
On the Time Complexity of Bucket

Elimination Algorithms

Javier Larrosa

Information and Computer Science

University of California at Irvine, USA

January 23, 2001

Abstract

In this short note, we prove the time complexity of full-bucket and
mini-bucket elimination [1, 2]. In previous papers, when discussing the
complexity of these algorithms, only the importance of the exponential
contribution was emphasized and the rest of the contributions to the cost
were not carefully considered. In this note, we address this fact and
provide a non-trivial bound for the non-exponential contribution to the
complexity of both algorithms. We demonstrate the result for the Additive
Combinatorial Optimization Problem case.

1 Introduction

1.1 Additive Combinatorial Optimization Problem

An additive combinatorial optimization problem (ACOP) is de�ned by a tuple
(X ;D;F) where

� X = fx1; : : : ; xng is a set of n variables identi�ed by their index;

� D = fD1; : : : ; Dng is a collection of �nite domains,Di is the set of possible
values for variable xi;

� F = ff1; : : : ; frg is a set of r cost functions. A cost function fi is a real
valued function de�ned over a set of variables var(fi), called its scope. It
assigns a cost to each tuple over var(fi). The scope size of a function is
called its arity.

In the sequel, t will denote a tuple (an assignment of domain values to a set
of variables) and var(t) will denote the set of variables assigned by t. For
notation simplicity, when we evaluate a tuple t on a cost functions fi such that
var(fi) � var(t), we write fi(t) when we really mean fi(t0), where t0 is the
subtuple of t containing the assignment to variables in var(fi).

The sum of the cost functions de�nes the problem's objective function and
the task is to minimize the objective function,

min
t
f

rX

i=1

fi(t)g; t 2 (D1 � : : :�Dn)

1

It is well known that solving ACOP is NP-hard. We assume that quering a cost
functions is time O(1).

1.2 Operations on Functions

� Sum of functions: Let fi and fj be two arbitrary functions. Their sum
fi + fj is a new function de�ned over the scope var(fi) [var(fj) by,

(fi + fj)(t) = fi(t) + fj(t)

� Variable elimination by minimization: Let fj be an arbitrary function
and xi a variable in its scope. The elimination of xi from fj , miniffjg, is
a new function with scope var(fj) � fxig that assigns to each tuple the
minimum cost extension to xi. Formally, (t is a tuple over var(fj)�fxig)

(min
i
ffjg)(t) = min

a2Di

ffj(t; a)g

where fj(t; a) means the evaluation of fj on the extention of the tuple t

with the assignment of value a to variable xi.

Lemma 1.1 Let g1; : : : ; gk be a set of functions. The complexity of computingPk

j=1 fj is time O(k � exp(q)), where q is the arity of the resulting function

(i.e.: q = j [k
j=1 var(fj)j).

Proof: Clearly, computing
Pk

j=1 fij requires the computation of O(exp(q))
values (each one of the new function entries). Computing each individual value
requires to query every original function, which has complexityO(k). Therefore,
the total cost is O(k � exp(q)).

Lemma 1.2 Let f be a function of arity k and V a subset of its scope. The com-
plexity of computing minV ffg is time exponential in the arity of f , O(exp(k)).

Proof: Let s denote the size of V . The scope of minV ffg is var(f)�V and its
arity is k� s. Consequently, computing minV ffg requieres the computation of
O(exp(k � s)) values. Computing each individual value requires to obtain the
minimum out of O(exp(s)). Therefore, the total cost is O(exp(k � s)� exp(s))
which is O(exp(k)).

Theorem 1.1 Let F = ff1; : : : ; fkg be a set of functions and let V be a subset
of the combined scope of F .

The complexity of computing minV f
Pk

j=1 fjg is O(k � exp(q)), where q is
the size of the combined scope of F

Proof: Trivial after the previous Lemmas.

2 Time Complexity of Bucket Elimination

In this section we prove that the complexity of Bucket Elimination (BE) [2]
along variable ordering o is O(r � exp(w�(o))), where r is the number of cost
functions in the problem and w�(o) is the induced width of the problem along

2

the ordering o. We show it by associating the algorithm to a tree such that
leaves are the original cost functions in the problem and each internal node is
a sequence of computations performed by the algorithm. Thus the cost of BE
is the sum of costs over the nodes of the tree. We show that the cost of the
computations in an arbitrary node is bounded by O(exp(w�(o))). We also show
that the number of internal nodes of the tree is bounded by 2� r. Therefore, it
is clear that the total complexity of BE is O(r � exp(w�(o))).

BE can be seen as a sequence of sums of function and variable eliminations.
Therefore, given a problem instance and a variable ordering we can write the
BE execution as an algebraic formulae of the form (jV j � 0; k > 0):

min
V
fg1 + : : :+ gkg

where each g is either an original cost function from the problem or has, recur-
sively, the same form. It is important to note that each original function appear
only once in the formulae.

Example 2.1 Let's consider a problem instance de�ned over �ve variables fx1; : : : ; x5g
and four functions ff1(x1; x3); f2(x2; x3); f3(x3; x4); f4(x2; x5)g. The execution
trace of bucket elimination along the lexicographical variable ordering is,

bucket5: f4(x2; x5)
bucket4: f3(x3; x4)
bucket3: f2(x2; x3); f1(x1; x3)

�4(x3) := min4ff3(x3; x4)g
bucket2: �5(x2) := min5ff4(x2; x5)g

�3(x1; x2) := min3ff2(x2; x3) + f1(x1; x3) + �4(x3)g
bucket1: �2(x1) := min2f�5(x2) + �3(x1; x2)g
Result: �1() := min1f�2(x1)g

Therefore, we can expand the computation of �1() and express the whole
execution as

min
(1;2)

fmin
5
ff4(x2; x5)g+min

3
fmin

4
ff3(x3; x4)g+ f2(x2; x3) + f1(x1; x3)gg

We associate a tree, denoted computation tree (CT), to the algebraic for-
mulae. The original functions (arguments of the formulae) are the leaves and
computations (either sum of functions or variable elimination) are the internal
nodes. Figure 1.a depicts the computation tree associated to the example in 2.1.

CTs are not directly useful in our proof, because their number of nodes is
not proportional to the number of original functions. This is because CTs may
have internal linear paths, which are paths between an internal node v and one
of its ancestors w, (v; v1 : : : ; vk; w), such that all nodes in the path but v have
only one child. For instance, the path between the lowest + and the root in
1.a is an internal linear path. To overcome this problem, we de�ne the compact
computation tree (CCT) as the tree obtained from the CT where internal linear
paths are merged into one node representing the sequence of computations .
Figure 1.b depicts the compact computation tree of the example in 2.1. In the
CCT, leaves are the original cost functions and internal nodes are sequences
of computations. The sequence of computations of an internal node is has

3

a) Computation-tree

f4(x2, x5) f3(x3, x4) f2(x2, x3) f1(x1, x3)

min5

min4

+

min3

+

min2

min1

b) Compact Computation-tree

f4(x2, x5) f3(x3, x4) f2(x2, x3) f1(x1, x3)

min5

min4

+

+

min3

min2
min1

Figure 1: .

the following form minV f
Pk

j=1 gjg (k � 0), where each g is either an original
function or the result of the computation of a a child.

It is important to note that the number of nodes in the CCT is bounded by
3 � r and the number of internal nodes in the CCT is bounded by 2 � r. The
reason is that there are exactly r leaves and the compactation of internal linear
paths guarantees that only leaf parents may have one child. Therefore there are
at most 2r internal nodes.

It is clear that the CCT provides a trace of the execution of bucket elimina-
tion. Therefore, the complexity of BE is the complexity of the set of computa-
tions depicted in the CCT.

Theorem 2.1 The complexity of bucket elimination along variable ordering o

is time O(r � exp(w�(o))), where r is the number of cost functions and w�(o)
is the problem induced width along ordering o.

Proof: The computation performed in an internal node v in the CTT is the sum
of ch(v) functions (ch(v) denotes the number of children of node v, ch(v) > 0
in internal nodes) and the subsequent elimination of q variables (q � 0) from
the resulting function. The combined arity of the ch(v) functions (namely,
the functions arriving to node v) is bounded by w�(o) + 1. Therefore, using

4

Theorem 1.1 we can bound the complexity of the computation at node v by
O(ch(v) � exp(w�(o) + 1)). The total cost is the sum of costs over internal
nodes O((

P
v ch(v)) � exp(w�(o) + 1)). It is obvious that the sum of children

over non-leave nodes is equal to the number of nodes in the tree minus one,
which we showed that is bounded by 3 � r. Consequently, the total cost is
bounded by O(3� r � exp(w�(o) + 1)) which is equal to O(r � exp(w�(o)))

3 Time Complexity of Mini-bucket Elimination

Mini-bucket elimination (MB) [1] can also be expressed as a sequence of sum
functions and variable eliminations. Therefore, given a problem instance and a
variable ordering we can also express the MB execution as an algebraic formulae.
As before, it is important to note that each function appear only once in the
formulae.

Example 3.1 The execution trace of (2)-mini-bucket elimination in the prob-
lem of Example 2.1 along the lexicographical variable ordering is,

bucket5: f4(x2; x5)
bucket4: f3(x3; x4)
bucket3: f2(x2; x3); f1(x1; x3)

�4(x3) := min4ff3(x3; x4)g
bucket2: �5(x2) := min5ff4(x2; x5)g

�(3;1)(x2) := min3ff2(x2; x3) + �4(x3)g
bucket1: �(3;2)(x1) := min3ff1(x1; x3)g
Result: �2() := min2f�5(x2) + �(3;1)(x2)g

�1() := min1f�(3;2)(x1)g

Therefore, we can expand the computation and express the whole execution
as,

min
2
fmin

5
ff4(x2; x5)g+min

3
fmin

4
ff3(x3; x4)g+ f2(x2; x3)gg+min

(1;3)
ff1(x1; x3)g

We can also represent a MB execution by means of a computation tree that
can be compacted into a compact computation tree (CCT). The computation
tree of the example is depicted in Figure 2.a and the compact computation tree
(CCT) is depicted in Figure 2.b

If BE and MB are executed with the same problem and the same variable
ordering, The CTT of MB is likely to have more nodes (with less computation
in each). It is important to note that, although possibly having more nodes, the
total number nodes of the CTT associated to a MB execution is still bounded
by 3r. As in the BE case, the CTT has exactly r leaves and the compacta-
tion guarantees that only parents of leaves may have one child. Therefore, the
number of internal nodes is bounded by 2r and the total number of nodes is
bounded by 3r. The complexity of MB is the sum of complexities of internal
nodes in the CTT, which yields the following result.

Theorem 3.1 The complexity of mini-bucket elimination with accuracy param-
eter i along variable ordering o is time O(r� exp(i)), where r is the number of
cost functions.

5

f4(x2, x5) f3(x3, x4) f2(x2, x3) f1(x1, x3)

min5

min4

+

min3

+

min2

a) Computation-tree

min3

min1

+

f1(x1, x3)f4(x2, x5) f3(x3, x4) f2(x2, x3)

min5

min4

+

+

a) Compact Computation-tree

min3

+

min2

min3

min1

Figure 2: .

Proof: The computation performed at an internal node v in the CTT is the sum
of ch(v) functions and the subsequent elimination of q variables (q � 0) from
the resulting function. By de�nition of (i)-MB, the combined arity of the ch(v)
functions arriving to node v is bounded by i. Therefore, using Theorem 1.1 we
can bound the complexity of the computation at node v by O(ch(v) � exp(i)).
The sum of children over non-leave nodes is equal to the number of nodes in
the tree minus one, which is bounded by 3 � r. Consequently, the total cost
is bounded by O(3 � r � exp(i + 1)) which is assymptotically equivalent to
O(r � exp(i))

References

[1] R. Dechter. Mini-Buckets: A General Scheme for Generating Approxima-
tions in Automated Reasoning. In Proceeding of IJCAI'97, pg. 1297{1303,
1997.

6

[2] R. Dechter. Bucket elimination: A unifying framework for reasoning. Arti-
�cial Intelligence, 113:41{85, 1999.

7

