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Article de�nition: Constraints are a declarative knowledge representation
formalism that allows for a compact and expressive modeling of many real-life
problems. Constraint satisfaction and propagation tools, as well as constraint
programming languages, are successfully used to model, solve, and reason
about many classes of problems, such as design, diagnosis, scheduling, spatio-
temporal reasoning, resource allocation, con�guration, network optimization,
and graphical interfaces.
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1 Introduction

Constraint satisfaction problems. A constraint satisfaction problem (CSP)
consists of a �nite set of variables, each associated with a domain of values,
and a set of constraints . Each of the constraint is a relation, de�ned on some
subset of the variables, called its scope, denoting their legal combinations of
values. As well, constraints can be described by mathematical expressions
or by computable procedures.

Solutions. A solution is an assignment of a value to each variable from
its domain such that all the constraints are satis�ed. Typical constraint
satisfaction problems are to determine whether a solution exists, to �nd one
or all solutions, and to �nd an optimal solution relative to a given cost
function.

Examples of CSPs. An example of a constraint satisfaction problem is the
well-known k-colorability problem. The task is to color, if possible, a given
graph with k colors only, such that any two adjacent nodes have di�erent
colors. A constraint satisfaction formulation of this problem associates the
nodes of the graph with variables, the possible colors are their domains and
the not-equal constraints between adjacent nodes are the constraints of the
problem.

Another known constraint satisfaction problem concerns satis�ability (SAT),
which is the task of �nding a truth assignment to propositional variables such
that a given set of clauses are satis�ed. For example, given the two clauses
(A _B _ :C); (:A_D), the assignment of false to A, true to B, false to C,
and false to D is a satisfying truth value assignment.

The constraint graph. The structure of a constraint problem is usually
depicted by a constraint graph whose nodes represents the variables, and any
two nodes are connected if the corresponding variables participate in the
same constraint scope. In the k-colorability formulation, the graph to be
colored is the constraint graph. In the SAT example above, the constraint
graph has A connected with D, and A;B and C are connected to each other.
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Applications areas. Constraint problems have proven successful in mod-
eling mundane cognitive tasks such as vision, language comprehension, de-
fault reasoning and abduction, as well as in applications such as scheduling,
design, diagnosis, and temporal and spatial reasoning. The reason is that
constraints allow for a natural, expressive and declarative formulation of
what has to be satis�ed, without the need to say how it has to be satis�ed.

Complexity of constraint-related tasks. In general, constraint satis-
faction tasks (like �nding one or all solutions, or the best solution) are com-
putationally intractable (NP-hard). Intuitively, this mean, that in the worst
case all the possible variable instantiations may need to be considered be-
fore a solution (or best solution) can be found. However, there are some
tractable classes of problems that allow for e�cient solution algorithms even
in the worst-case. Moreover, also for non-tractable classes, many techniques
exhibit a good performance in practice in the average case.

Constraint optimization problems. Constraint processing tasks include
not only the satisfaction task, but also constraint optimization problems.
This occurs when the solutions are not equally preferred. The preferences
among solutions can be expressed via an additional cost function (also called
an objective function), and the task is to �nd a best-cost solution or a rea-
sonable approximation of it.

Soft constraints. The notion of constraint optimization leads a more 
ex-
ible view of constraints, where each constraint may have a level of impor-
tance. In this case, we talk about soft constraints, which allow for a faithful
modeling of many applications and can accommodate user preferences and
uncertainties within the constraint formalism.

Techniques for solving CSPs. The techniques for processing constraint
problems can be roughly classi�ed into two main categories: search and con-
sistency inference (or propagation). However, such techniques can also be
combined, and, in fact, in practice a constraint processing technique usually
contains aspects of both categories. Search algorithms traverse the space
of partial instantiations, building up a complete instantiation that satis�es
all the constraints, or they determine that the problem is inconsistent. In
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contrast, consistency-inference algorithms reason through equivalent prob-
lems: at each step they modify the current problem to make it more explicit
without loosing any information (that is, maintaining the same set of solu-
tions). Search is either systematic and complete, or stochastic and incom-
plete. Likewise, consistency-inference has complete solution algorithms (e.g.,
variable-elimination), or incomplete versions, usually called local consistency
algorithms because they operate on local portions of the constraint graph.

Constraints in high-level languages. The constraint satisfaction model
is useful because of its mathematical simplicity on one hand, and its ability to
capture many real-life problems on the other. Yet, to make this framework
useful for many real-life applications, advanced tools for modeling and for
implementation are necessary. For this reason, constraint systems (providing
some built-in propagation and solution algorithms) are usually embedded
within a high-level programming environment which assists in the modeling
phase and which allows for some control over the solution method itself.

2 Constraint propagation

The basic idea. Constraint propagation (or local consistency) algorithms
[11, 8, 4] transform a given constraint problem into an equivalent one which
is more explicit, by inferring new constraints that are added to the problem.
Therefore, they may make some inconsistencies, which were implicitly con-
tained in the problem speci�cation, explicitly expressed. Intuitively, given
a constraint problem, a constraint propagation algorithm will make any so-
lution of a small subproblem extensible to some surrounding variables and
constraints. These algorithms are interesting because their worst-case time
complexity is polynomial in the size of the problem, and they are often very
e�ective in discovering many local inconsistencies.

Arc and path consistency. The most basic and most popular propaga-
tion algorithm, called arc-consistency, ensures that any value in the domain
of a single variable has a legal match in the domain of any other selected
variable. This means that any solution of a one-variable subproblem is ex-
tensible in a consistent manner to another variable. The time complexity of
this algorithm is quadratic in the size of the problem. Another well-known
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constraint propagation algorithm is path-consistency. This algorithm en-
sures that any solution of a two-variables subproblem is extensible to any
third variable, and, as expected, it is more powerful than arc-consistency,
discovering and removing more inconsistencies. It also requires more time:
its time complexity is cubic in the size of the problem.

I-consistency. Arc- and path-consistency can be generalized to i-consistency.
In general, i-consistency algorithms guarantee that any locally consistent
instantiation of i � 1 variables is extensible to any ith variable. There-
fore, arc-consistency coincides with 2-consistency, and path-consistency is
3-consistency. Enforcing i-consistency can be accomplished in time and space
exponential in i: if the constraint problem has n variables, the complexity of
achieving i-consistency is O(ni). Algorithms for i-consistency can sometimes
reveal that the whole problem is inconsistent.

Global consistency. A constraint problem is said to be globally consistent,
if it is i-consistent for every i. When such a situation arises, a solution can
be assembled by assigning values to variables (using any variable ordering)
without encountering any dead-end, namely in a backtrack-free manner.

Adaptive-consistency as complete inference. In practice, global con-
sistency is not really necessary to have backtrack-free assignment of values:
it is enough to posses directional global consistency relative to a given vari-
able ordering. For example, the adaptive consistency algorithm, which is
a variable elimination algorithm, enforces global consistency in a given or-
der only, such that every solution can be extracted with no dead-ends along
this ordering. [3]. Another related algorithm, called tree-clustering, compiles
the given constraint problem into an equivalent tree of subproblems whose
respective solutions can be combined into a complete solution e�ciently.
Adaptive-consistency and tree-clustering are complete inference algorithms
that can take time and space exponential in a parameter of the constraint
graph called induced-width (or tree-width) [3].

Bucket-elimination. Bucket-elimination is a recently proposed framework
for variable-elimination algorithms which generalizes adaptive-consistency to
include dynamic programming for optimization tasks, directional-resolution
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for propositional satis�ability, Fourier elimination for linear inequalities, as
well as algorithms for probabilistic inference in Bayesian networks.

Constraint propagation and search. When a problem is computation-
ally too hard for adaptive-consistency, it can be solved by bounding the
amount of consistency-enforcing (e.g. arc- or path-consistency) and embed-
ding these constraint propagation algorithms within a search component, as
described in the next section. This yields a trade-o�, between the e�ort
spent in constraint propagation and that spent on the search, which can be
exploited and which is the focus of empirical studies (described later).

3 Constraint satisfaction as search

Backtracking search. The most common algorithm for performing sys-
tematic search for a solution of a constraint problem is the so-called backtrack-
ing search algorithm. This algorithm traverses the space of partial solutions
in a depth-�rst manner, and at each step it extends a partial solution (that
is, a variable instantiation to a subset of variables which satis�es all the rele-
vant constraints) by assigning a value to one more variable. When a variable
is encountered such that none of its values are consistent with the current
partial solution (a situation referred to as a dead-end), backtracking takes
place, and the algorithm reconsiders one of the previous assignments. The
best case occurs when the algorithm is able to successfully assign a value to
each variable in a backtrack-free manner, without encountering any dead-
end. In this case, the time complexity is linear in the size of the problem
(often identi�ed with the number of its variables). In the worst case, the time
complexity of this algorithm is exponential in the size of the given problem.
However, even in this case the algorithm requires only linear space.

Look-ahead schemes. Several improvements of backtracking have focused
on one or both of the two phases of the algorithm: moving forward to a new
variable (look-ahead schemes) and backtracking to a previous assignments
(look-back schemes) [3]. When moving forward to extend a partial solu-
tion, some computation (e.g., arc-consistency) may be carried out to decide
which variable, and which of the variable's values, to choose next in order
to decrease the likelihood of a dead-end. For deciding on the next variable,
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variables that maximally constrain the rest of the search space are usually
preferred, and therefore, the most highly constrained variable is selected.
For value selection, instead, the least constraining value is preferred, in order
to maximize future options for instantiations [6]. A well-known look-ahead
method is forward-checking, which performs a limited form of arc-consistency
at each step, ruling out some values that would lead to a dead-end. Cur-
rently, a popular form of look-ahead scheme, called MAC (for Maintaining
Arc-Consistency), performs arc-consistency at each step and uses the revealed
information for variable and value selection [5].

Look-back schemes. Look-back schemes are invoked when the algorithm
encounters a dead-end. These schemes perform two functions. The �rst one
is to decide how far to backtrack, by analyzing the reasons for the current
dead-end, a process often referred to as backjumping [5]. The second one is
to record the reasons for the dead-end in the form of new constraints so that
the same con
ict will not arise again, a process known as constraint learning
and no-good recording [13].

Local search. Stochastic local search (SLS) strategies have been intro-
duced into the constraint satisfaction literature in the 1990's under the name
GSAT (Greedy SATis�ability) and are popular especially for solving proposi-
tional satis�ability problems. These methods move in a hill-climbing manner
in the space of all variables' instantiations, and at each step they improve
the current instantiation by changing (also called \
ipping") the value of a
variable so as to maximize the number of constraints satis�ed. Such search
algorithms are incomplete, since they may get stuck in a local maxima and
thus might not be able to discover that a constraint problem is inconsistent.
Nevertheless, when equipped with some heuristics for randomizing the search
(e.g., WalkSat) or for revising the guiding criterion function, (e.g., constraint
re-weighting), they have been shown to be reasonably successful in solving
large problems that are frequently too hard to be handled by a backtracking-
style search [12]. A well known local search algorithm for optimization tasks
is simulated annealing.

Evaluation of the algorithms. The theoretical evaluation of constraint
satisfaction algorithms is accomplished primarily by worst-case analysis, that
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is, determining a function of the problem's size that represents an upper
bound of the algorithm's performance over all problems of that size. In
particular, the tradeo� between constraint inference and search is hardly
captured by such analysis. In addition, worst-case analysis, by its nature, is
very pessimistic, and often it does not re
ect the actual performance. Thus in
most case an empirical evaluation is also necessary. Normally, an algorithm
is evaluated empirically on a set of randomly generated problems, chosen
in a way that they are reasonably hard to solve (this is done by selecting
them from the phase transition region [12]). Several benchmarks, based on
real-life applications such as scheduling, are also used to empirically evaluate
an algorithm.

4 Tractable classes

In between search and constraint propagation algorithms, we may �nd the
so-called structure-driven algorithms. These techniques emerged from an
attempt to topologically characterize constraint problems that are tractable
(that is, polynomially solvable). Tractable classes are generally recognized by
realizing that enforcing low-level consistency (in polynomial time) guarantees
global consistency for some problems.

Graph-based tractability. The basic constraint graph structure that sup-
port tractability is a tree. This has been observed repeatedly in constraint
networks, complexity theory and database theory. In particular, enforcing
arc-consistency on a tree-structured constraint problem ensures global consis-
tency along an ordering. Most other graph-based techniques can be viewed as
transforming a given network into a meta-tree. Among these, we �nd meth-
ods such as tree-clustering and adaptive-consistency, the cycle-cutset scheme,
as well as the bi-connected component decomposition. These lead to a general
characterization of tractability that uses the notion of induced-width [3].

Constraint-based tractability. Some tractable classes have also been
characterized by special properties of the constraints, without any regard
to the topology of the constraint graph. For example, tractable classes of
temporal constraints include subsets of the qualitative interval algebra, ex-
pressing relationships such as \time interval A overlaps or precedes time
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interval B", as well as quantitative binary linear inequalities over the Real
numbers of the form X � Y � a [10]. In general, we exploit notions such
as tight domains and tight constraints, row-convex constraints [14], implica-
tional and max-ordered constraints, as well as causal networks. A connection
between tractability and algebraic closure was recently discovered [2].

5 Constraint optimization and soft constraints

Searching for a most preferred solution. While constraint satisfaction
tasks involve �nding any solution which satis�es all constraints, constraint
optimization seeks the best solution relative to one (or more) criteria, usually
represented via a cost- or an objective function. For example, we may have
the constraints X � Y; Y � 10 with the objective function f = X + Y ,
to be maximized. Then, the best solution (only one for this example) is
X = 10; Y = 10. All other solutions, (likeX = 5; Y = 6), although satisfying
all constraints, are less preferred. Frequently, cost functions are speci�ed
additively, as a sum of cost components, each de�ned on subsets of variables.

Branch & bound. Extending backtracking search for the task of select-
ing the most preferred (best-cost) solution, yields the well-known branch and
bound algorithm. Like backtracking, branch and bound traverses the search
tree in a depth-�rst manner, pruning not only partial instantiations that are
inconsistent, but also those that are evaluated to be inferior to the current
best solution. Namely, at each node, the value of the current partial solution
is estimated (by an evaluation function) and compared with the current best
solution; if it is inferior, search along the path is terminated. When the eval-
uation function is accurate, branch and bound prunes substantial portions
of the search tree.

Soft constraints. One way to specify preferences between solutions is to
attach a level of importance to each constraint or to each of its tuples. This
type of constraints was introduced because real problems often cannot be
described by a set of true/false statements only. Often relationships are
associated with features such as preferences, probabilities, costs, and uncer-
tainties. Moreover, many real problems, even when modeled correctly, are
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often over-constrained. This type of constraints is currently investigated un-
der the formalism of soft constraints. There are several frameworks for soft
constraints, such as the semi-ring based formalism [1], where each tuple in
each constraint has an associated element taken from a partially ordered set
(a semi-ring), and the valued constraint formalism, where each constraint
is associated with an element from a totally ordered set. These formalisms
are general enough to model classical constraints, weighted constraints, fuzzy
constraints, and over-constrained problems. Current research e�ort is fo-
cused on extending propagation and search techniques to this more general
framework.

6 Constraint programming

In a constraint solving or optimization system, it is frequently desired to
have a certain level of 
exibility in choosing the propagation technique and
the search control method that suits the particular application. For this
reason, constraint systems are usually embedded into high-level programming
environments which allow for such a control.

Logic programming. Although many programming paradigms have re-
cently been augmented with constraints, the concept of constraint program-
ming is mainly linked to the Logic Programming (LP) framework. Logic
programming is a declarative programming paradigm where a program is
seen as a logical theory and has the form of a set of rules (called clauses)
which relate the truth value of an atom (the head of the clause) to that of a
set of other atoms (the body of the clause). The clause
p(X,Y) :- q(X), r(X,Y,Z).

says that if atoms q(X) and r(X,Y,Z) are true, then also atom p(X,Y) is
true. For example, the clauses
reach(X,Y) :- flight(X,Y). (namely, there is a direct 
ight)
reach(X,Y) :- flight(X,Z), reach(Z,Y).

describe the reachability between two cities (X and Y) via a sequence of
direct 
ights.

Logic programming and search. Executing a logic program means ask-
ing for the truth value of a certain predicate, called the goal. For example,
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the goal :- p(X,Y) asks whether there are values for the variables X and Y

such that p(X,Y) is true in the given logic program. The answer is found by
recursively unifying the current goal with the head of a clause (by �nding val-
ues for the variables which make the two atoms equal). As with constraint
solving, the algorithm that searches for such an answer in LP involves a
backtracking search.

From logic programming to constraint logic programming. To use
constraints within LP, one just has to treat some of the predicates in a clause
as constraints and to replace uni�cation with constraint solving. The result-
ing programming paradigm is called Constraint Logic Programming (CLP)
[7, 9]. A typical example of a clause in CLP is
p(X,Y) :- X < Y+1, q(X), r(X,Y,Z).

which states that p(X,Y) is true if q(X) and r(X,Y,Z) are true, and if the
value of X is smaller than that of Y + 1. While the regular predicates are
treated as in LP, constraints are manipulated using specialized constraint
processing tools. The shift from LP to CLP permits the choice from among
several constraint domains, yielding an e�ective scheme that can solve many
more classes of real-life problems.

Specialized algorithms for CLP. CLP languages are reasonably e�-
cient, due to the use of a collection of specialized solving and propagation
algorithms for frequently used constraints and for special variable domain
shapes. Global constraints and bounds-consistency are two aspects of such
techniques which are incorporated into most current CLP languages.

Global constraints. Global constraints are just regular constraints, usu-
ally non-binary, for which there exist specialized, powerful propagation meth-
ods. They are called \global" because they are normally used, in the mod-
eling phase, in place of a collection of smaller constraints. Their purpose is
to overcome the ine�ectiveness associated with propagation methods in the
presence of certain small constraints. A typical example is the constraint
alldifferent, which requires all the involved variables to assume a di�er-
ent value, and for which there is an e�ective propagation algorithm based
on bi-partite matching. This constraint is used in place of a set of binary
disequality constraints, which seldom give rise to useful constraint propaga-

12



tion. Most current CLP languages are equipped with several kinds of global
constraints.

Bounds consistency . Bounds consistency is an approximated version of
arc-consistency which is applicable to integer domains, and which was pre-
sented and is being used within most CLP languages. Rather than express-
ing integer domains explicitly, only their minimum and maximum bounds
are stored. To maintain this compact representation, arc-consistency is re-
stricted to generate shrinked domains having also an interval representation
(i.e., no holes are allowed). Bounds consistency has a major impact on the
e�ciency of constraint propagation over integer domains and it is therefore
an integral part of most constraint languages.

7 Summary

This survey provides the main notions underlying most CSP-related research
and discusses the main issues. The CSP area is very interdisciplinary, since it
embeds ideas from many research �elds, like Arti�cial Intelligence (where it
�rst started), Databases, Programming Languages, and Operation Research.
Thus it is not possible to cover all the lines of work related to CSPs. However,
we feel that the information contained in this survey constitutes a good
starting point for those who are interested in either using CSPs for their
purposes, or actively working to make CSPs more useful.

Ongoing investigations related to constraints currently focus on many
issues, among which: identi�cation of new tractable classes; studying the
relationship between search and propagation; extending propagation tech-
niques to soft constraints; developing more 
exible and e�cient constraint
languages.
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