ran MBTE(z) for di�erent values of z, as

well as the exact algorithm BTE. We compute the cost for each value of each

variable, and compare approximated values computed by MBTE(z) against the

exact value computed by BTE.

In column 1 we have the tightness and in the last column we report the

exact average cost per singleton assignment. In the remaining columns we have

the average running time of MBTE(z) for each z, and the average absolute

error of the singleton variable cost computed by MBTE(z) for each z and T.

By comparing the exact cost with the absolute error, we can get an idea of the

relative error.

As expected, as z increases, the running time of MBTE(z) increases, and the

error decreases, eventually reaching 0.

N = 50, K = 3, C = 90. w� = 9:5. 100 instances.

z=2 z=3 z=4 z=5 z=6 z=7 z=8 z=9 z=10

time

0.02 0.03 0.06 0.11 0.26 0.55 1.24 2.70 5.25

T abs error cost

1 0 0 0 0 0 0 0 0 0 0.003

2 0.007 0.006 0.005 0.004 0.003 0.002 0.002 0.0006 0.0003 0.016

3 0.66 0.64 0.61 0.57 0.50 0.42 0.33 0.23 0.14 0.89
4 4.46 4.26 3.71 3.31 2.68 2.18 1.49 0.88 0.28 5.27

5 9.16 8.34 6.61 5.39 4.30 3.34 2.41 1.45 0.57 12.7

6 12.7 10.4 7.81 6.49 5.11 3.88 2.76 1.65 0.74 22.9

7 13.2 10.8 7.97 6.44 5.12 3.78 2.67 1.58 0.61 34.9

8 10.7 10.1 7.63 6.17 4.92 3.60 2.57 1.59 0.63 51.1

Table 3. Accuracy of MBTE(z).

N = 40, K = 5, C = 65. w� = 6:8. 100 instances.

z=2 z=3 z=4 z=5 z=6 z=7 z=8 z=9 z=10

time

0.03 0.06 0.19 0.63 2.02 6.19 14.0 18.7 18.7

T abs error cost

10 0.013 0.011 0.007 0.004 0.003 0.001 0.0002 0 0 -

11 0.045 0.039 0.031 0.026 0.017 0.008 0.002 0 0 -

12 0.171 0.157 0.14 0.11 0.073 0.029 0.0035 0 0 -
13 0.699 0.664 0.61 0.51 0.37 0.18 0.024 0 0 -

14 1.79 1.72 1.53 1.22 0.88 0.40 0.093 0.002 0 -

15 3.16 2.94 2.46 1.83 1.16 0.47 0.06 0 0 -
16 4.97 4.49 3.51 2.54 1.69 0.70 0.10 0.006 0 -

17 6.51 5.52 4.06 2.85 1.75 0.77 0.14 0 0 -

18 7.84 6.20 4.46 3.11 1.92 0.83 0.18 0.006 0 -
19 9.27 7.03 4.97 3.42 2.22 0.88 0.16 0 0 -

20 10.2 7.67 5.51 3.75 2.37 1.12 0.22 0.02 0 -

Table 4. Accuracy of MBTE(z).

7.3 BBBT: Branch and Bound with MBTE(z)

N = 50, K = 5, C = 150. w� = 17:6. 10 instances. time = 600sec.

BBMB BBBT PFC-MPRDAC
T z=2 z=3 z=4 z=5 z=6 z=2

solved # solved # solved # solved # solved # solved # solved
time time time time time time time

backtracks backtracks backtracks backtracks backtracks backtracks backtracks

5 6 7 6 9 10 10 10
45 54 6.2 75 6.2 1.9 0.01

1.11M 1.51M 177K 2.29M 123K 55 436
7 4 5 7 8 9 10 10

134 150 213 208 97 2.5 1.7
5.86M 4.62M 5.3M 5.14M 2.1M 94 15K

9 - - 1 3 3 10 10
325 227 229 14.3 27.3
7.4M 4.97M 4.85M 2.1K 242K

Table 5. BBBT(z) vs. BBMB(z).

N = 100, K = 5, C = 300. w� = 33:9. 10 instances. time = 600sec.

BBMB BBBT PFC-MPRDAC
T z=2 z=3 z=4 z=5 z=6 z=7 z=2

solved # solved # solved # solved # solved # solved # solved # solved
time time time time time time time time

backtracks backtracks backtracks backtracks backtracks backtracks backtracks backtracks

3 6 6 6 6 8 8 10 10
6 6 6 5 6.8 15 7.73 0.03

150K 150K 150K 115K 115K 8 60 750
5 2 2 2 2 3 3 10 10

36 32 24 5.3 38 33 14.3 0.06
980K 880K 650K 130K 870K 434K 114 1.5K

7 0 0 0 0 0 0 10 6
29 267
331 1.6M

Table 6. BBBT(z) vs. BBMB(z).

Since MBTE(z) computes lower bounds for each singleton-variable assign-

ment, when incorporated within a Branch-and-Bound search, MBTE(z) can

facilitate domain pruning and dynamic variable ordering. In this section we

investigate the performance of such a new algorithm, called BBBT(z) (Branch-

and-Bound with Bucket-Tree heuristics), and compare it against BBMB(z) [13].

BBMB(z) [13] is a Branch-and-Bound search algorithmthat uses Mini-Bucket

Elimination (MBE(z)) as a pre-processing step. MBE(z) generates intermediate

functions that are used to compute a heuristic value for each node in the search

space. Since these intermediate functions are pre-computed, before search starts,

BBMB(z) uses the same �xed variable ordering as MBE(z). Unlike BBBT(z),

BBMB(z) does not prune domains of variables. In the past [13] we showed that

BBMB(z) was e�ective and competitive with alternative state-of-the-art algo-

rithms for Max-CSP.

BBBT(z) is a Branch-and-Bound search algorithm that uses MBTE(z) at

each node in the search space. Unlike BBMB(z), BBBT(z) has no pre-processing

step. At each node in the search space, MBTE(z) is used to compute lower

bounds for each variable-value assignment of future variables. These lower bounds

are used for domain pruning { whenever a lower bound of a variable-value as-

signment is not less than the global upper bound, the value is deleted. BBBT(z)

backtracks whenever an empty domain of a future variable is created. BBBT(z)

also uses dynamic variable ordering { when picking the next variable to instanti-

ate, it selects a variable with the smallest domain size. Ties are broken by picking

a variable with the largest sum of lower bounds associated with each value. In

addition, for value selection, BBBT(z) selects a value with the smallest lower

bound.

In Tables 5-7 we have the results of experiments with three sets of Max-CSP

problems: N=50, K=5, C=150, 5 � T � 9, N=100, K=5, C=300, 3 � T � 7,

and N=50, K=5, C=100, T=15. On each problem instance we ran BBMB(z) for

di�erent values of z, as well as BBBT(2). We also ran BBBT(z) for larger values

of z, but BBBT(2) was most cost e�ective on these problems. For comparison,

we also report the results with PFC-MPRDAC [16] that is currently one of the

best algorithms for Max-CSP.

N = 50, K = 5, C = 100. w� = 10:6. 10 instances. time = 600sec.

BBMB BBBT PFC-MPRDAC
T z=4 z=6 z=8 z=2 z=5 z=8

solved # solved # solved # solved # solved # solved # solved
time time time time time time time

backtracks backtracks backtracks backtracks backtracks backtracks backtracks

15 8 10 10 3 9 8 9
184 4.51 12.4 394 190 91 108
13M 120K 24K 22K 565 30 1.0M

Table 7. BBBT(z) vs. BBMB(z).

In column 1 we have the tightness, in the last two columns we report BBBT(2)

and PFC-MPRDAC, and in the middle columns we have BBMB(z). For each set

of problems, we report the number of problems solved (within the time bound of

600 seconds), the average CPU time and number of deadends for solved problems.

For example, we see from Table 5 (N=50, K=5, C=150), that when tightness

T is 5, BBMB(6) solved all 10 problems, taking 6.2 seconds and 123 thousand

backtracking steps, on the average, whereas BBBT(2) also solved all 10 problems,

taking 1.9 seconds and 55 backtracking steps, on the average.

We see from Tables 5 and 6 that on these two sets of problems, BBBT(2)

is vastly superior to BBMB(z), especially as the tightness increases. Average

CPU time of BBBT(2) is as much as an order of magnitude less than BBMB(z).

Sporadic experiments with 200 and 300 variable instances showed that BBBT(2)

continues to scale up very nicely on these problems. BBBT(2) is also faster than

PFC-MPRDAC on tight constraints.

The experiments also demonstrate the pruning power of MBTE(z). The num-

ber of backtracking steps used by BBBT(2) is up to three orders of magnitude

less than BBMB(z). For example, we see from Table 5 that when tightness T is

7, BBMB(6) solved 9 problems out of 10, taking 2.1 million backtracking steps

in 97 seconds, whereas BBBT(2) solved all 10 problems, taking 94 backtracking

steps in 2.5 seconds.

We observed a di�erent behavior on problems having sparser constraint

graphs and tight constraints. While still very e�ective in pruning the search

space, BBBT was not as cost-e�ective as BBMB(z) (which invests in heuristic

computation only once). Table 3 exhibits a typical performance (N=50,C=100,

K=5, T=15). We observe that here BBBT's performance exhibit a U-shape, im-

proving with z up to an optimal z value. However, BBBT's slope of improvement

is much more moderate as compared with BBMB.

8 Conclusions and future work

Since constraint optimization is NP-hard, approximation algorithms are of clear

practical interest. In the paper we extend the mini-bucket scheme proposed for

variable elimination to tree-decomposition. We have introduced a new algorithm

for lower bound computation. MCTE(z) is a general method for computing

compute lower bounds to arbitrary sets of tasks. The parameter z allows trading

accuracy for complexity and can be adjusted to best �t the available resources.

MBTE(z) is an instantiation of MCTE(z) for the computation of lower bounds to

singleton optimization. This task is relevant in the context of branch and bound

solvers. Both algorithms have been derived using CTE, a tree-decomposition

schema for reasoning tasks which uni�es a number of approaches appearing

in the past 2 decades in the constraint satisfaction and probabilistic reasoning

context.

We have shown that bounds obtained with MBTE(z) have the same accuracy

as if computed with n runs of plain mini-buckets. The quality of such accuracy

has already been demonstrated in a number of domains [9]. We have also shown

that MBTE(z) can be up to n times faster than the alternative of running plain

mini-buckets n times. This speed-up is essential if the algorithm is to be used

at every node within a branch and bound solver. Our preliminary experiments

suggest that MBTE(z) is a very promising approach. It generates good quality

bounds at a reasonable cost. Within branch and bound, it reduces dramatically

the search space and sometimes the reduction translates into great time savings.

Taking into account that our implementation is general and has not yet been

optimized, these results are quite promising.

Our approach leaves plenty of room for future improvement, which are likely

to make it more cost e�ective in practice. For instance, it can be modi�ed to

treat separately hard and soft constraints, since hard constraints can be more

e�ciently processed and propagated [10]. As a matter of fact, even if the orig-

inal problem has no hard constraints, our approach can be used to infer them

(i.e, detect infeasible tuples). A second line of improvement is to exploit lower

bound redundancy. Namely, to use tree-decompositions with several solution-

vertices for each task. Since each vertex provides a di�erent lower bound, we can

select the best. Finally, currently our partitioning to mini-buckets was always

random. Investigating heuristics for partitioning may increase the accuracy of

the algorithms.

References

[1] S.A. Arnborg. E�cient algorithms for combinatorial problems on graphs with
bounded decomposability - a survey. BIT, 25:2{23, 1985.

[2] A. Becker and D. Geiger. A su�ciently fast algorithm for �nding close to optimal

junction trees. In UAI96, pages 81{89, 1996.
[3] C. Bessiere and J.C. Regin. MAC and combined heuristics: Two reasons to forsake

FC (and CBJ?) on hard problems. In CP96, pages 61{75, 1996.

[4] Stefano Bistarelli, H�el�ene Fargier, Ugo Montanari, Francesca Rossi, Thomas
Schiex, and Gerard Verfaillie. Semiring-based CSPs and valued CSPs: Frame-

works, properties and comparison. Constraints, 4:199{240, 1999.

[5] S. Bistarelly, R. Gennari, and F. Rossi. Arc consistency for soft constraints. In
Proc. of the 6

th
CP, pages 83{97, Singapore, 2000.

[6] Romuald Debruyne and Christian Bessi�ere. Some practicable �ltering techniques

for the constraint satisfaction problem. In IJCAI99, pages 412{417, 1999.
[7] R. Dechter. Bucket elimination: A unifying framework for reasoning. Arti�cial

Intelligence, 113:41{85, 1999.

[8] R. Dechter and J. Pearl. Tree clustering for constraint networks. Arti�cial Intel-
ligence, 38:353{366, 1989.

[9] Rina Dechter and Irina Rish. A scheme for approximating probabilistic inference.

In UAI97, pages 132{141, 1997.

[10] Rina Dechter and Peter van Beek. Local and global relational consistency. Theo-

retical Computer Science, 173(1):283{308, 20 February 1997.

[11] Eugene Freuder. A su�cient condition for backtrack-free search. Journal of the

ACM, 29:24{32, March 1982.

[12] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural

CSP decomposition methods. In IJCAI99, pages 394{399, 1999.

[13] K. Kask. new search heuristics for max-csp. In CP2000, pages 262{277, 2000.

[14] J. Larrosa. On the time complexity of bucket elimination algorithms. Technical

report, University of California at Irvine, 2001.

[15] J. Larrosa and P. Meseguer. Partial lazy forward checking for max-csp. In Proc.

of the 13
th

ECAI, pages 229{233, Brighton, United Kingdom, 1998.

[16] Javier Larrosa, Pedro Meseguer, and Thomas Schiex. Maintaining reversible DAC

for max-CSP. Arti�cial Intelligence, 107(1):149{163, 1999.

[17] S. L. Lauritzen and D. J. Spiegelhalter. Local computation with probabilities

on graphical structures and their applications to expert systems. Journal of the

Royal Statistical Society, Series B, 34:157{224, 1988.

[18] A. Mackworth. Consistency in networks of constraints. Arti�cial Intelligence, 8,

1977.

[19] B. Nudel. Tree search and arc consistency in constraint satisfaction algorithms.

Search in Arti�cal Intelligence, 999:287{342, 1988.

[20] T. Schiex. Arc consistency for soft constraints. In CP2000, pages 411{424, Sin-

gapore, 2000.

[21] P.P. Shenoy. Binary join-trees for computing marginals in the shenoy-shafer ar-

chitecture. International Journal of Approximate Reasoning, 2-3:239{263, 1997.

[22] G. Verfaillie, M. Lemâ�tre, and T. Schiex. Russian doll search. In AAAI96, pages

181{187, 1996.

