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Abstract

It is well known that any non-binary CSP can be reformulated as a
binary CSP. In this paper we show that the same translation methods
can be applied in the soft constraints framework. We observe that any
non-binary soft constraint CSP can be reformulated as a problem with
only binary and unary constraints. Interestingly, the translation leads to
binary constraints that are hard (de�ne conditions of mandatory satis-
faction) and unary constraints that are soft (de�ne a preference criterion
among the set of solutions). We elaborate our observation in the semiring-
based framework.

Keywords: non-binary constraints, duality, soft constraints, semiring-
based CSP.

1 Introduction

Constraint satisfaction problems (CSPs) involve the assignment of a set of vari-
ables subject to a set of constraints. They provide an expressive framework
allowing the formalization of many interesting problems arising in a variety of
domains.

Constraints in the classical CSP model are refered to as hard because they
have to be necessarily satis�ed. In past years, substantial work has been de-
voted to the extention of the classical CSP framework into a more general one
in which it is possible to represent uncertain or partial knowledge. Some of
the developed frameworks include fuzzy CSPs [11, 10], probabilistic CSPs [9],
weighted CSPs, hierarchical CSPs [5]. Constraints in these frameworks have
been referred to as soft because they express weaker satis�ability requirements.
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Soft constraints typically express a preference criterion among di�erent solu-
tions. Recently, it has been shown that most constraint frameworks (including
hard and soft constraints) can be expressed under a unifying framework, the
so-called semiring-based CSPs (SCSPs) [12, 13].

A useful observation in the hard constraints model is that any non-binary
CSP (i.e. with constraints involving more than two variables) can be translated
into an equivalent binary problem (i.e. all its constraints involve at most two
variables). There are two well-known translation methods: the dual represen-
tation [7] and the hidden variable representation [8].

In this paper we make the observation that the duality results on classical
CSPs are preserved in soft constraint CSPs. Speci�cally, we show that it is
possible to obtain the dual and the hidden variable representation of a non-
binary semiring-based CSP in a similar way to how it is done in a classical CSP.
The binary reformulations include both binary and unary constraints, where
all binary constraints are hard and all unary constraints are soft. Unary soft
constraints associate weights to domain values (i.e. wi(xi)). In problems having
unary soft constraints there is an implicit objective function that combines the
di�erent weights (for instance, f(X) =

Pn

i=1wi(xi)).
This translation shows that unary soft constraints provide (at least in the-

ory) a su�cient problem speci�cation language for the framework. Surprisingly,
little work has been done in the constraint community on algorithms for this
model, while other models have received a lot of attention under the claim that
they were, in a way, minimal (for instance Max-CSP [1]). Observe as well that
problems with unary optimization criteria have been the focus of a great at-
tention in the closely related �elds of Operations Research and Combinatorial

Optimization. We believe that our observation may motivate further work in
that direction.

The strucuture of this paper is as follows: In the next Section we present
an example of our mapping. This example may be su�cient to convey the
principle idea to the reader that is familiar with duality results and soft con-
straint frameworks. The rest of the paper presents a formal proof in the SCSP
framework. Section 3 provides the necessary background of the semiring frame-
work. Section 4 formally presents our mapping. Finally, in Section 5 we give
the conclusions of the paper.

2 Examples

2.1 general constraint optimization

Consider a general constraint optimization problem de�ned by a set of variables
X = (x1; : : : ; xn) taking values over a domain D, a set of constraints C =
(c1; : : : ; cp) and a set of cost functions F = (f1; : : : ; fq). Each constraint has
a scope (denoted var(ci)) and speci�es the allowed combinations of values for
variables in var(ci). Each cost function also has a scope (var(fi)) and associates
a weight with each tuple over var(fi). The task is:

min
fXjX satis�es Cg

f

qX
i=1

(fi(X))g

2



c1 c2

f1

f2

1

2

3

4

5

b) Dual constraint graph

c) Hidden variable constraint graph

f1

f2

c1

c2

1

2

4

5
3

f1

f2

c1

c2

a) A constraint hyper-graph of 
    a primal problem

1,2

4,5

5 3
5

Figure 1: A primal constraint hyper-graph (a) and its corresponding dual (b)
and hidden variable graphs (c). Shadowed nodes indicate variables with unary
cost functions.

The structure of a constraint problem is depicted by a constraint hyper-
graph, whose nodes represent problem variables and hyper-edges describe the
scopes of constraints and cost functions. Figure 1:a shows the constraint hyper-
graph of an instance of this problem having �ve variables (f1; 2; 3; 4; 5g), two
constraints (c1 and c2, with scopes f1; 2; 3g and f3; 4; 5g, respectively) and two
cost functions (f1 and f2, with scopes f1; 2; 5g and f4; 5g, respectively).

In the dual representation there is one variable for each original constraint
XC = (xc1 ; : : : ; xcp) and one variable for each original cost function XF =
(xf1 ; : : : ; xfq). Variables associated to constraints take values over the set of
tuples that satisfy them (Dci = ftj tuple over var(ci) that satis�es cig). Vari-
ables associated to cost functions take values over the cost function domain (i.e.
Dfi = ftj tuple over var(fi)g). There is a binary constraint between every pair
of variables that share a variable in their scope (for instance there is a constraint
between xc2 and xf1 because 5 2 var(c2) and 5 2 var(f1)). These constraints
only allow the simultaneous assignment of tuples to variables if the common
components of the tuple match. There is a unary cost function associated with
each variable xfi that assigns a weight to each element t of Dfi , which is exactly
the cost fi(t). Thus, with that dual formulation, the problem can be expressed
as,

min
fXC;XF jbinary constr: are satis�edg

f

qX
i=1

fi(xfi )g

Figure 1:b shows the dual constraint graph of the problem depicted in 1:a
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when using hyper-graph representation. Hyper-edges in the hyper-graph become
nodes in the dual graph. Edges in the dual graph connect nodes with common
elements in their scope. We label the edges with the common elements.

In the hidden variable representation there is one variable for each original
constraint XC = (xc1 ; : : : ; xcp) and one variable for each original cost function
XF = (xf1 ; : : : ; xfq) as in the dual representation. In addition, there is a variable
for each original variable X = (x1; : : : ; xn). Variables in XC and XF are called
hidden. There is a binary constraint between each pair of hidden-non hidden
variable such that the hidden variable has the non hidden variable in its scope
(for instance, there is a constraint between xc1 and 3 because 3 2 var(c1)).
These constraints only allow the simultaneous assignment of values that match

in their common components. As in the dual representation, there is a unary
cost function associated to each variable xfi that assigns a weight to a domain
value t which is fi(t). Under the hidden variable representation, the problem is
de�ned as,

min
fX;XC ;XF jbinary constr: are satis�edg

f

qX
i=1

fi(xfi)g

Figure 1:c shows the hidden variable constraint graph of our example. Nodes
and hyper-edges in the hyper-graph (Figure 1:a) become nodes in the hidden
variable constraint graph. There is an edge between hidden and non hidden
nodes if the corresponding non hidden variable belongs to the scope of the
corresponding hidden variable.

2.2 weighted crossword generation

Consider the weighted crossword generation problem de�ned by an alphabet,
a dictionary of words of �xed size d and a weight associated to each word in
the dictionary. The goal is to �ll up a d � d grid with alphabet letters such
that each grid slot (i.e. maximal group of consecutive cells either vertically
or horizontally) form a word from the dictionary. Weights indicate that some
words are more suitable than others, and the preferred solution is the one that
maximizes the sum of word weights.

In the non-binary formulation of this problem there is a variables for each
grid cell X = fxijj1 � i; j � dg and each variable has the alphabet as domain.
There is one constraint associated to each grid slot (CH = (ch1 ; : : : ; chd ), CV =
(cv1 ; : : : ; cvd) for horizontal and vertical grids, respectively). Constraints are
functions that associate weights to tuples of size d. If the tuple forms a word
from the dictionary, it associates the word weight, else it associates a minimal
weight (for instance, �1). The goal is,

max
X
f

dX
i=1

chi(xi1 : : : xid) +
dX
i=1

cvi(x1i : : : xdi)g

In the dual representation there is one variable for each slot (XH = (xh1 ; : : : ; xhd)
for horizontal and XV = (xv1 ; : : : ; xvd) for vertical). Each variable takes val-
ues on the dictionary words. There is a binary constraint for each pair of
horizontal-vertical slots that only allows pairs of words if they have the same
letter in their common cell. In addition, there is a unary cost function for each
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variable (CH = (ch1 ; : : : ; chd), CV = (cv1 ; : : : ; cvd))that assign to each domain
value the corresponding word weight. The problem is de�ned as,

max
fXH ;XV jbinary constr: are satis�edg

f
dX

i=1

chi(xhi ) +
dX

i=1

cvi(xvi)g

In the hidden variable representation there is one variable for each slot and
cell (XH = (xh1 ; : : : ; xhd), XV = (xv1 ; : : : ; xvd) and X = fxijj1 � i; j � dg).
Slot variables take values on the dictionary words and cell variables take values
on the alphabet. There is a binary constraint between a pair of slot-cell vari-
ables if the cell belongs to the slot. This constraint only allows the assignment
of a word to the slot and a letter to the cell if the letter matches with the corre-
sponding letter of the word. There is a unary cost function for each slot variable
that assigns to each word the corresponding weight. The problem is de�ned as,

max
fX;XH ;XV jbinary constr: are satis�edg

f
dX

i=1

chi (xhi ) +
dX

i=1

cvi(xvi)g

3 Preliminaries

In this section we provide the necessary de�nitions and properties of the SCSP
framework. Most of them are extracted from [13]. We start with the de�nition
of c-semiring, required to express and combine preferences, level of con�dence
or any other type of soft constraint.

De�nition: (c-semiring)

A c-semiring is a tuple (A;+;�;0;1) such that:

� A is a set and 0;1 2 A.

� +, called the additive operation, is closed, commutative, associative, idem-
potent, 0 is its unit element and 1 is its absorbing element.

� �, called the multiplicative operation, is closed, commutative, associative,
1 is its unit element and 0 is its absorbing element.

� � distributes over +.

Property:

The previous axioms allow the de�nition of a partial order, �, over the set A.
Such partial order is de�ned as: a � b i� a + b = b. Intuituvely, a � b means
that b is better than a. Some important properties of the partial ordering are:

� The additive operation is monotonically increasing on the partial ordering.

� The multiplicative operation is monotonically decreasing on the partial
ordering.

� 0 � a � 1 for all a 2 A.

5



Now we can de�ne a semiring-based constraint satisfaction problem,

De�nition: (SCSP)

A semiring-based constraint satisfaction problem (SCSP) is a tuple (S; V;D;C)
where:

� S is a c-semiring (A;+;�;0;1).

� V is an ordered set of variables (x1; : : : ; xn)

� D is a set of domains, (D1; : : : ; Dn), where Dj is a �nite set of possible
values for variable xj.

� C is a set of constraints (c1; : : : ; cm). A constraint ci over the ordered set

of variables var(ci) = (xi1 ; : : : ; xir(i)) is a function ci :
Qr(i)

j=1Dij ! A.

The following two de�nitions are needed to establish what is the solution of a
SCSP.

De�nition: (constraint combination, ci 
 cj)

Consider two constraints ci and cj. Then, their combination ci 
 cj is a new
constraint c such that var(c) = (var(ci) [ var(cj)) and c(t) = (ci(t #var(ci)
)� cj(t #var(cj))) (for all t tuple over var(c)).

De�nition: (constraint projection, ci +I)

Consider a constraint ci and a set I (I � var(ci)). Then, the projection of ci over
I, ci +I , is a constraint c such that var(c) = I and c(t) =

P
ft0 on var(ci)�Ig

ci(t ./

t0) (for all t tuple over var(c)).

De�nition: (problem solution, Sol(P ), c
P
)

Let P be a SCSP. Its solution is a constraint de�ned as Sol(P ) =
Nm

i=1 ci.
Normally we will refer to this constraint as c

P
.

The solution of a problem is, therefore, a n-ary constraint that combines the set
of original constraints.

De�nition: (tuple consistency level)

Let P be a SCSP, c
P
its solution and t a tuple over var(c

P
). The consistency

level of t is its valuation over the solution constraint, c
P
(t). If c

P
(t) > 0 we say

that t is consistent.

Intuitively, the consistency level of a tuple indicates how good the tuple is in
the problem. The partial order over A allows for the comparison of di�erent
tuples.

Observation:

It is possible to compute the consistency level of a tuple by means of the original
constraints, instead of using the problem solution. That is,

c
P
(t) = c1(t #var(c1))� : : :� cm(t #var(cm))
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In most cases, we do not need all the information captured in the problem so-
lution. It is enough to know the best consistency that can be obtained in a
problem,

De�nition: (best level of consistency, blevel(P ))

Given a SCSP P , its best level of consistency is de�ned as blevel(P ) = (c
P
+;).

De�nition: (hard and soft constraints)

A constraint c is hard i� c(t) 2 f0, 1g for all t over var(c). A constraint c is
soft i� 9t over var(c) such that 1 > c(t) > 0.

4 Translating Non-binary Semiring-based CSPs

into Binary Semiring-based CSPs

In classical CSPs, the dual and the hidden representation are equivalent reformu-
lations of a problem, where equivalent means that the set of problem solutions
is preserved. In SCSPs, we need to preserve the set of consistent tuples and
also maintain their level of consistency. This is done by means of the following
de�nition.

De�nition: (consistency equivalence)

Two Semiring-based CSPs P1 = (S; V1; D1; C1) and P2 = (S; V2; D2; C2) are
consistency equivalent i� there is a bijection between their sets of consistent
solutions such that the consistency valuation of mapped tuples is the same. A
direct consequence of this de�nition is that if P1 and P2 are consistency equiv-
alent, then blevel(P1) = blevel(P2).

In the following two subsections we show how to obtain the dual and the hid-
den variable representation of a semiring-based CSP. All the formulations are
consistency equivalent.

4.1 Dual Representation

The dual representation of a SCSP problem P = (S; V;D;C) is a problem
P 0 = (S; V 0; D0; C0) de�ned as,

� There is one variable for each constraint in P . We denote x0c the variable
associated to constraint c.

� The domain of x0c is de�ned as,

D0
c = ft 2 (

Y
xi2var(c)

Di) such that c(t) > 0g

� C0 is divided into two groups: unary soft constraints (C0
1) and binary hard

constraints (C0
2).
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1. There is a unary constraint c0 associated to every variable x0c de�ned
as,

c0(t) = c(t) for all t 2 D0
c

2. There is a binary constraint c0ij associated to every pair of variables
x0ci and x0cj such that var(ci) \ var(cj) 6= ;. It is de�ned as,

c0ij(ti; tj) =
nfalse; if [ti ./ tj = ;]

true; otherwise

Theorem:

Let P and P 0 be a SCSP and its dual. Then, P and P 0 are consistency equiva-
lent.

Proof:

We show that P and P 0 are consistency equivalent by de�ning a bijection be-
tween their consistent tuples and showing that it preserves the consistency level
of mapped tuples.

Let t be an arbitrary tuple over V . The corresponding tuple over V 0 is
t0 = ((x0c1 ; t1); : : : ; (x

0
cm

; tm)), where ti = (t #var(ci)). The consistency level of t
in P is,

c
P
(t) = c1(t #var(c1))� : : :� cm(t #var(cm))

which can be rewritten as,

c
P
(t) = c1(t1) � : : :� cm(tm)

By de�nition of P 0, the consistency level of t0 is

c
P 0
(t0) =

Y
c0
i
2C0

1

c0i(ti) �
Y

c0
ij
2C0

2

c0ij(ti; tj)

The join of any pair ti; tj is non empty, because both tuples are subtuples of t,
therefore c0ij(ti; tj) = 1. The unit element of the multiplicative operation in the
c-semiring is 1, therefore the valuation of t0 can be rewritten as,

cP 0 (t0) = c01(t1)� : : :� c0m(tm)

By de�nition of c0i, this is equal to the consistency level of t. Consequently, t is
consistent i� t0 is consistent and both tuples have the same level of consistency.

There are tuples over V 0 that cannot be obtained with the mapping de�ned
above. These are the tuples t0 = ((x0c1 ; t1); : : : ; (x

0
cm

; tm)) having at least one
pair of components that do not match (i.e. their join is the empty tuple). How-
ever, those tuples are necessarily inconsistent, because the pair of non matching
components causes a 0 in a binary constraint valuation. Since the multiplica-
tive operation is monotonically decreasing with respect the partial order, the
valuation of t0 must be 0.

4.2 Hidden Variable Representation

The hidden variable representation of a SCSP problem P = (S; V;D;C) is
P 0 = (S; V 0; D0; C0) de�ned as,
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� There is one variable for each constraint in P and one constraint for each
variable in P . We denote x0c the variable associated to constraint c and x0i
the variable associated to variable xi.

� The domain of x0c is de�ned as,

D0
c = ft 2 (

Y
xi2var(c)

Di) such that c(t) > 0g

� The domain of x0i is Di.

� C0 is divided into two groups: unary soft constraints (C0
1) and binary hard

constraints (C0
2).

1. There is a unary constraint c0 associated to every variable x0c de�ned
as,

c0(t) = c(t) for all t 2 D0
c

2. There is a constraint c0ij associated to every pair of variables x0ci and
x0j such that xj 2 var(ci). It is de�ned as,

c0ij(ti; v) =
ntrue; if[ti #j= v]

false; otherwise

Theorem:

Let P and P 0 be a SCSP and its hidden variable representation. Then, P and
P 0 are consistency equivalent.

The proof is similar to the previous one and we do not include it here for lack
of space.

5 Conclusions

In this paper we have shown that duality results on classical CSPs are preserved
in soft constraint CSPs. The de�nition of the dual and hidden variable represen-
tation of SCSP is a direct extension of the method in the classical framework, so
the importance of this paper does not relay in its originality. However, our obser-
vation indicates the expressiveness power of unary soft constraints. Since solving
SCSPs is conceptually more complex than solving classical CSPs, problems with
binary hard constraints and unary soft constraints may provide a useful start-
ing point for algorithmic development in the SCSP framework. Some problems
that can be directly expressed with binary hard and unary soft constraints are:
weighted independent set, weighted clique [4], combinatorial auctions [2] (which
is equivalent to weighted set packing [4]) and aircraft landing scheduling [3].
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