
A General Scheme for Automatic Generation of

Search Heuristics from Specification Dependencies ∗

Kalev Kask and Rina Dechter

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

{kkask,dechter}@ics.uci.edu

April 25, 2001

Abstract

The paper presents and evaluates the power of a new scheme that generates search
heuristics mechanically for problems expressed using a set of functions or relations
over a finite set of variables. The heuristics are extracted from a parameterized ap-
proximation scheme called Mini-Bucket elimination that allows controlled trade-off
between computation and accuracy. The heuristics are used to guide Branch-and-
Bound and Best-First search. Their performance is compared on two optimization
tasks: the Max-CSP task defined on deterministic databases and the Most Proba-
ble Explanation task defined on probabilistic databases. Benchmarks were random
data sets as well as applications to coding and medical diagnosis problems. Our re-
sults demonstrate that the heuristics generated are effective for both search schemes,
permitting controlled trade-off between preprocessing (for heuristic generation) and
search.

1 Introduction

Heuristic search is a general problem solving method applicable to a wide range of tasks.
Its efficiency depends on the quality of the heuristic evaluation function. Therefore, one
of the most important issues in heuristic search is obtaining a good heuristic function.
Often there is a trade-off between the quality of the heuristic and the complexity of its

∗Preliminary versions of this paper were presented in [15], [16] and [18].

1

computation. In this paper we will present a general scheme of mechanically generating
search heuristics from a problem description. Within this scheme, the trade-off between
the quality of the heuristic function and its computational complexity is quantified by an
input parameter.

The main difference between the approach presented in this paper and traditional work
on mechanical generation of heuristics is in its premises. We assume that the problem
is specified by a dependency model: a set of functions or relations over variables (e.g.
Bayesian network, constraint network, decomposable cost functions). From a dependency
model, the states and the transition rules defining a search space for the problem can be
obtained. In contrast, the starting point of heuristic search is the search space description
(states, operators, initial and goal states) only.

Our scheme is based on the Mini-Bucket technique, a class of parameterized approxima-
tion algorithms based on the bucket-elimination framework [3]. The approximation uses
a controlling parameter which allows adjustable levels of accuracy and efficiency [7]. It
has been presented and analyzed for probabilistic tasks such as finding the most probable
explanation (MPE), belief updating, and finding the maximum a posteriori hypothesis.
Encouraging empirical results were reported on randomly generated Noisy-OR networks,
on medical-diagnosis CPCS networks, and on coding problems [36]. However, as evidenced
by the error bound produced by these algorithms, in some cases the approximation is se-
riously suboptimal, even when using the highest feasible accuracy level. In such cases,
augmenting the Mini-Bucket approximation with search could be cost-effective.

In this paper we demonstrate our approach on two different classes of optimization tasks:
solving the Max-CSP problem in Constraint Optimization and finding the Most Probable
Explanation in a Bayesian network. We will show that the functions produced by the Mini-
Bucket method can serve as the basis for creating heuristic evaluation functions for search.
These heuristics provide either a lower bound (for minimization problems, such as Max-
CSP) or upper bound (for maximization problems, such as MPE) on the cost of the best
extension of a given partial assignment. Since the Mini-Bucket’s accuracy is controlled by
a bounding parameter, it allows heuristics having varying degrees of accuracy and results
in a spectrum of search algorithms that can trade off heuristic computation and search.
We evaluate the power of the Mini-Bucket heuristics within both Branch-and-Bound 1 and
Best-First search.

Branch-and-Bound searches the space of partial assignments in a depth-first manner.
It will expand a partial assignment only if the bound computed by the heuristic function
is potentially better than the value of the current best solution. The virtue of Branch-
and-Bound is that it requires a limited amount of memory and can be used as an anytime

1Branch-and-Bound was proposed originally as a general search paradigm that includes Depth-First
search and Best-First search as special cases when the heuristic function is admissible [23, 14]. To put our
work in this context, by Branch-and-Bound in this paper we mean Depth-First Branch-and-Bound.

2

scheme; whenever interrupted, Branch-and-Bound outputs the best solution found so far.
Best-First explores the search space in uniform frontiers of partial instantiations, each
having the same value for the evaluation functions, while progressing by expanding nodes
with the best heuristic values first. Since, as shown, the generated heuristics are admis-
sible and monotonic, their use within Best-First search yields A* type algorithms whose
properties are well understood. The algorithm is guaranteed to terminate with an optimal
solution. When provided with more powerful heuristics, it explores a smaller search space,
but otherwise it requires substantial space. It is also known that Best-First algorithms are
optimal. Namely, when given the same heuristic information, Best-First search is the most
efficient algorithm in terms of the size of the search space it explores [5]. Still, Best-First
may occasionally fail because of its memory requirements. Hybrid approaches similar to
those presented for A* in the heuristic search community in the past decade are clearly of
potential value here as well [20].

In this paper, a Best-First algorithm with Mini-Bucket heuristics (BFMB) and a
Branch-and-Bound algorithm using Mini-Bucket heuristics (BBMB) are presented and
evaluated empirically. They are compared against the full bucket-elimination (whose per-
formance is typical for other complete algorithms such as join-tree clustering), against
the Mini-Bucket approximation scheme, and against iterative belief propagation (a recent
popular approximation used for coding networks) for the MPE task. They are compared
against some local search methods and specialized search algorithms for Max-CSP. The
benchmarks are random test problems for Max-CSP, and coding networks, Noisy-OR net-
works, and CPCS networks when solving the MPE task.

We show that both search methods exploit heuristic’s strength in a similar manner: on
all problem classes, the optimal trade-off point between heuristic generation and search,
as measured by total time, lies in an intermediate range of the heuristic’s strength. As
problems become larger and harder, this optimal point gradually increases towards the
more computationally demanding heuristics. We also show that when Best-First and
Branch-and-Bound have access to the same heuristic information, Best-First sometimes
substantially outperforms Branch-and-Bound, provided that the heuristics were strong
enough, that enough time was given, and that memory problems were not encountered.
Sometimes, however, on Max-CSP problems, Branch-and-Bound somewhat outperforms
Best-First, especially when provided with accurate heuristics.

Section 2 provides preliminaries and background on the Mini-Bucket algorithms. Sec-
tion 3 describes the main idea of the heuristic function which is built on top of the Mini-
Bucket algorithm, proves its properties, and embeds the heuristic within Best-First and
Branch-and-Bound search. Sections 4 and 5 present empirical evaluations, while Section 6
provides related work and conclusions.

3

2 Background

2.1 An Automated Reasoning Problem

The approach we propose is applicable to any optimization problem with decomposable
cost functions. More formally, we assume that an automated reasoning problem P is
specified as a sixtuple P =< X,D, F,

⊗
,⇓, Z >, where

1. X = {X1, ..., Xn} is a set of variables.

2. D = {D1, ..., Dn} is a set of finite domains.

3. F = {f1, ..., fr} is a set of functions or relations. The scope of function fi, denoted
scope(fi) ⊆ X, is the set of arguments of fi.

4.
⊗

i fi is a combination operator defined by
⊗

i fi ∈ {∏i fi,
∑

i fi, ./i fi} over a set of
cost functions {fi}.
A combination operator takes two cost functions and outputs a new cost function. We
assume that the combination operator is commutative and associative. For a Max-
CSP problem, the combination operator is summation, while for Bayesian networks,
the combination operator is multiplication. We define the cost function f to be the
combination of all functions: f =

⊗r
i=1 fi.

5. ⇓Y f is a marginalization operator, defined by ⇓Y f ∈ { max
S−Y

f, min
S−Y

f,
∏

S−Y
f,

∑
S−Y

f},
where S is the scope of function f and Y ⊆ X. The scope of ⇓Y f is Y .

A marginalization operator takes as input a cost function and generates a new func-
tion where arguments other than Y are eliminated. For example, when solving a
Max-CSP problem, the marginalization operator is ⇓Y f(S) = minS−Y f(S). When
solving the Most Probable Explanation problem in Bayesian networks, the marginal-
ization operator is ⇓Y f(S) = maxS−Y f(S).

6. The problem is to compute, g(Z) =⇓Z
⊗r

i=1 fi, Z ⊆ X.

For the optimization tasks we consider here Z = ∅ and S = X. Often we also seek an
assignment to all the variables that optimizes (maximizes or minimizes) the combined
cost function f . Namely, we need to find x = (x1, ..., xn) such that f(x) =⇓∅ ⊗r

i=1 fi.

Notations: We denote variables or subsets of variables by uppercase letters (e.g. X, Y,
Z, S, R . . .) and values of variables by lower case letters (e.g. x, y, z, s). An assignment
(X1 = x1, ..., Xn = xn) can be abbreviated as x = (x1, ..., xn). For a subset of variables S,
DS denotes the Cartesian product of the domains of variables in S. xS is the projection of
x = (x1, ..., xn) over a subset S.

4

Definition 2.1 (Primal graph) The primal graph of a reasoning problem has the vari-
ables X as its nodes and an arc connects any two variables that appear in the scope of the
same function.

One approach for solving reasoning problems is searching the problem’s search space
graph which can be derived from its dependency model. Commonly, the states of the
search space are the assignments of values to subsets of variables. The initial state is the
empty assignment and a goal state is an assignment to all variables that optimizes the cost
function, f . Each state has a subset of child states obtained by an operator that extends
a partial assignment by assigning a value to an unassigned variable. Any state, S = s,
S ⊆ X, can be associated with a cost function f(s) =

⊗
f∈F,scope(f)⊆S f . By searching this

search space by either depth-first or breadth-first search one can find an assignment to
S = X − Z s.t. f(s) =⇓Z

⊗r
i=1 fi.

Heuristic search algorithms use a heuristic evaluation function to guide the traversal of
the search space, aiming at finding a solution path from the initial state to a goal state.
This requires a heuristic evaluation function that estimates the promise of a state in leading
to the best cost goal state. In this paper we provide a general approach of extracting such
heuristic information from the dependency model of the reasoning problem.

In the following subsections we specialize our definitions for the two dependency models
we consider here, constraint networks and belief networks.

2.2 Constraint Networks

Constraint Satisfaction is a framework for formulating real-world problems as a set of
constraints between variables. The task is to find an assignment of values to variables
that does not violate any constraint, or else to conclude that the problem is inconsistent.
Such problems are graphically represented by nodes corresponding to variables and edges
corresponding to constraints between variables.

Definition 2.2 (Constraint Networks, Constraint Satisfaction Problems) A Con-
straint Network (CN) is defined by a triplet (X, D,C) where X is a set of variables
X = {X1, ..., Xn}, associated with a set of discrete-valued domains, D = {D1, ..., Dn},
and a set of constraints C = {C1, ..., Cm}. Each constraint Ci is a pair (Si, Ri), where Ri

is a relation Ri ⊆ DSi
defined on a subset of variables Si ⊂ X called the scope of Ci. The

relation denotes all compatible tuples of values of DSi
allowed by the constraint. The primal

graph of a constraint network, called a constraint graph, has a node for each variable, and
an arc between two nodes iff the corresponding variables participate in the same constraint.
A solution is an assignment of values to variables x = (x1, ..., xn), xi ∈ Di, such that each
constraint is satisfied, namely ∀ i xSi

∈ Ri. The Constraint Satisfaction Problem (CSP) is
to determine if a constraint network has a solution, and if so, to find a solution. A binary

5

D

E

F
B

A

C
G

Figure 1: A map coloring problem.

CSP is one where each constraint involves at most two variables. Sometimes (for the Max-
CSP problem), we express the relation Ri as a cost function Ci(Xi1 = xi1, ..., Xik = xik) = 0
if (xi1, ..., xik) ∈ Ri, and 1 otherwise.

Example 2.1 An example of a constraint satisfaction problem is given in Figure 1. It
represents a map coloring problem and has seven variables (A, B, C, D, E, F, G), each
one corresponding to a region of the map. Each variable has a domain of three colors (Red,
Green, Blue), and there is an inequality constraint between two variables that correspond
to adjacent regions of the map. A solution is an assignment of colors to variables (nodes
of the graph) such that adjacent nodes have different colors.

2.3 Max-CSP

Many real-world problems are often over-constrained and do not have a solution. In such
cases, it is desirable to find an assignment that satisfies a maximum number of constraints,
called a Max-CSP assignment.

Definition 2.3 (Max-CSP) Given a CSP, the Max-CSP task is to find an assignment
that satisfies a maximum number of constraints.

Although a Max-CSP problem is a maximization problem, it can be implemented as a
minimization problem. Instead of maximizing the number of constraints that are satisfied,
minimizing the number of constraints that are violated.

6

When formalized as an automated reasoning task, its set of functions F is the set
of cost functions assigning 0 to all allowed tuples and 1 to all non-allowed tuples. The
marginalization operator is minimization, the combination operator is summation, and
Z = ∅. Namely, ⇓∅ ⊗

i fi = minX
∑

i fi.
As an optimization version of Constraint Satisfaction, Max-CSP is NP-hard. A number

of complete and incomplete algorithms have been developed for Max-CSP. Stochastic Local
Search (SLS) algorithms, such as GSAT [28, 40], developed for Boolean Satisfiability and
Constraint Satisfaction can be directly applied to Max-CSP [44]. Since they are incomplete,
SLS algorithms cannot guarantee a solution, but they have been successful in practice on
many classes of SAT and CSP problems. A number of search-based complete algorithms,
using partial forward checking [9] for heuristic computation, have been developed for Max-
CSP [22, 43].

2.4 Belief Networks

Belief Networks provide a formalism for reasoning about partial beliefs under conditions of
uncertainty. They are defined by a directed acyclic graph over nodes representing random
variables of interest (e.g., the temperature of a device, the gender of a patient, a feature
of an object, the occurrence of an event). The arcs signify the existence of direct causal
influences between linked variables quantified by conditional probabilities that are attached
to each cluster of parents-child nodes in the network.

Definition 2.4 (Graph concepts) A directed graph is a pair, G = {V, E}, where V =
{X1, ..., Xn} is a set of nodes, and E = {(Xi, Xj)|Xi, Xj ∈ V } is the set of edges. If
(Xi, Xj) ∈ E, we say that Xi points to Xj. The degree of a variable is the number of
edges incident to it. For each variable Xi, pa(Xi) or pai, is the set of variables pointing
to Xi in G, while the set of child nodes of Xi, denoted ch(Xi), comprises the variables
that Xi points to. The family of Xi, Fi, includes Xi and its child variables. A directed
graph is acyclic if it has no directed cycles. A poly-tree is an acyclic directed graph whose
underlying undirected graph (ignoring the arrows) has no loops.

Definition 2.5 (Belief Networks) Given a set, X = {X1, . . . , Xn} of random variables
over multi-valued domains D = {D1, ..., Dn}, a belief network is a pair (G,P) where G is a
directed acyclic graph over X and P = {Pi}, where Pi = {P (Xi | pa (Xi)) } are conditional
probability matrices associated with each Xi. Given a subset of variables S, we will
write P (s) for the probability P (S = s), where s ∈ DS . A belief network represents a
probability distribution over X, P (x1,, xn) = Πn

i=1P (xi|xpa(Xi)). An evidence set e is an
instantiated subset of variables. The primal graph of a belief network is called a moral
graph. It can be obtained by connecting the parents of each node in G and removing the
arrows. Equivalently, it connects any two variables appearing in the same family.

7

Width w=4
Induced width w*=4

(c)

A

B C

D

A

B C

D

(a) (b)

E E

A

E

D

C

B

Figure 2: a) A belief network P (e, d, c, b, a) = P (e|c, b)P (d|b, a)P (b|a)P (c|a)·
·P (a), b) its moral graph, c) an ordered graph along d = (A,E,D,C,B).

Definition 2.6 (Induced-width) An ordered graph is a pair (G, d) where G is an undi-
rected graph, and d = (X1, ..., Xn) is an ordering of the nodes. The width of a node in an
ordered graph is the number of its earlier neighbors. The width of an ordering d, w(d), is
the maximum width over all nodes. The induced width of an ordered graph, w∗(d), is the
width of the induced ordered graph obtained by processing the nodes recursively, from last
to first; when node X is processed, all its earlier neighbors are connected.

Example 2.2 An example of a belief network is given in Figure 2a. This belief network
represents a distribution P (e, d, c, b, a) = P (e|c, b)P (d|b, a)P (b|a)P (c|a)P (a). In this case,
pa(E) = {B, C}, pa(B) = {A}, pa(A) = ∅, ch(A) = {B, D, C}. Its corresponding moral
graph is shown in Figure 2b. Given an ordering d = (A,E,D,C,B), the ordered moral
graph is depicted in Figure 2c by the solid arcs. The induced ordered graph is obtained by
adding the broken arcs in the figure. The width and induced-width of the ordered moral
graph is 4.

Definition 2.7 Given a function h defined over a subset of variables S, where X ∈ S,
functions (minX h), (maxX h), and (

∑
X h) are defined over U = S − {X} as follows:

For every U = u, and denoting by (u, x) the extension of tuple u by assignment X = x,
(minX h)(u) = minx h(u, x), (maxX h)(u) = maxx h(u, x), and (

∑
X h)(u) =

∑
x h(u, x).

Given a set of functions h1, ..., hj defined over the subsets S1, ..., Sj, the product function
Πjhj and

∑
j hj are defined over U = ∪jSj. For every U = u, (Πjhj)(u) = Πjhj(uSj

), and
(
∑

j hj)(u) =
∑

j hj(uSj
).

2.5 The Most Probable Explanation

Definition 2.8 (Most Probable Explanation) Given a belief network and evidence
e, the Most Probable Explanation (MPE) task is to find a complete assignment which

8

agrees with the available evidence, and which has the highest probability among all such
assignments, namely, to find an assignment (xo

1, . . . , x
o
n) such that

P (xo
1, . . . , x

o
n) = maxx1,...,xn

n∏

k=1

P (x1, ..., xn, e) = maxx1,...,xn

n∏

k=1

P (xk, e|xpak
)

When MPE is formalized as an automated reasoning task, the combination operator
is multiplication and the marginalization operator is maximization. An MPE task is to
find ⇓∅ ⊗

i fi = maxX
∏

i fi where X is the set of variables and fi is the set of conditional
probability tables. It also requires an optimizing assignment.

The MPE task appears in applications such as diagnosis, abduction, and explanation.
For example, given data on clinical findings, MPE can postulate on a patient’s probable
affliction. In decoding, the task is to identify the most likely input message transmitted over
a noisy channel given the observed output. Researchers in natural language consider the
understanding of text to consist of finding the most likely facts (in internal representation)
that explain the existence of the given text. In computer vision and image understanding,
researchers formulate the problem in terms of finding the most likely set of objects that
explain the image.

It is known that solving the MPE task is NP-hard [1]. Complete algorithms use either
the cycle cutset technique (also called conditioning), the join-tree-clustering technique [32],
or the bucket-elimination scheme [3]. However, these methods work well only if the network
is sparse enough to allow small cutsets or small clusters. The complexity of algorithms
based on the cycle cutset idea is time exponential in the cutset size but requires only linear
space. The complexity of join-tree-clustering and bucket-elimination algorithms are both
time and space exponential in the cluster size that equals the induced-width of the network’s
moral graph. Following Pearl’s stochastic simulation algorithms [32], the suitability of
Stochastic Local Search (SLS) algorithms for MPE was studied in the context of medical
diagnosis applications [33] and more recently in [17]. Best-First search algorithms were
proposed [41] as well as algorithms based on linear programming [37]. Various authors
have worked on extending some of these algorithms to the task of finding the k most-likely
explanations [24, 42].

2.6 Bucket and Mini-Bucket Elimination Algorithms

In this subsection we summarize the main algorithms that are used as a basis for our
methodology for heuristic generation. These are based on the bucket elimination scheme.

Bucket elimination is a unifying algorithmic framework for dynamic-programming al-
gorithms applicable to probabilistic and deterministic reasoning [4]. Many algorithms for
probabilistic inference, such as belief updating, finding the most probable explanation,

9

Algorithm BE
Input: A problem description P =< X, D,F,

⊗
,⇓, ∅ >; an ordering of the variables d.

Output: An assignment corresponding to an optimal solution.
1. Initialize: Partition the functions in F into bucket1, . . ., bucketn, where bucketi
contains all functions whose highest variable is Xi. Let S1, ..., Sj be the scopes of
functions (original and intermediate) in the processed bucket.
2. Backward: For p ← n down-to 1, do
for h1, h2, ..., hj in bucketp, do
• If variable Xp is instantiated (Xp = xp), assign Xp = xp to each hi and put each
resulting function into its appropriate bucket.
• Else, generate the function hp: hp =⇓Up

⊗j
i=1 hi, where Up =

⋃j
i=1 Si − {Xp}. Add

hp to the bucket of the largest-index variable in Up.
3. Forward: Assign a value to each variable in the ordering d s.t. the combination of
functions in each bucket is optimized.
4. Return the function computed in the bucket of the first variable and the optimizing
assignment.

Figure 3: Bucket Elimination Algorithm

finding the maximum a posteriori hypothesis, and calculating the maximum expected util-
ity, as well as algorithms for constraint optimization, such as Max-CSP, can be expressed
as bucket-elimination algorithms [3].

The input to a bucket-elimination algorithm is an automated reasoning problem, namely,
a collection of functions or relations (e.g., clauses for propositional satisfiability, constraints
or cost functions, or conditional probability matrices for belief networks). Given a variable
ordering, the algorithm partitions the functions into buckets, each associated with a single
variable. A function is placed in the bucket of its argument that appears latest in the
ordering. The algorithm has two phases. During the first, top-down phase, it processes
each bucket, from last to first by a variable elimination procedure that computes a new
function which is placed in a lower bucket. For MPE, the variable elimination procedure
computes the product of all probability matrices and maximizes over the bucket’s variable.
For Max-CSP, this procedure computes the sum of all cost functions and minimizes over
the bucket’s variable. During the second, bottom-up phase, the algorithm constructs a
solution by assigning a value to each variable along the ordering, consulting the functions
created during the top-down phase. Figure 3 shows the bucket-elimination algorithm BE
[3]. It can be shown that

Theorem 2.3 [3] The time and space complexity of bucket elimination applied along order
d is O(r·exp(w∗(d)+1)) and O(n·exp(w∗(d))) respectively, where w∗(d) is the induced width

10

Algorithm MBE(i)
Input: A problem description P =< X, D,F,

⊗
,⇓, ∅ >; an ordering of the variables d;

parameter i, f =
⊗r

i=1 fi.
Output: A bound on ⇓∅ f , the cost of the optimal solution; an assignment to all the
variables; and the ordered augmented buckets.
1. Initialize: Partition the functions in F into bucket1, . . ., bucketn, where bucketi
contains all functions whose highest variable is Xi. Let S1, ..., Sj be the scopes of
functions (original and intermediate) in the processed bucket.
2. Backward For p ← n down-to 1, do
• If variable Xp is instantiated (Xp = xp), assign Xp = xp to each hi and put each
resulting function into its appropriate bucket.
• Else, for h1, h2, ..., hj in bucketp, generate an (i)-partitioning, Q

′
= {Q1, ..., Qt}.

For each Ql ∈ Q
′

containing hl1 , ...hlt generate function hl, hl =⇓Ul

⊗t
i=1 hli , where

Ul =
⋃j

i=1 scope(hli)− {Xp} Add hl to the bucket of the largest-index variable in Ul.
3. Forward For i = 1 to n do, given x1, ..., xp−1 choose a value xp of Xp that optimizes
the combination of all the functions in Xp’s bucket.
4. Return the ordered set of augmented buckets, an assignment x̄ = (x1, ..., xn), an
interval bound (the value computed in bucket1 and the cost f(x̄)).

Figure 4: Mini-Bucket Elimination Algorithm

of the network’s ordered primal graph along the ordering d, r is the number of functions,
and n is the number of variables. 2

The main drawback of bucket elimination algorithms is that they require too much space
for storing intermediate functions. Mini-Bucket Elimination is an approximation designed
to avoid the space and time problem of full bucket elimination [7] by partitioning large
buckets into smaller subsets called mini-buckets which are processed independently. Here is
the rationale. Let h1, ..., hj be the functions in bucketp. When Bucket Elimination processes
bucketp, it computes the function hp: hp =⇓Up

⊗j
i=1 hi, where Up =

⋃j
i=1 Si − {Xp}. The

Mini-Bucket algorithm, on the other hand, creates a partitioning Q′ = {Q1, ..., Qt} where
the mini-bucket Ql contains the functions hl1 , ..., hlk . The approximation processes each
mini-bucket (by using the combination and marginalization operators) separately, therefore
computing gp =

⊗t
l=1 ⇓Up

⊗
li hli . Clearly, gp is a bound on hp – for maximization problems

hp ≤ gp; for minimization problems hp ≥ gp. Therefore, the bound computed in each bucket
yields an overall bound on the cost of the solution.

The quality of the bound depends on the degree of the partitioning into mini-buckets.
Given a bounding parameter i, the algorithm creates an i-partitioning, where each mini-

11

Eh

E = 0 h D

h C

h B

MPE

maxB

A

E

D

C

Bbucket

bucket

bucket

bucket

bucket

P(e|b,c) P(d|a,b) P(b|a)

P(c|a)

P(a)

(a,d,c,e)

(a,d,e)

(a,e)

(a)

Complexity: O(exp(4)

maxB

h B

h B

MPE()Upper boundU =

Mini-buckets Max variables

E = 0

in a mini-bucket

3

3

2

2

1

O (exp(3))
Complexity:

P(b|a)P(d|a,b)P(e|b,c)

P(c|a)

P(a)

h C

DhhE

(e,c)

(d,a)

(e,a)

(a) (a)

(a) A trace of BE (b) A trace of MBE(3)

Figure 5: Execution of BE and MBE(i)

bucket includes no more than i variables. Algorithm MBE(i) 2, described in Figure 4,
is parameterized by this i-bound. The algorithm outputs not only a bound on the cost
of the optimal solution and an assignment, but also the collection of augmented buckets.
By comparing the bound computed by MBE(i) to the cost of the assignment output by
MBE(i), we can always have an interval bound on the error for the given instance. For
example, if ⇓= max, MBE(i) provides an upper-bound on the optimal assignment in its
first bucket, while the cost of the assignment generated yields a lower bound.

The algorithm’s complexity is time and space O(exp(i)) where i ≤ n. When the bound
i is large enough (i.e. when i ≥ w∗), the Mini-Bucket algorithm coincides with the full
bucket elimination. In summary,

Theorem 2.4 [7] Algorithm MBE(i) generates an interval bound on the cost of the optimal
solution, and its time and space complexity are O(r·exp(i)) and O(r·exp(i−1)) respectively,
where r is the number of functions. 2

Example 2.5 Figure 5 illustrates how algorithms BE and MBE(i) for i = 3 process the
network in Figure 2a along the ordering (A, E, D, C, B) and assumes the MPE task. Al-
gorithm BE records the new functions hB(a, d, c, e), hC(a, d, e), hD(a, e), and hE(a). Then,
in the bucket of A, it computes the probability of the MPE, PMPE = maxa P (a)hE(a).
Subsequently, an MPE assignment (A = a′, B = b′, C = c′, D = d′, E = 0) (E = 0 is
an evidence) is computed for each variable from A to B by selecting a value that optimizes
the product of functions in the corresponding bucket, conditioned on the previously assigned
values. Namely, a′ = arg maxa∈DA

P (a)hE(a), e′ = 0, d′ = arg maxd∈DD
hC(a′, d, e′), and

so on. The approximation MBE(3) splits bucket B into two mini-buckets, each containing

2In the original paper this algorithm was called Approx-MPE.

12

no more than 3 variables, and generates hB(e, c) and hB(d, a). An upper bound on the
MPE value is computed by upper-bound = maxa∈DA

P (a) · hE(a) · hD(a). A suboptimal
tuple is computed by MBE(i) similarly to the MPE tuple computed by BE, by assigning a
value to each variable that maximizes the product of functions in the corresponding bucket,
given the assignments to the previous variables. The value of this assignment is a lower
bound on the MPE value.

3 Heuristic Search with Mini-Bucket Heuristics

By comparing the bound computed by MBE(i) with the cost of the assignment returned
by MBE(i), we can bound the error of the assignment. If the error is large, we can increase
i. Encouraging empirical results were reported for computing the MPE on randomly gen-
erated noisy-or networks, on medical-diagnosis CPCS networks, and on coding problems
[7, 36]. In some cases, however, the approximation was largely suboptimal, even when us-
ing the highest feasible accuracy level. Such cases call for finding a better solution by using
heuristic search, such as Branch-and-Bound or Best-First search, which is the approach we
explore in this paper.

A heuristic search algorithm explores the search space of partial assignments guided by
a heuristic evaluation function. The heuristic function estimates the cost of the optimal
completion of every partial assignment to a full assignment.

Branch-and-Bound searches the space of partial assignments in a depth-first manner.
It discards any partial assignment whose heuristic value is not better than the value of
the current best solution. The algorithm requires only a limited amount of memory and
can be used as an anytime scheme; whenever interrupted, Branch-and-Bound outputs the
best solution found so far. Best-First explores the search space in a breadth-first manner,
expanding a partial assignment with the best heuristic value first. Best-First is optimal
in terms of the number of nodes expanded, while it needs exponential space in the worst
case.

The effectiveness of both search methods depends on the quality of the heuristic func-
tion. A heuristic function that is accurate, but not too hard to compute, is desirable.
In the following section we will show how to define a heuristic function that can guide
Branch-and-Bound or Best-First search, using the augmented buckets generated by the
MBE(i) algorithm. We will use the task of finding the Most Probable Explanation in a
Bayesian network to illustrate the idea and then proceed to the general case.

3.1 Mini-Bucket Heuristic Idea

Consider the Bayesian network shown in Figure 2, and consider a given variable ordering
d = (A,E, D, C, B) and the bucket and mini-buckets configuration in the output, as dis-

13

E D

D

D

B

B

A
E

D

0

0
0

0

1

1

1

1

Figure 6: Search space for f ∗(a, e, d).

played in Figure 5. Let’s assume, without losing generality, that variables A, E and D have
been instantiated during search (see Figure 6, a = 0, e = 1, d = 1). Let f ∗(a, e, d) be the
probability of the best completion of the partial assignment (A = a,E = e,D = d). By
definition,

f ∗(a, e, d) = maxb,cP (a, b, c, d, b).
= P (a) ·maxb,cP (c|a)P (e|b, c)P (b|a)P (d|a, b)
= g(a, e, d) · h∗(a, e, d)

where,
g(a, e, d) = P (a)

and
h∗(a, e, d) = maxb,cP (c|a)P (e|b, c)P (b|a)P (d|a, b)

(1)

We can derive:

h∗(a, e, d) = maxb,cP (c|a)P (e|b, c)P (b|a)P (d|a, b)
= maxcP (c|a) ·maxbP (e|b, c)P (b|a)P (d|a, b)
= maxcP (c|a) · hB(a, d, c, e)
= hC(a, d, e)

where
hB(a, d, c, e) = maxbP (e|b, c)P (b|a)P (d|a, b)

and
hC(a, d, e) = maxcP (c|a) · hB(a, d, c, e)

(2)

Interestingly, the functions hB(a, d, c, e) and hC(a, d, e) are already produced by the
bucket elimination algorithm BE (Figure 5a). Specifically, the function hB(a, d, c, e), gen-
erated in bucketB, is the result of a maximization operation over variable B. In practice,

14

however, this function may be too hard to compute as it requires processing a function
on four variables and recording a function on three variables. So, it can be replaced by
an approximation, where the maximization is split into two parts. This yields a function,
which we denote h(a, e, d), that is an upper bound on h∗(a, e, d) defined in Eq. (2), namely,

h∗(a, e, d) = maxcP (c|a) ·maxbP (e|b, c)P (b|a)P (d|a, b)
≤ maxcP (c|a) ·maxbP (e|b, c) ·maxbP (b|a)P (d|a, b)
= maxcP (c|a) · hB(e, c) · hB(d, a)
= hB(d, a) ·maxcP (c|a) · hB(e, c)
= hB(d, a) · hC(e, a)
= h(a, e, d)

where
hB(e, c) = maxbP (e|b, c)
hB(d, a) = maxbP (b|a) · P (d|a, b)
hC(e, a) = maxcP (c|a) · hB(e, c)

Notice now that the functions hB(e, c), hB(d, a) and hC(e, a) were already computed by
the Mini-Bucket algorithm MBE(i) (Figure 5b). Using the upper-bound function h(a, e, d),
we can now define a function f(a, e, d) that provides an upper bound on the exact value
f ∗(a, e, d). Namely, replacing h∗(a, e, d) by h(a, e, d) in f ∗(a, e, d) in Eq. (1) we get

f(a, e, d) = g(a, e, d) · h(a, e, d) ≥ f ∗(a, e, d)

3.2 Mini-Bucket Heuristic for MPE

In the following, we will assume that a Mini-Bucket algorithm was applied to a belief
network using a given variable ordering d = (X1, ..., Xn), and that the algorithm outputs
an ordered set of augmented buckets bucket1,...,bucketp,...,bucketn, containing both the
input functions and the newly generated functions. Relative to such an ordered set of
augmented buckets, we use the following notations:

• Ppj
denotes an input conditional probability matrix in bucketp (namely, one whose

highest-ordered variable is Xp), enumerated by j.

• hpj
denotes a function residing in bucketp that was generated by the Mini-Bucket

algorithm, enumerated by j.

• hp
j stands for a function created by processing the j-th mini-bucket in bucketp.

• λpj
stands for an arbitrary function in bucketp, enumerated by j. Notice that {λpj

} =
{Ppj

} ∪ {hpj
}.

15

We denote by buckets(1..p) the union of all functions in the bucket of X1 through the
bucket of Xp.

Example 3.1 In Figure 5b, bucketC (the bucket corresponding to variable C) contains
two functions: PC1 = P (c|a) and hC1 = λC1 = hB(e, c). When bucketC is processed, a
new function hC

1 = hC(e, a) is generated. This new function is then placed in the bucket of
variable E. Following the notation introduced above, hE1 = hC(e, a), and it is also denoted
as λE1.

We will now show that in general the functions recorded by the Mini-Bucket algorithm
can be used to upper bound the probability of the most probable extension of any partial
assignment, and therefore can serve as heuristic evaluation functions in a Best-First or
Branch-and-Bound search.

Definition 3.1 (Exact Evaluation Function) Let x̄p = (x1, ..., xp) be an assignment
to the first p variables. The probability of the most probable extension of x̄p, denoted f ∗(x̄p)
is defined by

f ∗(x̄p) = maxxp+1,...,xn

n∏

k=1

P (xk|xpak
)

The above product defining f ∗ can be divided into two smaller products expressed by
the functions in the ordered augmented buckets. In the first product all the arguments are
instantiated (belong to x1, ..., xp), and therefore the maximization operation is applied to
the second product only. Denoting

g(x̄p) =


 ∏

Pi∈ buckets(1..p)

Pi


 (x̄p)

and

h∗(x̄p) = max(xp+1,...,xn)


 ∏

Pi∈buckets(p+1..n)

Pi


 (x̄p, xp+1, ..., xn)

we get
f ∗(x̄p) = g(x̄p) · h∗(x̄p).

During search, the g function can be evaluated over the partial assignment x̄p, while h∗

can be estimated by a heuristic function h, derived from the functions recorded by the
Mini-Bucket algorithm, as defined next:

16

Definition 3.2 (Mini-Bucket Heuristic) Given an ordered set of augmented buckets
generated by the Mini-Bucket algorithm, the heuristic function h(x̄p) is defined as the prod-
uct of all the hk

j functions that satisfy the following two properties: 1) They are gener-
ated in buckets p + 1 through n, and 2) They reside in buckets 1 through p. Namely,
h(x̄p) =

∏p
i=1

∏
hk

j∈bucketi
hk

j , where k > p, (i.e. hk
j is generated by a bucket processed before

bucketp.)

Example 3.2 In Figure 5b, the buckets of variables A, E and D contain a total of 4
functions generated by the Mini-Bucket algorithm: hB(d, a), hC(e, a), hE(a) and hD(a).
However, when computing the heuristic functions h(a, e, d), only hB(d, a) and hC(e, a) are
used, yielding: h(a, e, d) = hB(d, a) · hC(e, a), because hE(a) and hD(a) were already com-
puted in buckets D and E from hC(e, a) and hB(d, a), respectively.

The following proposition shows how g(x̄p+1) and h(x̄p+1) can be updated recursively.

Proposition 3.1 Given a partial assignment x̄p = (x1, . . . xp), both g(x̄p) and h(x̄p) can
be computed recursively by

g(x̄p) = g(x̄p−1) · ΠjPpj
(x̄p) (3)

h(x̄p) = h(x̄p−1) · Πkhpk
(x̄p)

Πjh
p
j(x̄

p)
(4)

Proof. Following Definitions 3.1 and 3.2, g(x̄p) is simply the product of all input proba-
bilities that are in buckets 1 . . . p. Heuristic function h(x̄p) must contain all new functions
that are in buckets 1 . . . p, and that were generated in buckets p + 1 . . .m. Since h(x̄p−1)
already contains all new functions in buckets 1 . . . p − 1 that were generated by buckets
p . . . n, we need to factor out all new functions that were generated in bucket p, and mul-
tiply the result with all new functions in bucket p (which must be generated in buckets
p + 1 . . . n), yielding h(x̄p). 2

Theorem 3.3 For every partial assignment x̄p = (x1, ..., xp), of the first p variables, the
evaluation function f(x̄p) = g(x̄p) · h(x̄p) is: 1) Admissible - it never underestimates the
probability of the best extension of x̄p, and 2) Monotonic - namely f(x̄p+1) ≤ f(x̄p).

Notice that monotonicity means better accuracy at deeper nodes in the search tree.
Proof. To prove monotonicity, we will use the recursive equations (3) and (4) from Propo-
sition 3.1. For any x̄p and any value v in the domain of Xp+1, we have by definition

f(x̄p, v)

f(x̄p)
=

g(x̄p, v) · h(x̄p, v)

g(x̄p) · h(x̄p)

17

=
(g(x̄p) · ΠjP(p+1)j

(x̄p, v)) · (h(x̄p) · Πkh(p+1)k
(x̄p,v)

Πjhp+1
j (x̄p)

)

g(x̄p) · h(x̄p)

=
ΠjP(p+1)j

(x̄p, v) · Πkh(p+1)k
(x̄p, v)

Πjh
p+1
j (x̄p)

Since {P(p+1)j
} ∪ {h(p+1)k

} = {λ(p+1)i
}, we get

=
Πiλ(p+1)i

(x̄p, v)

Πjh
p+1
j (x̄p)

Since hp+1
j (x̄p) is computed by the j-th mini-bucket in bucket (p + 1) by maximizing over

variable Xp+1, (eliminating variable Xp+1), we get

Πiλ(p+1)i
(x̄p, v) ≤ Πjh

p+1
j (x̄p)

Thus, f(x̄p, v) ≤ f(x̄p), concluding the proof of monotonicity.
The proof of admissibility follows from monotonicity. It is well known that if a heuristic

function is monotone and if it is exact for a full solution (which is the case here, since the
heuristic is the constant 1 on a full solution), then it is also admissible [31]. 2

In the extreme case when each bucket p contains exactly one mini-bucket, the heuristic
function h equals h∗, and the heuristic function f computes the exact probability of the
MPE extension of the current partial assignment.

3.3 Mini-Bucket Heuristic for the General Case

We will now extend this approach further. Mini-Bucket Elimination can be used to gen-
erate a heuristic function for any optimization problem P = < X, D, F,

⊗
,⇓, ∅ > with

decomposable cost functions f =
⊗r

i=1 fi.

Definition 3.3 (Mini-Bucket Heuristic) Given an ordered set of augmented buckets
generated by the Mini-Bucket algorithm MBE(i), and given a partial assignment x̄p, an
evaluation function f(x̄p) = g(x̄p)

⊗
h(x̄p) is defined as follows:

1. g(x̄p) =
(⊗

fi∈ buckets(1..p) fi

)
(x̄p) is the combination of all functions that are fully

instantiated.

2. The heuristic function h(x̄p) is defined as the combination of all the hk
j functions that

satisfy the following two properties:

• They are generated in buckets p + 1 through n,

• They reside in buckets 1 through p.

18

Namely, h(x̄p) =
⊗p

i=1

⊗
hk

j∈bucketi
hk

j , where k > p, (i.e. hk
j is generated by a bucket

processed before bucketp.)

Proposition 3.2 Given a partial assignment x̄p = (x1, . . . xp), both g(x̄p) and h(x̄p) can
be computed recursively by

g(x̄p) = g(x̄p−1)
⊗

(
⊗

j

fpj
(x̄p)) (5)

h(x̄p) = h(x̄p−1)
⊗

[(
⊗

k

hpk
(x̄p))

−1⊗
(
⊗

j

hp
j(x̄

p))] (6)

where
⊗−1 is the inverse of the combination operator

⊗
.

Theorem 3.4 For every partial assignment x̄p = (x1, ..., xp) of the first p variables, the
evaluation function f(x̄p) = g(x̄p)

⊗
h(x̄p) is admissible and monotonic. 2

Next, we show how the heuristic function is incorporated in search for a general opti-
mization task.

3.4 Search with Mini-Bucket Heuristics

The tightness of the bound generated by the Mini-Bucket approximation depends on its
i-bound. Larger values of i generally yield better bounds, but require more computation.
Since the Mini-Bucket algorithm is parameterized by i, when using the heuristics in each
of the search methods, we get an entire class of Branch-and-Bound search and Best-First
search algorithms that are parameterized by i and which allow a controllable trade-off
between preprocessing and search, or between heuristic strength and its overhead.

Figures 7 and 8 present algorithms BBMB(i) (Branch-and-Bound with Mini-Bucket
heuristics) and BFMB(i) (Best-First search with Mini-Bucket heuristics). Both algorithms
have a preprocessing step of running the Mini-Bucket algorithm that produces a set of
ordered augmented buckets.

Branch-and-Bound with Mini-Bucket heuristics (BBMB(i)) traverses the search space
in a depth-first manner, instantiating variables from first to last. Throughout the search,
the algorithm maintains a global bound on the cost of the optimal solution, which corre-
sponds to the cost of the best full variable instantiation found thus far. When the algorithm
processes variable Xp, all the variables preceding Xp in the ordering are already instanti-
ated, so it can compute f(x̄p−1, Xp = v) = g(x̄p−1, v)

⊗
h(x̄p, v) for each extension Xp = v.

The algorithm prunes all values v whose heuristic estimate f(x̄p, Xp = v) is not better
(that is - not greater for maximization problems; not smaller for minimization problems)
than the current global bound, because such a partial assignment (x1, . . . xp−1, v) cannot

19

Algorithm BBMB(i)
Input: A problem description P =< X, D,F,

⊗
,⇓, ∅ >; ordering d; time bound t.

Output: An optimal assignment, or a bound and a (suboptimal) assignment (produced
by MBE(i)).
1. Initialize: Run MBE(i) algorithm generating a set of ordered augmented buckets
and a bound on the optimal cost. Initialize global bound B to the worst value (for
minimization problems ∞, for maximization problems 0). Set p to 0.
2. Search: Execute the following procedure until variable X1 has no legal values left
or until out of time, in which case output the current best solution.
• Expand: Given a partial instantiation x̄p, compute all partial assignments x̄p+1 =
(x̄p, v) for each value v of Xp+1. For each node x̄p+1 compute its heuristic value
f(x̄p+1) = g(x̄p+1)

⊗
h(x̄p+1) using Eq. (5) and (6). Discard those assignments

x̄p+1 for which f(x̄p+1) is not better than the global bound B. Add the remaining
assignments to the search tree as children of x̄p.
• Forward: If Xp+1 has no legal values left, goto Backtrack. Otherwise let x̄p+1 =
(x̄p, v) be the best extension to x̄p according to f . If p+1 = n, then set B = f(x̄n) and
goto Backtrack. Otherwise remove v from the list of legal values. Set p = p + 1 and
goto Expand.
• Backtrack: If p = 1, Exit. Otherwise set p = p− 1 and repeat the Forward step.

Figure 7: Algorithm Branch-and-Bound with MBE(i)

be extended to an improved full assignment. The algorithm assigns the best value v to
variable Xp and proceeds to variable Xp+1, and when variable Xp has no values left, it
backtracks to variable Xp−1. Search terminates when it reaches a time-bound or when the
first variable has no values left. In the latter case, the algorithm has found an optimal
solution.

Algorithm Best-First with Mini-Bucket heuristics (BFMB(i)) maintains a list of open
nodes. Each node corresponds to a partial assignment x̄p and has an associated heuristic
value f(x̄p). The basic step of the algorithm consists of selecting an assignment x̄p from
the list of open nodes having the best heuristic value (that is - the highest value for
maximization problems; the smallest value for minimization problems) f(x̄p), expanding
it by computing all partial assignments (x̄p, v) for all values v of Xp+1, and adding them
to the list of open nodes.

Since, as shown, the generated heuristics are admissible and monotonic, their use within
Best-First search yields A* type algorithms whose properties are well understood. The
algorithm is guaranteed to terminate with an optimal solution. When provided with more
powerful heuristics, it explores a smaller search space, but otherwise it requires substantial
space. It is known that Best-First algorithms are optimal. Namely, when given the same

20

Algorithm BFMB(i)
Input: A problem description P =< X, D,F,

⊗
,⇓, ∅ >; ordering d; time bound t.

Output: An optimal assignment, or a bound and a (suboptimal) assignment (produced
by MBE(i)).
1. Initialize: Run MBE(i) algorithm generating a set of ordered augmented buckets
and a bound on the optimal cost. Insert a dummy node x̄0 in the set L of open nodes.
2. Search:
• If out of time, output Mini-Bucket assignment.
• Select and remove a node x̄p with the best heuristic value f(x̄p) from the set of open
nodes L.
• If p = n then x̄p is an optimal solution. Exit.
• Expand x̄p by computing all child nodes (x̄p, v) for each value v in the domain of
Xp+1. For each node x̄p+1 compute its heuristic value f(x̄p+1) = g(x̄p+1)

⊗
h(x̄p+1),

using Eq. (5) and (6).
• Add all nodes (x̄p, v) to L and goto Search.

Figure 8: Algorithm Best-First search with MBE(i)

heuristic information, Best-First search is the most efficient algorithm in terms of the size
of the search space it explores [5]. In particular, Branch-and-Bound will expand any node
that is expanded by Best-First (up to some tie breaking conditions), and in many cases
it explores a larger space. Still, Best-First may occasionally fail because of its memory
requirements, or because it has to maintain a large subset of open nodes during search, or
because of tie breaking rules at the last frontier of nodes having evaluation function value
that equals the optimal solution. Therefore, as we will indeed observe in our experiments,
Branch-and-Bound and Best-First search have complementary properties, and both can be
strengthened by the Mini-Bucket heuristics.

3.5 Selecting Accuracy Parameter

One of the open issues needing further research is the best threshold point for the accuracy
parameter i. We will not investigate this issue in the current paper.

For any accuracy parameter i, we can determine the space complexity of Mini-Bucket
preprocessing in advance. This can be done by computing signatures (i.e. arguments) of all
intermediate functions, without computing the actual functions. Based on the signatures of
original and intermediate functions, we can compute the total space needed. Knowing the
space complexity, we can estimate the time complexity. Thus given the time and space at
our disposal, we can select the parameter i that would fit. However, the cost-effectiveness
of the heuristic produced by Mini-Bucket preprocessing may not be predicted a priori. We

21

observed that in general, as the problem graph is more dense, higher levels of Mini-Bucket
heuristic become more cost-effective.

When repeatedly solving problems from a given class of problems, a preliminary em-
pirical simulation can be informative when the problem class is not too heterogeneous.
Otherwise, we can start with a small accuracy parameter (corresponding to a weak heuris-
tic) and gradually proceed to higher accuracy parameters, until available time is up and
then choose the best solution found.

4 Experimental Results - Max-CSP

In order to empirically evaluate the performance of our approach, we have conducted a
number of experiments on two classes of optimization problems: the Max-CSP task in
Constraint Optimization and the Most Probable Explanation task in Bayesian Networks3.

For the Max-CSP task, we tested the performance of BBMB(i) and BFMB(i) on sets
of random binary CSPs. Each problem in this class is characterized by four parameters:
< N, K, C, T >, where N is the number of variables, K is the domain size, C is the number
of constraints, and T is the tightness of each constraint, defined as the number of tuples
not allowed. Each problem is generated by randomly picking C constraints out of

(
N
2

)

total possible constraints, and picking T nogoods out of K2 maximum possible for each
constraint.

We used the min-degree heuristic for computing the ordering of variables. It places a
variable with the smallest degree at the end of the ordering, connects all of its neighbors,
removes the variable from the graph and repeats the whole procedure.

In addition to MBE(i), BBMB(i) and BFMB(i), we ran, for comparison, two state-of-
the-art algorithms for solving Max-CSP : PFC-MPRDAC as defined in [22] and a Stochastic
Local Search (SLS) algorithm we developed for CSPs [19].

PFC-MPRDAC [22] is a specialized Branch-and-Bound search algorithm developed for
constraint optimization. It uses a forward checking step based on a partitioning of unas-
signed variables into disjoint subsets of variables. This partitioning is used for computing
a heuristic evaluation function that is used for determining variable and value ordering, as
well as pruning. Currently, it is one of the best known complete algorithms for Max-CSP.

As a measure of performance, we used the accuracy ratio opt = FMax−CSP /Falg between
the value of the optimal solution (FMax−CSP) and the value of the solution found by the
test algorithm (Falg), whenever FMax−CSP is available. We also record the running time of
each algorithm.

We recorded the distribution of the accuracy measure opt over five predefined ranges :
opt ≥ 0.95, opt ≥ 0.5, opt ≥ 0.2, opt ≥ 0.01 and opt < 0.01. However, because of space

3All our experiments were done on a 450 MHz Pentium II with 386 MB of RAM running Windows NT
4.0.

22

MBE MBE MBE MBE MBE
BBMB BBMB BBMB BBMB BBMB PFC-MRDAC

T BFMB BFMB BFMB BFMB BFMB
i=2 i=3 i=4 i=5 i=6

%/time %/time %/time %/time %/time %/time

N=10, K=10, C=45. Time bound 180 sec. Avg w∗=9. Dense network.

84 2/0.02 4/0.11 6/0.87 10/7.25 16/56.7
26/180 98/90.7 100/11.7 100/10.0 100/57.6 100/4.00
2/189 4/184 78/65.7 98/17.9 100/59.3

85 0/- 3/0.11 2/0.89 8/7.45 10/57.3
20/180 100/80.1 100/11.6 100/9.62 100/57.3 100/3.95

0/- 5/124 82/54.4 100/18.7 100/58.9

N=15, K=10, C=50. Time bound 180 sec. Avg w∗=7.7. Medium density.
84 0/- 0/- 3/0.96 6/8.77 14/78.3

10/180 60/161 90/50.1 100/26.2 100/86.2 100/13.5
0/- 0/- 21/70.5 65/49.8 97/89.7

85 1/0.02 2/0.13 3/0.95 7/8.12 17/71.0
20/180 68/164 98/79.0 100/28.7 100/74.9 100/13.2
1/190 5/184 16/82.0 63/59.6 97/82.8

N=25, K=10, C=37. Time bound 180 sec. Avg w∗=4.5. Sparse network.
84 0/- 7/0.10 30/0.60 84/3.41 99/9.74

36/114 99/4.42 100/0.77 100/3.70 100/9.93 100/4.16
3/56.9 94/8.67 100/1.28 100/3.77 100/9.93

85 0/- 10/0.10 34/0.60 79/3.20 99/9.36
31/88.6 100/7.55 100/0.75 100/3.31 100/9.58 100/7.51
9/51.1 89/17.1 100/1.34 100/3.34 100/9.59

Table 1: Search completion times for problems with 10 values. 100 samples.

and clarity, we only report the number of problems that fall in the range 0.95. Problems
in this range were solved optimally.

4.1 Complete Algorithms

Here we evaluate the performance of algorithms as complete ones. Tables 1-3 report results
of experiments with three classes of over-constrained binary CSPs with domain sizes :
K=10, K=5 and K=3 respectively. Tables 1 and 2 contain three blocks, each corresponding

23

MBE MBE MBE MBE MBE MBE MBE
BBMB BBMB BBMB BBMB BBMB BBMB BBMB PFC-

T BFMB BFMB BFMB BFMB BFMB BFMB BFMB MRDAC
i=2 i=3 i=4 i=5 i=6 i=7 i=8

%/time %/time %/time %/time %/time %/time %/time %/time

N=15, K=5, C=105. Time bound 180 sec. Avg w∗=14. Dense network.

18 0/- 0/- 0/- 12/0.56 13/2.27 31/11.7 34/49.7
10/180 32/180 64/148 96/81.4 100/33.4 100/21.9 100/52.5 100/9.61

0/- 0/- 0/- 13/111 59/64.5 88/47.4 100/58.1
19 0/- 0/- 0/- 0/- 5/2.78 12/14.6 40/60.3

16/180 40/180 77/155 100/76.8 100/29.7 100/22.8 100/60.9 100/7.69
0/- 0/- 2/188 3/182 42/54.0 88/39.2 100/61.9

N=20, K=5, C=100. Time bound 180 sec. Avg w∗=12. Medium density.
18 0/- 0/- 7/0.17 10/0.71 11/3.12 23/14.4 29/68.7

5/180 15/180 38/170 71/132 86/82.3 95/57.4 96/90.6 100/18.7
0/- 0/- 1/183 2/60.0 9/76.9 33/81.5 59/98.9

19 0/- 0/- 0/- 4/0.70 4/3.21 4/14.9 4/70.7
4/180 24/180 56/160 64/121 84/97.5 96/85.4 92/90.0 100/17.4
0/- 0/- 0/- 12/89.5 12/76.5 32/77.3 52/96.8

N=40, K=5, C=55. Time bound 180 sec. Avg w∗=5.1. Sparse network.
18 0/- 12/0.02 36/0.07 54/0.19 88/0.53 100/1.03 100/1.14

44/87.7 100/4.41 100/0.21 100/0.23 100/0.56 100/1.04 100/1.15 100/4.94
3/4.56 92/14.9 100/0.45 100/0.27 100/0.57 100/1.04 100/1.16

19 0/- 7/0.03 25/0.07 55/0.20 79/0.56 96/1.29 100/1.89
38/104 99/8.35 100/0.34 100/0.25 100/0.61 100/1.35 100/1.90 100/8.04
1/25.4 83/14.4 100/1.28 100/0.30 100/0.63 100/1.36 100/1.90

Table 2: Search completion times for problems with 5 values. 100 samples.

to a set of CSPs with a fixed number of variables and constraints. Within each block, there
are two small blocks each corresponding to a different constraint tightness, given in the
first column. In columns 2 through 6 (Table 1), and columns 2 through 7 (Tables 2 and
3), we have results for MBE, BBMB and BFMB (in different rows) for different values of
i-bound. In the last column we have results for PFC-MRDAC. Each entry in the table
gives a percentage of the problems that were solved exactly (fall in the 0.95 range) within
our time bound, and the average CPU time for these problems.

For example, looking at the second block of the middle large block in Table 1 (corre-

24

MBE MBE MBE MBE MBE MBE
BBMB BBMB BBMB BBMB BBMB BBMB PFC-MRDAC

T BFMB BFMB BFMB BFMB BFMB BFMB
i=2 i=4 i=6 i=8 i=10 i=12

%/time %/time %/time %/time %/time %/time %/time

N=100, K=3, C=200. Time bound 1 hr. Avg w∗=21. Sparse network.

1 70/0.03 90/0.06 100/0.32 100/2.15 100/15.1 100/116
90/12.5 100/0.07 100/0.33 100/2.16 100/15.1 100/116 100/0.08
80/0.03 100/0.07 100/0.33 100/2.15 100/15.1 100/116

2 0/- 0/- 4/0.35 20/2.28 20/15.6 24/123
0/- 0/- 96/644 92/41 96/69 100/125 100/757
0/- 0/- 56/131 88/170 92/135 100/130

3 0/- 0/- 0/- 0/- 4/14.4 4/114
0/- 0/- 100/996 100/326 100/94.6 100/190 100/2879
0/- 0/- 16/597 60/462 88/344 84/216

4 0/- 0/- 0/- 0/- 4/14.9 8/120
0/- 0/- 52/2228 88/1042 92/396 100/283 100/7320
0/- 0/- 4/2934 8/540 28/365 60/866

Table 3: Search completion times for problems with 3 values. 25 samples.

sponding to binary CSPs with N=15, K=10, C=50 and T=85) we see that MBE with i=2
(column 2) solved only only 1% of the problems exactly in 0.02 seconds of CPU time. On
the same set of problems, BBMB using Mini-Bucket heuristics, solved 20% of the problems
optimally using 180 seconds of CPU time on the average, while BFMB solved 1% of the
problems exactly in 190 seconds on the average. When moving to columns 3 through 6 in
rows corresponding to the same set of problems, we see a gradual change caused by a higher
level of Mini-Bucket heuristic (higher values of the i-bound). As expected, Mini-Bucket
Elimination solves more problems, while using more time. Focusing on BBMB, we see that
it solved all problems when the i-bound is 5 or 6. Its total running time as a function of i
forms a U-shaped curve. At first (i=2) it is high (180), then as i-bound increases the total
time decreases (when i=5 the total time is 28.7), but then as i-bound increases further the
total time starts to increase again. The same behavior is observed in case of BFMB as
well. For each set of problems, we have highlighted in bold the results of BBMB(i) and
BFMB(i) corresponding to the optimal value of i.

This demonstrates a trade-off between the amount of preprocessing performed by MBE
and the amount of subsequent search using the heuristic cost function generated by MBE.

25

Max-CSP N=15 K=10 C=50 T=85

Time [sec]

0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120

%
 S

o
lv

e
d

 E
x
a
c
tl

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2

BFMB i=2

BBMB i=4

BFMB i=4

BBMB i=6

BFMB i=6

Max-CSP N=20 K=5 C=100 T=18

Time [sec]

0
 20
 40
 60
 80
 100
 120
 140

%
 S

o
lv

e
d

 E
x
a
c
tl

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2

BFMB i=2

BBMB i=6

BFMB i=6

BBMB i=10

BFMB i=10

(a) (b)

Figure 9: Max-CSP: Distribution of search completion.

The optimal balance between preprocessing and search corresponds to the value of i-bound
at the bottom of the U-shaped curve. The added amount of search on top of MBE can be
estimated by tsearch = ttotal−tMBE. As i increases, the average search time tsearch decreases,
and the overall accuracy of the search algorithm increases (more problems fall within higher
ranges of opt). However, as i increases, the time of MBE preprocessing increases as well.

One crucial difference between BBMB and BFMB is that BBMB is an anytime algo-
rithm - it always outputs an assignment, and as time increases, the solution improves.
BFMB, on the other hand, only outputs a solution when it finds an optimal solution. In
our experiments, if BFMB did not finish within the preset time bound, it returned the
MBE assignment.

From the data in the Tables we can see that the performance of BFMB is consistently
worse than that of BBMB. BFMB(i) solves fewer problems than BBMB(i) and, on the
average, takes longer on each problem. This is even more pronounced when a non-trivial
amount of search is required (lower i-bound values). These results are in contrast to the
behavior we observed when using this scheme for optimization in belief networks as we will
see in the next section. We speculate that this is because, for Max-CSP, there are large
numbers of frontier nodes having the same heuristic value.

Tables 1-3 also report the results of PFC-MRDAC. When the constraint graph is dense,
PFC-MRDAC is up to 2-3 times faster than the best performing BBMB. When the con-
straint graph is sparse, the best BBMB is up to two orders of magnitude faster than

26

Max-CSP N=15 K=10 C=50 T=85

Time [sec]

0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120

%
 S

o
lv

e
d

 E
x
a
c
tl

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2

BBMB i=4

BBMB i=6

SLS

Max-CSP N=40 K=5 C=55 T=19

Time [sec]

0
 1
 2
 3
 4
 5

%
 S

o
lv

e
d

 E
x
a
c
tl

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2

BBMB i=4

BBMB i=6

BBMB i=8

SLS

(a) (b)

Figure 10: Max-CSP: Distribution of anytime performance.

PFC-MRDAC. The superiority of our approach is most notable for larger problems (Table
3).

In Figure 9 we provide an alternative view of the performance of BBMB(i) and BFMB(i).
Let FBBMB(i)(t) and FBFMB(i)(t) be the fraction of the problems solved completely by
BBMB(i) and BFMB(i), respectively, by time t. Each graph in Figure 9 plots FBBMB(i)(t)
and FBFMB(i)(t) for several values of i. These figures display the trade-off between pre-
processing and search in a clear manner. Clearly, if FBBMB(i)(t) > FBBMB(j)(t) for all t,
then BBMB(i) completely dominates BBMB(j). For example, in Figure 9a BBMB(4) com-
pletely dominates BBMB(2) (here BBMB(2) and BFMB(2) overlap). When FBBMB(i)(t)
and FBBMB(j)(t) intersect, they display a trade-off as a function of time. For example, if
we have less than 70 seconds, BBMB(4) is better than BBMB(6). However, when sufficient
time is allowed, BBMB(6) is superior.

4.2 Anytime Algorithms

Next we compare the anytime performance of BBMB, which returns a (suboptimal) solu-
tion any time during search, with that of Stochastic Local Search (SLS), which is inherently
incomplete and can never guarantee an optimal solution for Max-CSP, but has been shown
to work well on CSPs in practice.

A Stochastic Local Search (SLS) algorithm, such as GSAT [28, 40], starts from a ran-
domly chosen complete instantiation of all the variables, and moves from one complete

27

instantiation to the next. It is guided by a cost function that is the number of unsatis-
fied constraints in the current assignment. At each step, the value of the variable that
leads to the greatest reduction of the cost function is changed. The algorithm stops when
either the cost is zero (a global minimum), in which case the problem is solved, or when
there is no way to improve the current assignment by changing just one variable (a local
minimum). A number of heuristics have been designed to overcome the problem of local
minima [29, 39, 38, 11]. In our implementation of SLS we use the basic greedy scheme
combined with the constraint re-weighting as introduced in [29]. In this algorithm, each
constraint has a weight and the cost function is the weighted sum of unsatisfied constraints.
Whenever the algorithm reaches a local minimum, it increases the weights of unsatisfied
constraints.

An SLS algorithm for CSPs can immediately be applied to a Max-CSP problem. When
evaluating the performance of SLS, we treat it as an anytime algorithm - we report the
fraction of problems solved exactly by time t as a function of t. To do that, we use the
optimal cost found by BBMB.

In Figure 10 we present results comparing BBMB and SLS as anytime algorithms.
Figure 10a (10b) corresponds to one row in Table 1 (2). When the constraint graph is
dense (Figure 10a), SLS is substantially faster than BBMB. However, when the constraint
graph is sparse (Figure 10b), BBMB(4) and BBMB(6) are faster than SLS. We should
note that, based on our experiments, on randomly generated networks, when the constraint
graph has high or medium density, SLS exhibits impressive performance, arriving at an
optimal solution within a few seconds and is significantly superior to BBMB(i)/BFMB(i)
as an anytime algorithm. Only on sparse networks is the performance of SLS somewhat
worse than that of BBMB(i)/BFMB(i).

5 Experimental Results - Bayesian Networks

We also tested the performance of our scheme for solving the MPE task on four types of
Bayesian networks - random coding networks, Noisy-OR networks, random Bayesian, and
CPCS networks. On each problem we ran both BBMB(i) and BFMB(i) using Mini-Bucket
approximation with various i-bounds. For comparison, on random coding networks we also
ran the Iterative Belief Propagation (IBP) algorithm that is the best incomplete algorithm
known for probabilistic decoding. The algorithm is identical to Pearl’s belief updating on
tree-like networks [32] but is applied iteratively on cyclic networks. The most likely value
for each variable is selected for the output assignment [36].

We treat all algorithms as approximation algorithms. Algorithms BBMB and BFMB,
if allowed to run until completion, will solve all problems exactly. However, since we use
a time-bound, both algorithms may return suboptimal solutions, especially for harder and
larger instances. As before, when interrupted, BBMB outputs its best solution, while

28

BFMB outputs the Mini-Bucket solution. Consequently BFMB is effective only as a com-
plete algorithm.

As with Max-CSP problems, to measure performance we used the accuracy ratio opt =
Palg/PMPE between the value of the solution found by the test algorithm (Palg) and the
value of the optimal solution (PMPE), whenever PMPE is available, given a fixed time
bound. We also record the running time of each algorithm.

As before, we recorded the distribution of the accuracy measure opt over five predefined
ranges : opt ≥ 0.95, opt ≥ 0.5, opt ≥ 0.2, opt ≥ 0.01 and opt < 0.01, and we only report
the number of problems that fall in the range 0.95.

5.1 Random Coding Networks

The purpose of channel coding is to provide reliable communication through a noisy chan-
nel. A systematic error-correcting encoding [27] maps a vector of K information bits
u = (u1, ..., uK), ui ∈ {0, 1} into an N -bit codeword c = (u, x), where N − K additional
bits x = (x1, ..., xN−K), xj ∈ {0, 1} add redundancy to the information source in order
to decrease the decoding error. The codeword, called the channel input, is transmitted
through a noisy channel. A commonly used Additive White Noise (AWGN) channel model
implies that independent Gaussian noise with variance σ2 is added to each transmitted
bit, producing the channel output y. Given a real-valued vector y, the decoding task is to
restore the input information vector u [27, 21, 25]. An alternative approach, not considered
here, is to round y to a 0/1 vector before decoding.

Our random coding networks fall within the class of linear block codes. They can be
represented as four-layer belief networks (Figure 11). The second and third layers (from
top) correspond to input information bits and parity check bits respectively. Each parity
check bit represents an XOR function of input bits ui. The first and last layers correspond
to transmitted information and parity check bits respectively. Input information and parity
check nodes are binary, while the output nodes are real-valued. In our experiments, each
layer has the same number of nodes because we use code rate of R=K/N=1/2, where K is
the number of input bits and N is the number of transmitted bits.

Given a number of input bits K, number of parents P for each XOR bit, and channel
noise variance σ2, a coding network structure is generated by randomly picking parents
for each XOR node. Then we simulate an input signal by assuming a uniform random
distribution of information bits, compute the corresponding values of the parity check bits,
and generate an assignment to the output nodes by adding Gaussian noise to each informa-
tion and parity check bit. The decoding algorithm takes as input the coding network and
the observed real-valued output assignment and recovers the original input bit-vector by
computing or approximating an MPE assignment. In our experiments, all coding networks
were generated by randomly picking four parents for each XOR bit.

29

x x x x x

u u u u u0 1 2 3 4

0 1 2 3 4

y y y y y

y y y y y

u u u u u
0

0

1 2 3 4

1 2 3 4
x x x x x

Figure 11: Belief network for structured (10,5) block code with parent set size P=3

On random coding networks, we compare BBMB/BFMB against IBP using two differ-
ent criteria: accuracy in finding the MPE tuple and Bit Error Rate (BER) which is the
probability of a bit being decoded incorrectly. When comparing performance on solving
the MPE task, we compare probabilities of the complete assignment computed by each
algorithm. Since IBP does not solve the MPE problem, but instead computes a belief
for each variable, we construct an output tuple for IBP by picking the most likely value
for each variable. When comparing algorithms using Bit Error Rate, we need to pick a
value for each variable and compare it against its correct value. When using IBP, we pick
the most likely value for each variable, using the belief values computed by IBP. Since
BBMB and BFMB compute a complete assignment, we pick the value of the variable in
the assignment as it value.

Tables 4 through 7 report results on random coding networks. In addition to MBE,
BBMB and BFMB, we also ran Iterative Belief Propagation (IBP) [32]. For each σ we
generated and tested 100 samples divided into 10 different networks, each simulated with
10 different input bit vectors 4. We also tried to run bucket elimination (BE) on this set
of problems, but the induced width w∗ was too large and BE failed to solve any problems.

In Table 4, there are five horizontal blocks, each corresponding to a different value of
channel noise σ. Each block reports a distribution over the 95% accuracy range. Within
each block we have three rows, one for each of MBE (Mini-Bucket Elimination), BBMB,
and BFMB. Columns 3 through 6 report the results on various i-bounds. Column 7 reports
results for IBP.

4In the past [15], we have run much larger numbers of random coding experiments with different variable
orderings. The results we report in this paper (with min-degree ordering) are normalized to 100 instances
and are typical of all the experiments we have run.

30

MBE MBE MBE MBE
BBMB BBMB BBMB BBMB

σ opt BFMB BFMB BFMB BFMB IBP
i=2 i=6 i=10 i=14

% / time % / time % / time % / time % / time
0.22 ≥0.95 86/0.04 89/0.06 97/0.32 99/3.26 100/

100/0.06 100/0.14 100/0.33 100/3.26 0.09
100/0.06 100/0.08 100/0.34 100/3.27

0.28 ≥0.95 74/0.04 70/0.06 86/0.34 97/3.13 100/
99/0.38 100/0.40 100/0.40 100/3.14 0.09
100/0.13 100/0.10 100/0.37 100/3.39

0.32 ≥0.95 45/0.05 56/0.06 71/0.34 81/3.34 99/
96/0.94 100/0.78 100/0.40 100/3.39 0.09
100/0.13 100/0.10 100/0.37 100/3.39

0.40 ≥0.95 14/0.04 20/0.06 44/0.32 62/3.07 90/
95/3.13 99/2.20 100/0.70 100/3.11 0.07
99/0.87 100/0.64 100/0.48 100/3.10

0.51 ≥0.95 3/0.04 8/0.06 13/0.34 18/3.38 32/
77/12.0 92/8.15 100/2.52 100/4.00 0.08
71/9.05 88/6.84 99/2.78 100/4.07

Table 4: Random coding, N=100, K=50, avg w∗=21. 100 samples.

For example, looking at the third block in Table 4 (corresponding to σ = 0.32), we
see that MBE with i=2 (column 3) solved 45% of the problems exactly (opt ≥ 0.95), in
0.05 seconds on the average. On the same set of problems, BBMB, using Mini-Bucket
heuristics, solved 96% of the problems optimally using 0.94 seconds on the average, while
BFMB solved all problems optimally with an average time of 0.13 seconds only. When
moving to columns 4 through 6 in rows corresponding to σ = 0.32 and opt ≥ 0.95, we
see the gradual change caused by higher level of Mini-Bucket heuristic (higher values of i-
bound). As expected, Mini-Bucket solves more problems, while using more time. Focusing
on BFMB, we see that it always solved all problems with any i-bound, and its total running
time as a function of i forms a U-shaped curve. At first (i=2), it is relatively high (0.13);
then as i-bound increases, the total time decreases (when i=6, the total time is 0.10).
But then, as i-bound increases further, the total time starts to increase again. The same
behavior is shown for BBMB.

This demonstrates, once again, the trade-off between the amount of preprocessing per-
formed by MBE and the amount of subsequent search using the heuristic cost function

31

MBE MBE MBE MBE
BBMB BBMB BBMB BBMB

σ BFMB BFMB BFMB BFMB IBP
i=2 i=6 i=10 i=14

BER/time BER/time BER/time BER/time BER/time
0.22 0.0060/0.04 0.0046/0.06 0.0010/0.32 0.0004/3.26 0.0002/

0.0002/0.06 0.0002/0.14 0.0002/0.33 0.0002/3.26 0.09
0.0002/0.06 0.0002/0.08 0.0002/0.34 0.0002/3.27

0.28 0.0182/0.04 0.0212/0.06 0.0048/0.34 0.0001/3.13 0.0002/
0.0014/0.38 0.0002/0.40 0.0002/0.40 0.0002/3.14 0.09
0.0002/0.13 0.0002/0.10 0.0002/0.37 0.0002/3.39

0.32 0.0448/0.05 0.0362/0.06 0.0256/0.34 0.0148/3.34 0.0022/
0.0072/0.94 0.0022/0.78 0.0022/0.40 0.0022/3.39 0.09
0.0022/0.13 0.0022/0.10 0.0022/0.37 0.0022/3.39

0.40 0.0996/0.04 0.0996/0.06 0.0628/0.32 0.0406/3.07 0.0088/
0.0194/3.13 0.0120/2.20 0.0088/0.70 0.0088/3.11 0.07
0.0116/0.87 0.0088/0.64 0.0088/0.48 0.0088/3.10

0.51 0.1916/0.04 0.1852/0.06 0.1630/0.34 0.1486/3.38 0.0800/
0.0980/12.0 0.0830/8.15 0.0762/2.52 0.0762/4.00 0.08
0.0974/9.05 0.0822/6.84 0.0766/2.78 0.0762/4.07

Table 5: Random coding BER, N=100, K=50. 100 samples.

generated by MBE. The optimal balance between preprocessing and search corresponds to
the value of i-bound at the bottom of the U-shaped curve. The added amount of search
on top of MBE is tsearch = ttotal − tMBE. For each value of σ, as i increases, the average
search time tsearch decreases, and the overall accuracy of the search algorithm increases
(more problems fall within higher ranges of opt). However, as i increases further, the time
of MBE preprocessing increases as well.

As problems become harder (i.e. σ increases) both search algorithms achieve their best
performance for larger i, namely when the heuristic is stronger. For example, in Table 4,
when σ is 0.22, the optimal performance is for i = 2. When σ is 0.40, the optimal point is
i = 10.

As in case of Max-CSP, if BFMB did not finish within the preset time bound, it returned
the MBE assignment. From Table 4 we see that when sufficient time is given (indicated
by cases when both BBMB and BFMB solve all problems), the average running time of
BFMB is never worse than BBMB and is sometimes better by a factor of 3-8.

In Table 5 we report the Bit Error Rate (BER) for the same problems and algorithms as
in Table 4. BER is a standard measure used in the coding literature denoting the fraction

32

MBE MBE MBE MBE
BBMB BBMB BBMB BBMB

σ opt BFMB BFMB BFMB BFMB IBP
i=2 i=6 i=10 i=14

% / time % / time % / time % / time % / time
0.22 ≥0.95 79/0.09 84/0.12 90/0.73 95/8.00 100/

98/0.94 98/0.65 99/0.95 100/8.04 0.16
100/0.12 100/0.16 100/0.77 100/8.03

0.28 ≥0.95 41/0.09 45/0.12 59/0.72 71/7.95 100/
84/3.72 88/4.17 96/2.50 99/8.64 0.13
100/0.80 100/0.56 100/0.89 100/8.03

0.32 ≥0.95 18/0.09 21/0.12 31/0.73 46/8.06 99/
63/10.2 68/9.49 87/6.33 92/10.7 0.16
94/6.19 96/4.12 99/2.49 100/8.75

0.40 ≥0.95 N/A 0/- 5/0.73 6/7.77 77/
N/A 28/90.5 39/51.8 58/42.7 0.15
N/A 39/66.7 67/50.1 85/41.1

Table 6: Random coding, N=200, K=100, avg w∗=42. 100 samples.

of input bits that were decoded incorrectly. We observe that when the noise is very small
(0.22, 0.28), BBMB and BFMB, at their most effective point i, are comparable to IBP.
Both BBMB/BFMB and IBP solve all problems exactly, and for small i they are also
competitive time-wise. However, when the noise increases to 0.51, using sufficiently large
i-bound, BBMB and BFMB outperform IBP in terms of BER, although they use more
time. We ran 30 iterations of IBP on each problem and noticed that it usually converged
to its final assignment after 5-10 iterations in a fraction of a second only, which is generally
much faster than BBMB and BFMB. However, unlike BBMB, the solution found by IBP
cannot be improved, even if more time is allowed.

BER as a performance criteria is somewhat insensitive with respect to the computation
accuracy. When decoding a bit, as long as the probability of the correct value is larger than
the probability of the incorrect value, the error is 0, since the value with the largest proba-
bility is picked. Unlike a complete algorithm, such as BBMB or BFMB, an approximation
algorithm, such as IBP, benefits from this.

These phenomena are more pronounced in Tables 6 and 7, where we present results
with K=100 input bits. In this set of experiments, we increased the time bound from 30 to
60 seconds (for small noise) or to 180 seconds (for large noise), while doubling the problem
size. Again, we see a similar pattern of preprocessing-search trade-off as with networks

33

Random Coding K=100 noise 0.22

Time [sec]

0
 5
 10
 15

%
 S

o
lv

e
d

 E
x
a
c
tl

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=6

BFMB i=6

BBMB i=10

BFMB i=10

BBMB i=14

BFMB i=14

Random Coding K=100 noise 0.28

Time [sec]

0
 10
 20
 30

%

 S
o

lv
e
d

 E
x
a
c
tl

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=6

BFMB i=6

BBMB i=10

BFMB i=10

BBMB i=14

BFMB i=14

(a) (b)

Random Coding K=100 noise 0.32

Time [sec]

0
 10
 20
 30

%
 S

o
lv

e
d

 E
x
a
c
tl

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=6

BFMB i=6

BBMB i=10

BFMB i=10

BBMB i=14

BFMB i=14

(c)

Figure 12: Random Coding with K=100. σ = (a) 0.22 (b) 0.28 (c) 0.32.

34

MBE MBE MBE MBE
BBMB BBMB BBMB BBMB

σ BFMB BFMB BFMB BFMB IBP
i=8 i=10 i=12 i=14

BER/time BER/time BER/time BER/time BER/time
0.22 0.00428/0.09 0.00378/0.12 0.00210/0.73 0.00120/8.00 0.00022/

0.00068/0.94 0.00060/0.65 0.00034/0.95 0.00022/8.04 0.16
0.00022/0.12 0.00022/0.16 0.00022/0.77 0.00022/8.03

0.28 0.02026/0.09 0.02058/0.12 0.01532/0.72 0.00922/7.95 0.00104/
0.00782/3.72 0.00604/4.17 0.00262/2.50 0.00136/8.64 0.13
0.00102/0.80 0.00102/0.56 0.00102/0.89 0.00102/8.03

0.32 0.04284/0.09 0.04374/0.12 0.03806/0.73 0.02760/8.06 0.00282/
0.02378/10.2 0.02134/9.49 0.01098/6.33 0.00728/10.7 0.16
0.00666/6.19 0.00606/4.12 0.00352/2.49 0.00282/8.75

0.40 N/A 0.11520/0.12 0.10510/0.73 0.09730/7.77 0.01170/
N/A 0.08350/90.5 0.05490/51.8 0.04740/42.7 0.15
N/A 0.08120/66.7 0.05090/50.1 0.02640/41.1

Table 7: Random coding BER, N=200, K=100. 100 samples.

of K=50 bits. We observe again the superiority of BFMB over BBMB. Given the same
i-bound, BFMB can solve more problems than BBMB in less time. In this set of problems,
when the noise is large, IBP is superior, although if we allowed more time, BBMB and
BFMB would achieve better performance.

In Figure 12 we provide an alternative view of the performance of BBMB(i) and
BFMB(i). Let FBBMB(i)(t) and FBFMB(i)(t) be the fraction of the problems solved com-
pletely by BBMB(i) and BFMB(i), respectively, by time t. Each graph in Figure 12 plots
FBBMB(i)(t) and FBFMB(i)(t) for several values of i. These figures display trade-off between
preprocessing and search in a clear manner. Clearly, if FBBMB(i)(t) > FBBMB(j)(t) for all
t, then BBMB(i) completely dominates BBMB(j). For example, in Figure 12c BBMB(10)
completely dominates BBMB(6). When FBBMB(i)(t) and FBBMB(j)(t) intersect, they dis-
play a trade-off as a function of time. For example, if we have only few seconds, BBMB(6)
is better than BBMB(14). However, when sufficient time is allowed, BBMB(14) is superior
to BBMB(6). The figures also show that FBFMB(i)(t) always dominates FBBMB(i)(t) for
each value of i.

35

MBE MBE MBE MBE
N BBMB BBMB BBMB BBMB
C w∗ opt BFMB BFMB BFMB BFMB IBP
P i=2 i=6 i=10 i=14

% / time % / time % / time % / time % / time
128 41 ≥0.95 100/0.05 100/0.08 100/0.65 100/8.07 97/
85 100/0.95 100/0.59 100/0.98 100/8.47 1.6
4 100/1.76 100/1.19 100/1.37 100/8.56

128 44 ≥0.95 99/0.06 99/0.09 99/0.74 99/9.06 98/
95 100/1.68 100/1.68 100/1.69 100/9.70 1.7
4 100/2.68 100/2.58 100/2.47 100/9.96

128 48 ≥0.95 99/0.06 99/0.09 99/0.92 99/10.7 97/
105 100/2.67 100/1.75 100/1.93 100/11.2 1.9
4 100/5.22 100/3.88 100/2.82 100/12.0

128 52 ≥0.95 98/0.07 98/0.10 98/1.05 99/10.0 98/
115 100/4.47 100/4.01 100/3.03 100/12.8 2.1
4 100/7.37 100/6.61 100/4.85 100/13.9

Table 8: MPE on Noisy-OR. Pnoise=0.2, Pleak=0.01. 10 evidence variables. 100 samples.

5.2 Random and Noisy-OR Networks

Uniform Random Bayesian networks and Noisy-OR networks are generated using param-
eters (N, K, C, P), where N is the number of variables, K is their domain size, C is
the number of conditional probability matrices, and P is the number of parents in each
conditional probability matrix.

The structure of each test problem is created by randomly picking C variables out
of N and, for each, randomly selecting P parents from their preceding variables, relative
to some ordering. For random Bayesian networks, each probability table is generated
uniformly randomly. For Noisy-OR networks, each probability table represents an OR-
function with given noise and leak probabilities Pnoise and Pleak : P (X = 0|Y1, ..., YP) =
Pleak × ΠYi=1Pnoise.

Tables 8 through 11 present results of experiments with Uniform Random and Noisy-OR
networks. In each table, parameters N, K and P are fixed, while C, controlling network’s
sparseness, is changing. When running Noisy-OR experiments, we chose a number of
variables as evidence variables and fixed their values.

Here we see a similar pattern of trade-off between Mini-Bucket preprocessing for heuris-
tic generation and search. For Noisy-OR networks, the Mini-Bucket algorithm can solve
most of the problems exactly even when the i-bound is small, and BBMB/BFMB search

36

MBE MBE MBE MBE
N BBMB BBMB BBMB BBMB
C w∗ opt BFMB BFMB BFMB BFMB IBP
P i=2 i=6 i=10 i=14

% / time % / time % / time % / time % / time
128 41 ≥0.95 99/0.07 100/0.09 100/0.76 100/9.29 82/
85 100/25.4 100/3.60 100/1.75 100/9.82 1.45
4 100/54.8 100/8.41 100/3.04 100/10.5

128 44 ≥0.95 96/0.07 99/0.10 98/0.89 100/10.9 75/
95 99/47.6 100/14.9 100/6.76 100/12.7 1.55
4 99/82.1 100/28.9 100/10.7 100/15.2

128 48 ≥0.95 97/0.08 99/0.10 100/1.04 99/12.7 79/
105 100/67.0 100/30.3 100/9.94 100/15.8 1.7
4 98/103 99/48.4 100/17.9 100/19.9

128 52 ≥0.95 87/0.09 91/0.12 94/1.11 96/14.3 69/
115 97/143 100/80.0 100/37.5 100/30.7 1.95
4 93/194 97/125 99/60.0 98/42.5

Table 9: MPE on Noisy-OR. Pnoise=0.2, Pleak=0.01. 20 evidence variables. 100 samples.

MBE MBE MBE MBE
N BBMB BBMB BBMB BBMB
C w∗ opt BFMB BFMB BFMB BFMB IBP
P i=2 i=6 i=10 i=14

% / time % / time % / time % / time % / time
128 41 ≥0.95 90/0.07 95/0.08 97/0.70 100/8.80 57/
85 100/80.0 100/21.5 100/6.33 100/11.4 1.3
4 98/125 100/38.6 100/12.3 100/14.6

128 44 ≥0.95 79/0.08 89/0.11 94/0.80 93/10.3 51/
95 99/120 100/49.0 100/14.1 100/15.5 1.45
4 86/150 95/71.6 100/30.6 100/21.8

128 48 ≥0.95 84/0.08 92/0.10 95/0.92 95/11.9 55/
105 97/168 98/79.0 100/32.7 100/27.4 1.6
4 88/220 97/128 99/52.9 99/42.5

128 52 ≥0.95 73/0.09 84/0.11 88/1.08 89/13.6 51/
115 92/184 97/123 98/72.9 98/48.1 1.75
4 75/213 91/158 91/93.4 95/67.7

Table 10: MPE on Noisy-OR. Pnoise=0.2, Pleak=0.01. 30 evidence variables. 100 samples.

37

MBE MBE MBE MBE MBE MBE MBE
N BE BFMB BFMB BFMB BFMB BFMB BFMB BFMB
C %/time opt BBMB BBMB BBMB BBMB BBMB BBMB BBMB IBP

P,K w∗ i=2 i=4 i=6 i=8 i=10 i=12 i=14
%/time %/time %/time %/time %/time %/time %/time %/time

256 91/4.91 ≥0.95 5/0.03 10/0.04 41/0.04 60/0.06 87/0.10 98/0.18 100/0.24 0/
100 14.6 72/12.2 100/0.79 100/0.10 100/0.09 100/0.12 100/0.19 100/0.25 0.37
2,2 49/11.2 99/1.19 100/0.16 100/0.11 100/0.14 100/0.20 100/0.26
256 69/7.11 ≥0.95 2/0.03 14/0.03 39/0.06 42/0.08 76/0.12 91/0.23 98/0.37 0/
105 15.8 70/15.3 100/1.49 100/0.13 100/0.10 100/0.14 100/0.25 100/0.40 0.38
2,2 38/12.3 98/1.85 100/0.22 100/0.13 100/0.16 100/0.27 100/0.42
256 41/9.06 ≥0.95 3/0.04 6/0.04 19/0.05 34/0.07 53/0.14 78/0.32 93/0.60 0/
110 17.5 43/17.1 99/2.37 100/0.24 100/0.14 100/0.17 100/0.36 100/0.65 0.39
2,2 26/18.5 96/3.46 100/0.41 100/0.20 100/0.20 100/0.65 100/0.67
256 17/12.3 ≥0.95 0/- 6/0.04 17/0.05 32/0.08 41/0.16 62/0.38 81/0.92 0/
115 19.1 23/24.8 95/5.24 100/0.45 100/0.22 100/0.22 100/0.45 100/1.04 0.41
2,2 6/16.4 90/7.56 100/0.90 100/0.37 100/0.29 100/0.48 100/1.07
256 11/9.99 ≥0.95 1/0.04 7/0.04 15/0.05 23/0.08 42/0.18 54/0.46 76/1.25 0/
120 20.3 18/24.9 92/9.45 100/0.80 100/0.30 100/0.28 100/0.53 100/1.39 0.42
2,2 4/25.7 70/9.14 100/1.54 100/0.53 100/0.37 100/0.59 100/1.41
256 2/21.1 ≥0.95 0/- 4/0.04 14/0.05 20/0.08 22/0.19 50/0.53 67/1.53 0/
125 22.4 14/26.6 83/11.1 99/1.66 100/0.87 100/0.46 100/0.68 100/1.69 0.43
2,2 2/21.3 61/11.5 99/3.04 100/1.24 100/0.68 100/0.79 100/1.73

Table 11: MPE on Uniform Random. Time bound 30 sec. 100 samples.

serves mainly to prove optimality. We also see that here Branch-and-Bound is slightly
better than Best-First. We think this is because the lower bound generated by the Mini-
Bucket algorithm is often optimal. Therefore, the heuristic function is accurate (f = f ∗).
Because there are many solutions, Branch-and-Bound will find a solution quickly, while
Best-First expands many nodes on every level of the search tree of each solution path,
before reaching a complete assignment.

Since IBP performed so well on coding networks, we also ran IBP on Noisy-OR networks
for comparison. Here IBP was quite good when the number of evidence variables is small
(Table 8). However, when we increase the number of evidence variables, IBP is quite poor
(Table 10). Notice that MBE alone is quite competitive with IBP here.

In the case of Uniform Random networks, the Mini-Bucket algorithm can solve most
of the problems optimally when the i-bound is large. When the i-bound is small, a con-
siderable amount of search is required. As with Noisy-OR networks, BBMB is slightly
better than BFMB, due, we believe, to the tie-breaking rules. We also see that on Random
Bayesian networks, IBP did not solve any problems (did not converge).

Figures 13a and 13b correspond to one row in Tables 8 and 11, showing the performance
of BBMB and BFMB as a function of time.

5.3 CPCS Networks

As another realistic domain, we used the CPCS networks derived from the Computer-
Based Patient Care Simulation system, and based on INTERNIST-1 and Quick Medical
Reference expert systems [34]. The nodes in CPCS networks correspond to diseases and
findings. Representing it as a belief network requires some simplifying assumptions, 1)

38

Time [sec]

0
 5
 10
 15
 20
 25
 30

%
 S

o
lv

e
d

 E
x
a
c
tl

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2

BFMB i=2

BBMB i=6

BFMB i=6

BBMB i=10

BFMB i=10

BBMB i=14

BFMB i=14

Noisy-OR N=128 C=115 P=4 10 evidence

Time [sec]

0
 10
 20
 30

%
 S

o
lv

e
d

 E
x
a
c
tl

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2

BFMB i=2

BBMB i=6

BFMB i=6

BBMB i=10

BFMB i=10

BBMB i=14

BFMB i=14

Random Bayesian N=256 K=2 C=125 P=2

(a) (b)

Figure 13: Distribution of search completion.

conditional independence of findings given diseases, 2) Noisy-OR dependencies between
diseases and findings, and 3) marginal independencies of diseases. For details see [34].

In Table 12 we have results of experiments with two binary CPCS networks, cpcs360b
(N = 360, C = 335) and cpcs422b (N = 422, C = 348), with 100 instances in both cases.
Each instance had 10 evidence nodes picked randomly.

Our results show a similar pattern of trade-off between preprocessing and search. Since
the cpcs360b network is solved quite effectively by the MBE approximation scheme, we
get very good heuristics, and therefore, the added search time is relatively small, serving
primarily to prove the optimality of the MBE solution. On the other hand, on cpcs422b
MBE can solve less than half of the instances accurately when i is small, and more as
i increases. BBMB and BFMB are roughly the same; both enhance the MBE’s solution
quality significantly. They can solve all instances accurately for i ≥ 12. For comparison,
bucket elimination solved the cpcs360 network (with no evidence) in 115 sec while for
cpcs422 it took 1697 sec. Processing the networks with evidence is a much more challenging
task, however.

We also ran IBP on cpcs360b. After one iteration of IBP, 99 problems were solved
correctly. However, IBP would diverge when more iterations were run. For example, after
30 iterations, only 62 problems were solved correctly. Because of the large family size,
cpcs422b took too long for our implementation of IBP.

39

CPCS360b MBE MBE MBE MBE
w∗=20 BBMB BBMB BBMB BBMB

100 BFMB BFMB BFMB BFMB
samples i=4 i=8 i=12 i=16
10 evid. %/time %/time %/time %/time

≥0.95 93/0.91 93/0.93 96/1.99 98/15.8
100/0.93 100/0.94 100/2.00 100/15.8
100/0.98 100/0.96 100/2.00 100/15.8

CPCS422b MBE MBE MBE MBE
w∗=23 BBMB BBMB BBMB BBMB

100 BFMB BFMB BFMB BFMB
samples i=4 i=8 i=12 i=16
10 evid. %/time %/time %/time %/time

≥0.95 40/22.6 46/23.1 51/22.7 59/39.0
96/24.8 98/24.5 100/22.9 100/39.0
97/25.9 97/24.5 100/23.1 100/39.1

Table 12: CPCS networks. Time 30 and 45 resp.

5.4 Stochastic Local Search in Bayesian Networks

Since Stochastic Local Search (SLS) was quite successful in solving the Max-CSP task, a
question arises as to its performance on solving the MPE task in Bayesian networks. In
[17] we investigated the performance of a simple greedy hill-climbing algorithm combined
with Stochastic Simulation on solving the MPE task in Random Bayesian networks, Noisy-
OR network as well as random coding networks. This algorithm was the best version of
SLS among several we tried for the MPE task. We found that its performance was poor,
sometimes significantly worse than that of Mini-Bucket Elimination with an i-bound 10.

6 Related Work

Our approach applies the paradigm that heuristics can be generated by consulting relaxed
models, suggested in [31, 10] and even earlier in [13]. The Mini-Bucket computation can
be viewed as relaxation in the following sense. For each bucket and its partitioning into
mini-buckets, a variable in the original problem is replaced by a set of new variables in
the relaxed problem, each corresponding to a single mini-bucket, and each function in
the original problem is associated with the copy of the variable in the relaxed problem

40

corresponding to its mini-bucket in the original problem. For example, the Mini-Bucket
trace in Figure 5b, corresponds to solving exactly by full bucket-elimination the following
relaxation of the problem in Figure 2. Variable B is replaced by two variables B1 and
B2, and the functions P (e|b, c), P (d|a, b), and P (b|a) are replaced by P (e|b1, c), P (d|a, b2)
and P (b2|a). Thus the two mini-buckets correspond to two full buckets in the relaxed
problem. The relaxed problem has a smaller width and can be solved more efficiently,
yielding a bound (upper or lower) as expected. Another work using this paradigm appears
in [6], that generates heuristics for value ordering in constraint satisfaction problems. The
idea is to count the number of solutions extending the current partial assignment using
a relaxation to tree subproblem. Another line of this research was presented in [30, 35].
These works assume as input only a set of search space generation rules. Therefore, while
they share the same goals they use a different approach to derive a relaxed model of the
problem.

Relating our work to the broader work on combinatorial optimization, we observe that
our Branch-and-Bound scheme can be viewed as an extension of Branch-and-Bound al-
gorithms for integer programming (that are restricted to linear objective functions and
constraints only). These methods create lower bounds by relaxing the integrality con-
straints, and they are solved by efficient linear programming schemes (mostly improved
versions of the simplex method) [12, 45]. It would be interesting to compare and combine
our approach with integer programming. Experience gained in the constraint program-
ming community demonstrates that for many problem instances search with constraint
propagation outperforms integer programming (see for instance [26, 8]).

In relation to constraint processing algorithms, the Mini-Bucket heuristics can be viewed
as an extension of bounded constraint propagation algorithms that were investigated in
the constraint community in the last decade [2]. Rather than applying this idea to the
constraints only, we extended it here to the objective function as well.

We mentioned earlier related work on specific MPE algorithms. It would be interesting
to compare our algorithms with search-based algorithms for MPE. Search is normally not
the method of choice for probabilistic inference. Still some search methods and integer
programming approaches have been pursued and it would be good to compare against
those [37, 41].

7 Summary and Conclusion

The paper presents and evaluates the power of a new scheme that generates search heuris-
tics mechanically for problems that are specified by a set of dependencies. The framework
can capture many classes of problems, such as those defined on belief networks, influence
diagrams, constraint networks, and in general, what is often called graphical models. The
heuristics are extracted from the Mini-Bucket approximation method applied to the de-

41

pendency model. Our experiments demonstrate the potential of this scheme in improving
general search, showing that the Mini-Bucket heuristic’s accuracy allows the user a con-
trolled trade-off between preprocessing and search. We demonstrate this property in the
context of both Branch-and-Bound and Best-First search. Although the best threshold
point for the accuracy parameter may not be predicted a priori, a preliminary empirical
analysis can be informative when given a class of problems that is not too heterogeneous.

Furthermore, the experiments show that Mini-Bucket heuristics can facilitate Best-
First search on relatively sizable problems, thus extending the boundaries of this search
scheme which is computationally optimal (relative to search algorithms having access to the
same heuristic) for achieving exact solution. Indeed, we show that Best-First sometimes
outperforms Branch-and-Bound by a factor of 3-8. In other cases, however, as we observed
for Max-CSP, Branch-and-Bound outperforms Best-First search.

We evaluated our scheme within two classes of optimization problems – Max-CSP on
constraint networks and Most Probable Explanation in Bayesian networks. We showed that
search with Mini-Bucket heuristics can be competitive with the best known algorithms for
Max-CSP, such as SLS and PFC-MRDAC, especially when the networks are relatively
sparse, in which case BBMB outperforms both SLS and PFC-MRDAC. We also show that
search with Mini-Bucket heuristics can be competitive with the best known approximation
algorithms for probabilistic decoding, such as IBP, when noise is small and when the
networks are relatively small, in which case search solved the problems optimally within
the self-imposed time bound. Obviously, when problem sizes increase, BBMB and BFMB
in general require much more time. However, as much as IBP is efficient, its performance
will not improve with time.

Since the Mini-Bucket elimination is applicable across a variety of tasks such as proba-
bilistic inference and decision making, the scheme proposed here has the potential of being
widely applicable.

An important extension that we plan to pursue is generating the Mini-Bucket heuristics
during search rather than in a preprocessing mode. This will allow a more flexible search
scheme that can facilitate dynamic variable ordering and will enable exploiting different
levels of Mini-Bucket accuracy in different parts of the search tree. Clearly, this mode
of performance will require further empirical evaluation of the trade-off between the one-
time preprocessing before search against repeated smaller computations for each node in
the search tree. Experience with constraint processing methods suggests that dynamic
variable ordering is essential for efficiency and that the bounded computation per each
node in the search tree is cost-effective.

42

References

[1] P. Dagum and M. Luby. Approximating probabilistic inference in bayesian belief
networks is np-hard. In National Conference on Artificial Intelligence (AAAI-93),
1993.

[2] R. Dechter. Constraint networks. Encyclopedia of Artificial Intelligence, pages 276–
285, 1992.

[3] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference
algorithms. In Uncertainty in Artificial Intelligence (UAI-96), pages 211–219, 1996.

[4] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intel-
ligence, 113:41–85, 1999.

[5] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of
a*. Journal of the ACM, 32:506–536, 1985.

[6] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems.
Artificial Intelligence, 34:1–38, 1987.

[7] R. Dechter and I. Rish. A scheme for approximating probabilistic inference. In Pro-
ceedings of Uncertainty in Artificial Intelligence (UAI-97), pages 132–141, 1997.

[8] R. Dechter editor. Principles and Practice of Constraint Programming (CP-2000).
Lecture Notes in Computer Science, 2000.

[9] E. C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial Intelligence,
58(1-3):21–70, 1992.

[10] J. Gaschnig. Performance measurement and analysis of search algorithms. Technical
Report CMU-CS-79-124, Carnegie Mellon University, 1979.

[11] I. P. Gent and T. Walsh. Towards an understanding of hill-climbing procedures for
sat. In Proceedings of the Eleventh National Conference on Artificial Intelligence
(AAAI-93), pages 28–33, 1993.

[12] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Lifted flow covers for mixed 0-1
integer programs. Mathematical Programming, pages 439–467, 1999.

[13] M. Held and R. M. Karp. The travelling salesman problem and minimum spanning
trees. Operations Research, 18:1138–1162, 1970.

[14] T. Ibaraki. Enumerative Approaches to Combinatorial Optimization - Part I. vol. 10
of Annals of Operations Research, Scientific, Basel, Switzerland, 1987.

43

[15] K. Kask and R. Dechter. Branch and bound with mini-bucket heuristics. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-99), pages 426–433, 1999.

[16] K. Kask and R. Dechter. Mini-bucket heuristics for improved search. In Uncertainty
in Artificial Intelligence (UAI-99), pages 314–323, 1999.

[17] K. Kask and R. Dechter. Stochastic local search for bayesian networks. In Workshop
on AI and Statistics (AI-STAT-99), pages 113–122, 1999.

[18] K. Kask and R. Dechter. New search heuristics for max-csp. In Principles and Practice
of Constraint Programming (CP-2000), pages 262–277, 2000.

[19] K. Kask and R. Dechter. Gsat and local consistency. In International Joint Conference
on Artificial Intelligence (IJCAI-95), pages 616–622, Montreal, Canada, August 1995.

[20] R. Korf. Linear-space best-first search. In Artificial Intelligence, pages 41–78, 1993.

[21] F. R. Kschischang and B. H. Frey. Iterative decoding of compound codes by probability
propagation in graphical models. IEEE Journal of Selected Areas in Communication,
16(2):219–230, 1998.

[22] J. Larossa and P. Meseguer. Partition-based lower bound for max-csp. In Principles
and Practice of Constraint Programming (CP-1999), pages 303–315, 1999.

[23] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations
Research, 14:699–719, 1966.

[24] Z. Li and B. D’Ambrosio. An efficient approach for finding the mpe in belief networks.
In Uncertainty in Artificial Intelligence (UAI-93), pages 342–349, 1993.

[25] D.J.C. MacKay and R.M. Neal. Near shannon limit performance of low density parity
check codes. Electronic Letters, 33:457–458, 1996.

[26] M. Mahler and J. Puget editors. Principles and practice of constraint programming-
cp98. In Lecture Notes in Computer Science, 1998.

[27] R.J. McEliece, D.J.C. MacKay, and J.-F. Cheng. Turbo decoding as an instance of
pearl’s belief propagation algorithm. IEEE Journal of Selected Areas in Communica-
tion, 16(2):140–152, 1998.

[28] S. Minton, M.D. Johnston, A.B. Philips, and P. Laired. Solving large scale constraint
satisfaction and scheduling problems using heuristic repair methods. In National
Conference on Artificial Intelligence (AAAI-90), pages 17–24, Anaheim, CA, 1990.

44

[29] P. Morris. The breakout method for escaping from local minima. In Proceedings of
the Eleventh National Conference on Artificial Intelligence (AAAI-93), pages 40–45,
1993.

[30] A. E. Mayer Othar Hansson and M. M. Yung. Criticizing solutions to relaxed models
yields powerful admissible heuristics. Information Sciences, 63(3):207–227, 1992.

[31] J. Pearl. Heuristics: Intelligent search strategies. In Addison-Wesley, 1984.

[32] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[33] Y. Peng and J.A. Reggia. A connectionist model for diagnostic problem solving. IEEE
Transactions on Systems, Man and Cybernetics, 1989.

[34] M. Pradhan, G. Provan, B. Middleton, and M. Henrion. Knowledge engineering for
large belief networks. In Proc. Tenth Conf. on Uncertainty in Artificial Intelligence,
1994.

[35] A.E. Preiditis. Machine discovery of effective admissible heuristics. Machine learning,
12:117–141, 1993.

[36] I. Rish, K. Kask, and R. Dechter. Empirical evaluation of approximation algorithms
for probabilistic decoding. In Uncertainty in Artificial Intelligence (UAI-98), 1998.

[37] E. Santos. On the generation of alternative explanations with implications for belief
revision. In Uncertainty in Artificial Intelligence (UAI-91), pages 339–347, 1991.

[38] B. Selman and H. Kautz. An empirical study of greedy local search for satisfiability
testing. In Proceedings of the Eleventh National Conference on Artificial Intelligence,
pages 46–51, 1993.

[39] B. Selman, H. Kautz, and B. Cohen. Noise strategies for local search. In Proceedings
of the Eleventh National Conference on Artificial Intelligence, pages 337–343, 1994.

[40] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI-92), pages 440–446, 1992.

[41] S.E. Shimony and E. Charniak. A new algorithm for finding map assignments to belief
networks. In P. Bonissone, M. Henrion, L. Kanal, and J. Lemmer, Eds. Uncertainty
in Artificial Intelligence, volume 6, pages 185–193, 1991.

[42] B. K. Sy. Reasoning mpe to multiply connected belief networks using message-passing.
In AAAI-92, pages 570–576, 1992.

45

[43] G. Verfaillie, M. Lemaitre, and T. Schiex. Russain doll search. In Proceedings of the
National Conference of Artificial Intelligence (AAAI-96), pages 181–187, 1996.

[44] R. Wallace. Analysis of heuristic methods for partial constraint satisfaction problems.
In Principles and Practice of Constraint Programming (CP-1996), pages 482–496,
1996.

[45] L. A. Wolsey. Integer Programming, Wiley. 1998.

46

