
An Implementation of the Combinatorial Auction Problem in ECL iPSe

Robert Menke and Rina Dechter

University of California, Irvine
Irvine, California 92717-3425

http://www.ics.uci.edu/~rmenke/
{rmenke, dechter}@ics.uci.edu

In a traditional auction, items are placed “up for bids” in
an arbitrary sequence. For many bidders, this model is inad-
equate because the individual items increase in value when
held in conjunction with other items.Combinatorial auc-
tions allow bidders to bid upon multiple items simultane-
ously. While this resolves the problems for the bidders, it
increases the problem of the auctioneer: determining the op-
timal selection of bids to maximize revenue is NP-complete.

(Sandholm 1999) suggests an algorithm that reduces the
search space considerably. His algorithm, a DFS of the prob-
lem space using an ancillary data structure called aBidtree,
takes advantage of two properties of “real-life” auctions:
that the bids submitted would be sparse and that the order
in which bids are selected is irrelevant. The Bidtree helps
select the next bid to be considered. It enforces two rules:
the next bid has no items in common with the bids already
selected, and that every item must eventually be considered.

The goal of this project is to evaluate the general prin-
ciples and algorithms developed for constraint processing
in recent years, as well as the tools and languages facili-
tating the use of constraints for problem solving using the
auction problem as a benchmark (Dechter 1992). By com-
paring general constraint-processing algorithms against spe-
cific methods tailored for this task, the power of such general
algorithms can be demonstrated. This project was initiated
during a class project in the computer Science department,
UC Irvine. Specifically, we used the constraint processing
language ECLiPSe (ECLiPSe 1995) that has as its basic al-
gorithm backtracking with forward-checking, using branch-
and-bound for optimization tasks. Towards that end we had
three specific subgoals: first, to implement the combinatorial
auction problem in ECLiPSe; second, to implement Sand-
holm’s solution using ECLiPSe; and third, investigate the
possibility of improving the search using other heuristics.

It is important to realize that the Bidtree algorithm is op-
timized to do one thing: partition the set of items available
into subsets that correspond to bids. It does not take into
account the values the bidders have associated witheach
bid, nor does it consider (in this form of the algorithm)
that mechanism for forward checking has been incorporated
into the implementation language. Since ECLiPSe doessup-
port forward checking, the Bidtree algorithm simply reduces

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

down to a static ordering of the variables.
The alternative bid selection rules used dynamic variable

ordering to improve performance. The first approach was
most constrained bid(MCB), which selected the bid whose
set of items had the most non-empty intersections with all
of the bids—the hope being that eliminating more feasible
future bids would quickly reduce the possible revenue below
the current bound, stopping further descent down that branch
of the tree.

The second algorithm used themost valuable bid(MVB)
rule. MVB selected the bid that had the largest amortized
value (the value divided by the size of the set). It was hoped
that the MVB selection rule would produce a higher rev-
enue in its initial solution. This is desirable because the
auctioneer may wish to stop the search before the algorithm
completes. Additionally, a higher revenue discovered earlier
would produce a better bound and result in faster conver-
gence to the optimal solution.

The data sets in the full report were generated by the
same methods as in the Sandholm paper, but with scaled
parameters because of resource limitations. Two results us-
ing unscaled parameters are summarized in Table 1. While
the MCB algorithm performed poorly, the MVB algorithm
showed significant improvement over Bidtree, in time to
completion and the number of refinements to the bound. (In
the second example, Bidtree found the better solution before
MVB but its searching of the entire space took three times as
long.) The author’s web page will have additional examples
as they become available.

150 bids, 25 items, fixed at 3 items per bid
Method CPU Time Best Solution Refinements
MCB 20627.70 s 13517.25 s 29
Bidtree 18739.12 s 7847.97 s 13
MVB 2960.42 s 326.79 s 6
50 bids, 75 items, value scaled to size
Method CPU Time Best Solution Refinements
MCB 315.57 s 238.05 s 12
Bidtree 208.47 s 1.85 s 5
MVB 78.66 s 11.69 s 1

Table 1: Performance of the three algorithms on two sepa-
rate test cases



References
Dechter, R. 1992. Constraint networks. InEncyclopedia
of Artificial Intelligence. John Wiley & Sons, Inc., second
edition. 276–285.
1995. ECLiPSe User Manual, v. 3.5. Available at
http://www.ecrc.de/eclipse/eclipse.html.
Sandholm, T. W. 1999. An algorithm for optimal winner
determination in combinatorial auctions. InInternational
Joint Conference on Artificial Intelligence (IJCAI), 542–
547.


