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Abstract. Computing lower bounds to the best-cost extension of a tu-
ple is an ubiquous task in constraint optimization. A particular case of
special interest is the computation of lower bounds to all singleton tu-
ples, since it permits domain pruning in Branch and Bound algorithms.
In this paper we introduce MCTE(z), a general algorithm which allows
the computation of lower bounds to arbitrary sets of tasks. Its time and
accuracy grows as a function of z allowing a controlled tradeoff between
lower bound accuracy and time and space to fit available resources. Sub-
sequently, a specialization of MCTE(z) called MBTE(z) is tailored to
computing lower bounds to singleton tuples. Preliminary experiments on
Max-CSP show that using MBTE(z) to guide dynamic variable and value
orderings in branch and bound yields a dramatic reduction in the search
space and, for some classes of problems, this reduction is highly cost-
effective producing significant time savings and is competitive against
specialized algorithms for Max-CSP.

1 Introduction

One of the main successes in constraint satisfaction is the development of local
consistency properties and their corresponding consistency enforcing algorithms
[19, 11]. They allow to infer and make explicit constraints that are implicit in
the problem. Most useful in practice are consistency enforcing algorithms that
filter out values that cannot participate in a solution. Filtering algorithms can
be embedded into a search-based solver, propagating the effect of the current as-
signment towards future variables by pruning infeasible values under the current
assignment [20, 3, 6].

Several attempts have been made in recent years to extend the notion of local
consistency to constraint optimization problems [4, 5, 21]. The main difficulty
being that inferred soft constraints cannot be carelessly added to the problem,
due to the non-idempotency of the operator used to aggregate costs. A whole line
of research mitigates this problem by extending only directional local consistency
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to soft constraints and focuses on its most practical use: detecting lower bounds
for the best extension of tuples[23, 9, 17, 21, 13, 14]. When there is an upper
bound on the maximum cost of a solution, tuples having a lower bound higher
than this bound cannot participate in an optimal solution and can be viewed
as infeasible (i.e., a nogood). As in the CSP context, lower bounds for values
(singleton tuples) are of special interest, because they can be used to filter out
infeasible values.

This paper, introduces MCTE(z), a general tree decomposition method for
multiple lower bound computation, and MBTE(z), its specialization to tree that
compute singleton tuples. Our scheme is built on top of cluster-tree elimination
(CTE), a tree-based decomposition schema which unifies several approaches for
automated reasoning tasks. Algorithm MCTE(z) approximates CTE using a
partitioning idea similar to mini-buckets [9]. The parameter z controls its com-
plexity (which is exponential in z) as well as its accuracy, and can therefore be
tuned to best fit the available resources.

After describing CTE and introducing MCTE (sections 3 and 4), we de-
scribe MBTE(z) in Section 5. As we show in the empirical section, MBTE(z)
facilitates a parameterized dynamic look-ahead method for variable and value
ordering heuristics in branch and bound. The parameter controls its pruning
power and overhead, and can therefore adjust branch and bound to different
levels of problem hardness: while low accuracy suffices for easy problems, higher
accuracy may be more cost-effective when problems grow harder and larger.

Lower bounds for singleton tuples can be obtained by n runs of the mini-
bucket elimination MBE(z) [9] which we will call nMBE(z). We contrast MBTE(z)
against this alternative nMBE(z). We argue that for the same level of accuracy
(same parameter z), MBTE(z) is considerably more efficient (up to linear speed-
up). Time efficiency is of the essence when the ultimate goal is to use these
algorithms at every node of a branch and bound search. Indeed, our prelimi-
nary experiments on Max-CSP (Section 7) support theory-based expectations
regarding MBTE(z)’s accuracy as a function of z as well as its speed-up relative
to nMBE(z). Most significantly, however, we demonstrate the potential of em-
bedding MBTE(z) in Branch and Bound, showing a dramatic pruning power in
search space relative to competitive Branch and Bound algorithms, which, for
some problem classes is highly cost-effective. For space considerations, some of
the experiments and proofs can be found in the full paper in [15] appearing in
http://www.ics.uci.edu/˜ dechter/publications/.

2 Preliminaries

Definition 1 (sum of functions, variable elimination). Let f and g be two
functions defined over var(f) and var(g), respectively. Then,

1. The sum of f and g, denoted f + g, is a new function defined over var(f)∪
var(g) which returns for each tuple the sum of values given by f and g,
(f + g)(t) = f(t) + g(t)



2. The elimination of xi from f by minimization, denoted minxi
f , is a new

function defined over var(f) − {xi} which returns for each tuple the mini-
mum cost extension to f , (minxi

f)(t) = mina∈Di
{f(t, a)} where Di denotes

the domain of variable xi and f(t, a) denotes the value of f on the tuple
t extended with value a assigned to xi. We use (minS f)(t), to denote the
elimination of a set of variables S ⊆ var(f).

Definition 2 (lower bound function). Let f and g be two functions defined
over the same scope (same set of arguments). We say that g is a lower bound of
f , denoted g ≤ f , iff g(t) ≤ f(t), for all t.

Definition 3 (constraint optimization problem (COP), constraint graph).
A constraint optimization problem (COP) is a triplet P =< X,D,F >, where
X = {x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is a set of finite do-
mains and F = {f1, . . . , fm} is a set of constraints. Constraints can be either
soft (i.e., cost functions) or hard (i.e., sets of allowed tuples). Without loss of
generality we assume that hard constraints are represented as (bi-valued) cost
functions. Allowed and forbidden tuples have cost 0 and ∞, respectively. The
constraint graph of a problem P has the variables as its nodes, and two nodes
are connected if they appear in a scope of a function in F .

Definition 4 (optimization tasks, global and singleton). Given a COP
instance P , a set of optimization tasks is defined by Z = {Zi}k

i=1, Zi ⊆ X where
for each Zi the task is to compute a function gi over Zi, such that gi(t) is the
best cost attainable by extending t to X. Formally, gi(t) = minX−Zi

(
∑m

j=1 fj).
A global optimization is the task of finding the best global cost, namely Z = {∅}.
Singleton optimization is the task of finding the best-cost extension to every
singleton tuple (xi, a), namely Z = {{x1}, {x2}, . . . , {xn}}.

Bucket elimination (BE) [7] is an algorithm for global optimization. Roughly,
the algorithm starts by partitioning the set of constraints into n buckets, one
per variable. Then variables are eliminated one by one. For each variable xi, a
new constraint hi is computed using the functions in its bucket, summarizing
the effect of xi on the rest of the problem. hi is then placed in the bucket of the
last variable in its scope. After processing the last variable, only an empty-scope
constraint (i.e., a constant function) containing the cost of the best solution
remains in the problem. The bucket-elimination algorithm is time and space
exponential in a graph parameter called induced-width (to be defined later).

Mini-bucket elimination (MBE) [9] is an approximation of BE that mitigates
its high time and space complexity. When processing variable xi, its bucket
is partitioned into mini-buckets. Each mini-bucket is processed independently,
producing bounded arity functions which are cheaper to compute and store.
This paper extends the idea of mini-bucket elimination from variable-elimination
algorithms to tree-decomposition schemes.



3 Cluster-Tree Elimination (CTE)

In this Section we present cluster-tree elimination (CTE), a general decompo-
sition method for automated reasoning tasks. The algorithm is not new, it is
a unifying description of variants of such algorithms appearing in the past 2
decades both in the constraints community and the probabilistic reasoning com-
munity [18, 8, 22, 12]. We describe the scheme in some detail since it will allow
presenting our approximation in the most general setting. We also provide re-
fined complexity analysis (see [15] for additional details). CTE is based on the
concept of tree-decomposition. We use notation borrowed from [12].

Definition 5 (tree-decomposition, separator, eliminator). Given a COP
instance P , a tree-decomposition is a triplet < T,χ, ψ >, where T = (V,E) is a
tree, and χ and ψ are labeling functions which associate with each vertex v ∈ V
two sets, χ(v) ⊆ X and ψ(v) ⊆ F that satisfy the following conditions:

1. For each function fi ∈ F , there is exactly one vertex v ∈ V such that
fi ∈ ψ(v). Vertex v satisfies that var(fi) ⊆ χ(v).

2. For each variable xi ∈ X, the set {v ∈ V |xi ∈ χ(v)} induces a connected
subtree of T . This is called the running intersection property.

Let (u, v) be an edge of a tree-decomposition, the separator of u and v is defined
as sep(u, v) = χ(u) ∩ χ(v); the eliminator of u and v is defined as elim(u, v) =
χ(u)− sep(u, v).
Definition 6 (tree-width, hyper-width, maximum separator size). The
tree-width of a tree-decomposition is tw = maxv∈V |χ(v)| − 1, its hyper-width is
hw = maxv∈V |ψ(v)|, and its maximum separator size is s = max(u,v)∈E |sep(u, v)|
Definition 7 (valid tree-decomposition). We say that the tree-decomposition
< T,χ, ψ > is valid for a set of optimization tasks Z = {Zi}k

i=1 if for each Zi

there exists a vertex defined as {v ∈ V | χ(v) = Zi}. Such vertices are called
solution-vertices1.

Example 1. Consider a constraint optimization problem P with six variables
{x1, . . . , x6} and six constraints {f1, . . . , f6} with scopes: var(f1) = {x5, x6},
var(f2) = {x1, x6}, var(f3) = {x2, x5}, var(f4) = {x1, x4}, var(f5) = {x2, x3}
and var(f6) = {x1, x2}, respectively. Figure 2 depicts a tree-decomposition valid
for Z = {{x1, x5, x6}, {x1, x2, x5}) (v1 and v2 are solution-vertices for the first
and second tasks, respectively).

Algorithm CTE (Figure 1) computes the solution to a set of tasks by pro-
cessing a valid tree-decomposition. It works by computing messages that are
sent along edges in the tree. Message m(u,v) is a function computed at vertex u
and sent to vertex v. For each edge, two messages are computed. One in each

1 Normally, solution-vertices are only implicitly required. In our formulation we require
them explicitly in order to simplify the algorithmic presentation.



Procedure CTE
Input: A COP instance P , a set of tasks Z = {Zi}k

i=1 and a valid tree-
decomposition < T, χ, ψ >.
Output: An augmented tree such that each solution-vertex for Zi contains the
solution to task Zi.

Repeat
1. Select and edge (u, v) such that m(u,v) has not been computed

and u has received messages from all adjacent vertices other than v

2. m(u,v) ← minelim(u,v)

∑
g∈cluster(u),g �=m(v,u)

g

(where cluster(u) = ψ(u) ∪ {m(w,u)|(w, u) ∈ T})
Until all messages have been computed

Fig. 1. Algorithm cluster-tree elimination (CTE)

direction. Message m(u,v) can be computed as soon as all incoming messages to
u other than m(v,u) have been received. Initially, only messages at leaves qualify.
The set of functions associated with a vertex u augmented with the set of incom-
ing messages is called a cluster, cluster(u) = ψ(u) ∪(w,u)∈T m(w,u). A message
m(u,v) is computed as the sum of all functions in cluster(u) excluding m(v,u)

and the subsequent elimination of variables in the eliminator of u and v. For-
mally, m(u,v) = minelim(u,v)(

∑
g∈cluster(u),g �=m(v,u)

g). The algorithm terminates
when all messages are computed. A solution to task Zi is contained in any of its
solution-vertices, as the sum of all functions in the cluster,

∑
g∈cluster(u) g.

Example 2. Figure 2 also shows the execution trace of CTE along the tree-
decomposition, as the messages sent along the tree edges. Once messages are
computed, solutions are contained in the solution-vertices. For instance, the so-
lution to task {x1, x2, x5} is contained in cluster(v2) as m(v1,v2) + m(v3,v2) +
f3+ f6. Similarly, the solution to task {x1, x5, x6} is contained in cluster(v1) as
f1 + f2 +m(v2,v1).

Theorem 1 (correctness [18, 8, 22]). Algorithm CTE is correct. Namely,
for each solution-vertex v of Zi,

∑
g∈cluster(v) g = minX−Zi

(
∑n

j=1 fj)

We can show that,

Theorem 2 (complexity). The complexity of CTE is time O(r · (hw + dg) ·
dtw+1) and space O(r·ds), where r is the number of vertices in the tree-decomposition,
hw is the hyper-width, dg is the maximum degree (i.e., number of adjacent ver-
tices) in the graph, tw is the tree-width, d is the largest domain size in the
problem and s is the maximum separator size.

Since CTE is time and space exponential in tw and s, respectively, low width tree-
decompositions are desirable (note that tw+1 ≥ s). Finding the minimum width
decomposition-tree is known to be NP-complete [1], but various approximation
algorithms are available [2].
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Fig. 2. Execution-trace of CTE along a tree-decomposition.

4 Mini-Cluster-Tree Elimination (MCTE)

The time and especially the space complexity of CTE renders the method infea-
sible for high-width tree-decompositions. One way to decrease the algorithm’s
complexity is to bound the size of the messages’ arity to a predefined size z.
This idea, called mini-buckets, was first introduced in the bucket elimination
context [9]. Here we extend it from approximating bucket elimination to the
more general setting of approximating CTE.

Let G be a set of functions having variable xi in their scope. Suppose we
want to compute a target function as the sum of functions in G and subsequently
eliminate variable xi (i.e., minxi

(
∑

g∈G g)). If exact computation is too costly,
we can partition G into sets of functions P(G) = {Pj}k

j=1 called mini-buckets,
each one having a combined scope of size bounded by z. Such a partition is
called a z-partition. If more than one partition is possible, any one is suitable.
Subsequently, a bounded arity function hj is computed at each mini-bucket Pj

as the sum of all its included functions followed by the elimination of xi (i.e.,
hj = minxi

(
∑

g∈Pj
g)). The result is a set of functions {hj}k

j=1 which provides
a lower bound to the target function. Namely,

∑
j h

j ≤ minxi

∑
g∈G g.

If more than one variable has to be eliminated, the process is repeated for
each, according to a predefined ordering. Procedure MiniBucketsApprox(V,G, z)
(Fig. 3) describes this process. Each iteration of the loop performs the elimination
of one variable.2

Applying this idea to CTE yields a new algorithm called mini-cluster-tree
elimination (MCTE(z)) The algorithm can be obtained by replacing line 2 in
CTE by:

2 Another option is to eliminate all variables at once from each mini-bucket (i.e.,
hj = minV (

∑
g∈Pj

g)). While correct, it will provide less accurate lower bounds.



Procedure MiniBucketsApprox(V, G, z)
Input: a set of ordered variables V , a set of functions G, parameter z
Output: a set of functions {hj}k

j=1 that provide a lower bound as
∑k

j=1
hj ≤ minV (

∑
g∈G

g)
for each xi ∈ V from last to first do

G′ ← {g ∈ G | xi ∈ var(g)}
compute P(G′) = {Pj}k

j=1 a z-partition of G′

hj ← minxi(
∑

g∈Pj
g), for j = 1..k

G ← (G − G′) ∪ {hj}
Return: G

Fig. 3. Procedure MiniBucketsApprox(V, G, z).

2. M(u,v) ←MiniBucketApprox(elim(u, v), cluster(u)−M(v,u), z)
(where a message M(u,v) is a set of functions and
cluster(u) = ψ(u) ∪ {M(w,u)|(w, u) ∈ T})

It works similar to CTE except that each time that a message has to be com-
puted, the set of functions required for the computation are partitioned into
mini-buckets, producing a set of mini-messages that are transmitted along the
corresponding edge. Thus, in MCTE(z), a message is a set of bounded arity func-
tions, M(u,v) = {mj

(u,v)} (note that we use upper-case to distinguish MCTE(z)
messages from CTE messages). A cluster is now the union of all messages and
all functions in a node, cluster(u) = ψ(u) ∪(w,u)∈T M(w,u) The message M(u,v)

is computed by calling MiniBucketsApprox(V,G, z) with V = elim(u, v) and
G = cluster(u)−M(v,u). When all messages have been computed, a lower bound
to task Zi is contained in its solution-vertex v as the sum of all the functions in
its cluster,

∑
g∈cluster(v) g.

Example 3. Figure 4 shows the execution-trace of MCTE(2) with our running
example and the tree-decomposition of Fig. 2. For instance, the computation of
M(v3,v2) requires a 2-partition of (cluster(v3)−M(v2,v3)) = {f4(x1, x4), f5(x2, x3)}.
The only 2-partition here is P1 = {f4} and P2 = {f5}, which yields a two-
functions message M(v3,v2) = {minx4(f4),minx3(f5)}.

Theorem 3 (correctness). Given a valid tree-decomposition, MCTE(z) com-
putes a lower bound for each task Zi. Specifically, if u is a solution-vertex of task
Zi then,

∑
g∈cluster(u) g ≤ minX−Zi

(
∑n

j=1 fj)

In order to analyze the complexity of MCTE(z) we define a new labeling ψ∗,
which depends on the tree-decomposition structure.

Definition 8 (ψ∗, induced hyper-width (hw∗)). Let P =< X,D,F > be
a COP instance and < T,χ, ψ > be a tree-decomposition. We define a labeling
function ψ∗ over nodes in the tree as, ψ∗(v) = {f ∈ F | var(f)∩χ(v) �= ∅}. The
induced hyper-width of a tree-decomposition is hw∗ = maxv∈V |ψ∗(v)|
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Fig. 4. An execution trace of MCTE(2).

Observe that ψ∗(u) is a superset of ψ(u) which includes those cost functions
not in ψ(u) that may travel to cluster u via message-passing. It can be shown
that the induced hyper-width bounds the maximum number of functions that can
be in a cluster, and therefore the number of mini-buckets in a cluster. Namely
hw∗ ≥ maxv∈V |cluster(v)|. Note that hw ≤ hw∗ ≤ m, where hw is the hyper-
width and m is the number of input functions.

Theorem 4 (complexity). Given a problem P and a tree-decomposition T
having induced hyper width hw∗, MCTE(z) is time and space O(r × hw∗ × dz),
where r is the number of nodes in T , and d bounds the domain size.

Clearly, increasing z is likely to provide better lower bounds at a higher cost.
Therefore, MCTE(z) allows trading lower bound accuracy for time and space
complexity. There is no guaranteed improvement however.

5 MBTE(z): Computing Bounds to Singleton Tuples

There are a variety of ways in which valid tree-decompositions can be obtained.
We analyze a special decomposition called bucket-trees, which is particularly
suitable for the multiple singleton optimality task (def. 4). The concept of bucket-
tree is inspired from viewing bucket-elimination algorithms as message-passing
along a tree [7]. A bucket-tree can be defined over the induced graph relative to
a variable ordering.

Definition 9 (induced graph, induced width [7]). An ordered constraint
graph is a pair (G, o), where G is a constraint graph and o = x1, ..., xn is an
ordering of its nodes. Its induced graph G∗(o) is obtained by processing the
nodes recursively, from last to first: when node xi is processed, all its lower
neighbors are connected. The induced width w∗(o) is the maximum number of
lower neighbors over all vertices of the induced graph.



Definition 10 (bucket-tree). Given the induced graph G∗(o) of a problem P
along ordering o, a bucket-tree is a tree-decomposition < T,χ, ψ > is defined as
follows. (i) There is a vertex vi associated with each variable xi. The parent of
vi is vj iff xj is the closest lower neighbor of xi in G∗(o). (ii) χ(vi) contains xi

and every lower neighbor of xi in G∗(o). (iii) ψ(vi) contains every constraint
having xi as the highest indexed variable in its scope.

Notice that in a bucket-tree, vertex v1, the root, is a solution-vertex for the
task {x1}. The bucket-tree can be augmented with solution-vertices for each
singleton-optimality task. A vertex ui with χ(ui) = {xi} and ψ(ui) = ∅ is added
for i = 2..n. Vertex vi is the parent of ui. Subsequently, we define algorithm
Bucket-tree elimination (BTE) to be CTE applied to the augmented bucket-tree.

Example 4. Figure 5 shows the execution-trace of BTE on our running example.
Observe that messages from u-nodes to v-nodes do not need to be sent because
they are null functions (ψ(ui) = ∅).

Observe that BTE computes the exact singleton optimality problem. Observe
also that BTE can be viewed as a two-phases algorithm. The first phase (where
messages from leaves to root are transmitted) is equivalent to bucket elimination
(BE) [7]: Cluster vi is the bucket of xi. Incoming messages are new functions
derived from higher buckets and added to the bucket of xi. Computing message
m(vi,p(vi)), where p(vi) is the parent of vi, performs the elimination of variable
vi and produces a new function (the message) that is sent to a lower bucket (the
parent of vi).

Next, Mini bucket tree elimination (MBTE(z)) is defined by approximating
BTE via mini-buckets or, equivalently, by executing MCTE(z) over the aug-
mented bucket-tree. BTE and MBTE(z) process the same tree-decomposition
but in MBTE(z) clusters are z-partitioned, producing mini-bucket-based mes-
sages. From Theorem 4 we can conclude,

Theorem 5 (complexity). Given a variable ordering, the complexity of MBTE(z)
is O(n · hw∗ · dz), when n is the number of variables and hw∗ is the bucket-tree
induced hyper-width.

MBTE vs nMBE: It is easy to see that mini-bucket elimination MBE(z) [9] is
equivalent to the first message-passing phase of MBTE(z). In particular, running
MBE(z) n times, an algorithm that we call nMBE(z), each time having a different
variable initiating the ordering, is an alternative for the singleton optimality
problem. MBTE and nMBE are closely related in terms of accuracy. Specifically,
if MBE(z) is executed each time with the appropriate variable orderings, both
approaches will produce exactly the same bounds, when using the same bucket-
partitioning strategy. Clearly, however, MBTE(z) is always more efficient than
multiple executions of MBE(z), since MBE(z) repeats message computation at
different executions. The following Theorem summarizes these properties.

Theorem 6. Let P be a constraint optimization problem and o a variable or-
dering. Lets consider the execution of MBTE(z) over the bucket-tree relative to
o.
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Fig. 5. An execution trace of BTE for the task of computing the best extension of all
singleton tuples. If only top-down messages are considered, the algorithm is equivalent
to BE

– (Accuracy) For each variable xi, there is an ordering oi initiated by xi such
that executing MBE(z) with oi produces the same lower bound as MBTE(z)
for task {xi}, provided that both algorithms use the same criterion to select
z-partitions.

– (time comparison) Let nMBE(z) be n executions of MBE(z) using the n pre-
viously defined oi orderings. Then, every message computed by MBTE(z) is
also computed by nMBE(z), and there are some messages that are computed
multiple times (up to n) by nMBE(z).

Thus, MBTE(z) is never worse than nMBE(z). Since the complexity of run-
ning MBE(z) n times is O(n ·m · dz) and MBTE(z) is O(n ·hw∗ · dz), significant
gains are expected when hw∗ is smaller relative to m.

6 Comparison of MBTE with Soft Arc-consistency

Soft arc-consistency (SAC) [21] is the most general of a sequence of bounds for
singleton optimization. They are based in different forms of arc-consistency [17].
We consider the most general algorithm for SAC. Namely, the algorithm that
after achieving soft arc-consistency, is allowed to iterate non-deterministically
projecting and extending cost functions in order to increase, if possible, the
available bounds ([21], Sec. 5).



In the following we briefly argue that there is no dominance relation be-
tween SAC and MBTE. Namely, there exist instances in which either approach
computes better bounds than the other. In the full paper [15] we provide two
examples illustrating this fact.

On the one hand, tree-decomposition based bounds such as MBTE need to
transform the problem into an acyclic structure and each cost function has a
single path to be propagated from one vertex to another. SAC works directly on
the (possibly cyclic) constraint graph. Then the same function can be propagated
simultaneously through different paths. As a result, information from a cost
function may split and merge again. This fact allows SAC to outperform MBTE
in some problem instances.

On the other hand, SAC algorithms can only project functions one by one,
while MBTE can sum functions and project from the result. In a simplistic way,
it is as if SAC is only allowed to compute bounds using

∑
f∈F minV f , while

MBTE can perform minV

∑
f∈F f as long as arities do not surpass value z. This

fact allows MBTE to outperform SAC in some problem instances.

7 Empirical Results

We performed a preliminary experimental evaluation of the performance of
MBTE(z) on solving the singleton optimality task. i) we have investigated the
performance of MBTE(z) against its obvious brute-force alternative – nMBE(z),
and showed that MBTE(z) achieves a significant speedup over nMBE(z). ii) we
demonstrated that as expected, MBTE(z) accuracy grows as function of z, thus
allowing a trade-off between accuracy and complexity. iii) we evaluated the effec-
tiveness of MBTE(z) in improving Branch and Bound search. For space reasons
we report only the search experiments. Details on experiments with speed-up
and accuracy are available in the full paper [15].

All our experiments are done using the Max-CSP task as a sample domain.
Max-CSP is an optimization version of Constraint Satisfaction and its task is to
find an assignment that satisfies the most constraints. We use its formulation as
a minimization problem where each constraint is a cost function that assigns a
cost 1 to each nogood and cost 0 to each allowed tuple. We used the well known
four parameter model, < N,K,C, T >, for random problem generation, where N
is the number of variables, K is the domain size, C is the number of constraints,
and T is the tightness of each constraint (see [16] for details).

7.1 BBBT: Branch and Bound with MBTE(z)

Since MBTE(z) computes lower bounds for each singleton-variable assignment,
when incorporated within a Branch-and-Bound search, MBTE(z) can facilitate
domain pruning and dynamic variable ordering. In this section we investigate
the performance of such a new algorithm, called BBBT(z) (Branch-and-Bound
with Bucket-Tree heuristics), and compare it against BBMB(z) [13].



N = 50, K = 5, C = 150. w∗ = 17.6. 10 instances. time = 600sec.
BBMB BBBT PFC-MRDAC

T z=2 z=3 z=4 z=5 z=6 z=2
# solved # solved # solved # solved # solved # solved # solved
time time time time time time time

backtracks backtracks backtracks backtracks backtracks backtracks backtracks

5 6 7 6 9 10 10 10
45 54 6.2 75 6.2 1.9 0.01

1.11M 1.51M 177K 2.29M 123K 55 436
7 4 5 7 8 9 10 10

134 150 213 208 97 2.5 1.7
5.86M 4.62M 5.3M 5.14M 2.1M 94 15K

9 - - 1 3 3 10 10
325 227 229 14.3 27.3
7.4M 4.97M 4.85M 2.1K 242K

Table 1. BBBT(z) vs. BBMB(z).

N = 100, K = 5, C = 300. w∗ = 33.9. 10 instances. time = 600sec.
BBMB BBBT PFC-MRDAC

T z=2 z=3 z=4 z=5 z=6 z=7 z=2
# solved # solved # solved # solved # solved # solved # solved # solved
time time time time time time time time

backtracks backtracks backtracks backtracks backtracks backtracks backtracks backtracks

3 6 6 6 6 8 8 10 10
6 6 6 5 6.8 15 7.73 0.03

150K 150K 150K 115K 115K 8 60 750
5 2 2 2 2 3 3 10 10

36 32 24 5.3 38 33 14.3 0.06
980K 880K 650K 130K 870K 434K 114 1.5K

7 0 0 0 0 0 0 10 6
29 267
331 1.6M

Table 2. BBBT(z) vs. BBMB(z).

BBMB(z) [13] is a Branch-and-Bound search algorithm that uses Mini-Bucket
Elimination (MBE(z)) as a pre-processing step. MBE(z) generates intermediate
functions that are used to compute a heuristic value for each node in the search
space. Since these intermediate functions are pre-computed, before search starts,
BBMB(z) uses the same fixed variable ordering as MBE(z). Unlike BBBT(z),
BBMB(z) does not prune domains of variables. In the past [14] we showed that
BBMB(z) was effective and competitive with alternative state-of-the-art algo-
rithms for Max-CSP.

BBBT(z) is a Branch-and-Bound search algorithm that uses MBTE(z) at
each node in the search space. Unlike BBMB(z), BBBT(z) has no pre-processing
step. At each node in the search space, MBTE(z) is used to compute lower
bounds for each variable-value assignment of future variables. These lower bounds
are used for domain pruning – whenever a lower bound of a variable-value as-
signment is not less than the global upper bound, the value is deleted. BBBT(z)
backtracks whenever an empty domain of a future variable is created. BBBT(z)
also uses dynamic variable ordering – when picking the next variable to instanti-
ate, it selects a variable with the smallest domain size. Ties are broken by picking
a variable with the largest sum of lower bounds associated with each value. In
addition, for value selection, BBBT(z) selects a value with the smallest lower
bound.

In Tables 1-3 we have the results of experiments with three sets of Max-CSP
problems: N=50, K=5, C=150, 5 ≤ T ≤ 9, N=100, K=5, C=300, 3 ≤ T ≤ 7,
and N=50, K=5, C=100, T=15. On each problem instance we ran BBMB(z) for



different values of z, as well as BBBT(2). We also ran BBBT(z) for larger values
of z, but BBBT(2) was most cost effective on these problems. For comparison,
we also report the results with PFC-MRDAC [17] that is currently one of the
best algorithms for Max-CSP.

N = 50, K = 5, C = 100. w∗ = 10.6. 10 instances. time = 600sec.
BBMB BBBT PFC-MRDAC

T z=4 z=6 z=8 z=2 z=5 z=8
# solved # solved # solved # solved # solved # solved # solved
time time time time time time time

backtracks backtracks backtracks backtracks backtracks backtracks backtracks

15 8 10 10 3 9 8 9
184 4.51 12.4 394 190 91 108
13M 120K 24K 22K 565 30 1.0M

Table 3. BBBT(z) vs. BBMB(z).

In column 1 we have the tightness, in the last two columns we report BBBT(2)
and PFC-MRDAC, and in the middle columns we have BBMB(z). For each set
of problems, we report the number of problems solved (within the time bound of
600 seconds), the average CPU time and number of deadends for solved problems.
For example, we see from Table 1 (N=50, K=5, C=150), that when tightness
T is 5, BBMB(6) solved all 10 problems, taking 6.2 seconds and 123 thousand
backtracking steps, on the average, whereas BBBT(2) also solved all 10 problems,
taking 1.9 seconds and 55 backtracking steps, on the average.

We see from Tables 1 and 2 that on these two sets of problems, BBBT(2)
is vastly superior to BBMB(z), especially as the tightness increases. Average
CPU time of BBBT(2) is as much as an order of magnitude less than BBMB(z).
Sporadic experiments with 200 and 300 variable instances showed that BBBT(2)
continues to scale up very nicely on these problems. BBBT(2) is also faster than
PFC-MRDAC on tight constraints.

The experiments also demonstrate the pruning power of MBTE(z). The num-
ber of backtracking steps used by BBBT(2) is up to three orders of magnitude
less than BBMB(z). For example, we see from Table 1 that when tightness T is
7, BBMB(6) solved 9 problems out of 10, taking 2.1 million backtracking steps
in 97 seconds, whereas BBBT(2) solved all 10 problems, taking 94 backtracking
steps in 2.5 seconds.

We observed a different behavior on problems having sparser constraint
graphs and tight constraints. While still very effective in pruning the search
space, BBBT was not as cost-effective as BBMB(z) (which invests in heuristic
computation only once). Table 3 exhibits a typical performance (N=50,C=100,
K=5, T=15). We observe that here BBBT’s performance exhibit a U-shape, im-
proving with z up to an optimal z value. However, BBBT’s slope of improvement
is much more moderate as compared with BBMB.



8 Conclusions and future work

Since constraint optimization is NP-hard, approximation algorithms are of clear
practical interest. In the paper we extend the mini-bucket scheme proposed for
variable elimination to tree-decomposition. We have introduced a new algorithm
for lower bound computation, MCTE(z), applicable to arbitrary sets of tasks.
The parameter z allows trading accuracy for complexity and can be adjusted
to best fit the available resources. MBTE(z) is a special case of MCTE(z) for
the computation of lower bounds to singleton optimization, based on a bucket-
tree. This task is relevant in the context of branch and bound solvers. Both
algorithms have been derived to approximate CTE, a tree-decomposition schema
for reasoning tasks which unifies a number of approaches appearing in the past
2 decades in the constraint satisfaction and probabilistic reasoning context.

We have shown that bounds obtained with MBTE(z) have the same accuracy
as if computed with n runs of plain mini-buckets. The quality of such accuracy
has already been demonstrated in a number of domains [9]. We have also shown
that MBTE(z) can be up to n times faster than the alternative of running plain
mini-buckets n times. This speed-up is essential if the algorithm is to be used
at every node within a branch and bound solver. Our preliminary experiments
suggest that MBTE(z) is very promising. It generates good quality bounds at
a reasonable cost. When incorporated within branch and bound, it reduces dra-
matically the search space explored which sometimes translates into great time
savings. Note that our implementation is general and has not yet been optimized.

Our approach leaves plenty of room for future improvement, which are likely
to make it more cost effective in practice. For instance, it can be modified to
treat separately hard and soft constraints, since hard constraints can be more
efficiently processed and propagated [10]. As a matter of fact, even if the orig-
inal problem has no hard constraints, our approach can be used to infer them
(i.e., detect infeasible tuples). Also, currently our partitioning to mini-buckets
was always random. Investigating heuristics for partitioning may increase the
accuracy of the algorithms.
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