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Abstract

Bucket eliminationis an algorithmic framework that generalizes dynamic programming to ac-
commodate many problem-solving and reasoning tasks. Algorithms such as directional-resolution
for propositional satisfiability, adaptive-consistency for constraint satisfaction, Fourier and Gaussian
elimination for solving linear equalities and inequalities, and dynamic programming for combinato-
rial optimization, can all be accommodated within the bucket elimination framework. Many proba-
bilistic inference tasks can likewise be expressed as bucket-elimination algorithms. These include:
belief updating, finding the most probable explanation, and expected utility maximization. These al-
gorithms share the same performance guarantees; all are time and space exponential in the induced-
width of the problem’s interaction graph.

While elimination strategies have extensive demands on memory, a contrasting class of algorithms
called “conditioning search” require only linear space. Algorithms in this class split a problem into
subproblems by instantiating a subset of variables, called aconditioning set, or a cutset. Typical
examples of conditioning search algorithms are: backtracking (in constraint satisfaction), and branch
and bound (for combinatorial optimization).

The paper presents the bucket-elimination framework as a unifying theme across probabilistic and
deterministic reasoning tasks and show how conditioning search can be augmented to systematically
trade space for time. 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bucket eliminationis a unifying algorithmic framework that generalizes dynamic pro-
gramming to accommodate algorithms for many complex problem-solving and reasoning

1 Email: dechter@ics.uci.edu.

0004-3702/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00059-4



42 R. Dechter / Artificial Intelligence 113 (1999) 41–85

activities, including directional resolution for propositional satisfiability [13], adaptive con-
sistency for constraint satisfaction [22], Fourier and Gaussian elimination for linear equal-
ities and inequalities, and dynamic programming for combinatorial optimization [5]. The
bucket elimination framework will be demonstrated by presenting reasoning algorithms for
processing both deterministic knowledge-bases such as constraint networks and cost net-
works as well as probabilistic databases such as belief networks and influence diagrams.

The main virtues of the bucket-elimination framework aresimplicity and generality.
By simplicity, we mean that a complete specification of bucket-elimination algorithms
is possible without introducing extensive terminology, making the algorithms accessible
to researchers in diverse areas. The primary importance of these algorithms is that their
uniformity facilitates understanding which encourages cross-fertilization and technology
transfer between disciplines. Indeed, all bucket-elimination algorithms are similar enough,
allowing improvement to a single algorithm to be applicable to all others expressed in
this framework. For example, expressing probabilistic inference algorithms as bucket-
elimination methods clarifies the former’s relationship to dynamic programming and to
constraint satisfaction allowing the knowledge accumulated in those areas to be utilized in
the probabilistic framework.

Normally, an input to a bucket elimination algorithm is a knowledge-base theory and
a query specified by a collection of functions or relations over subsets of variables (e.g.,
clauses for propositional satisfiability, constraints, or conditional probability matrices for
belief networks). The algorithm initially partitions these functions into buckets, and each
is associated with a single variable. Given a variable ordering, the bucket of a particular
variable contains the functions defined on that variable, provided the function is not defined
on variables higher in the order. Subsequently, buckets are processed from last to first.
When the bucket of variableX is processed, an “elimination procedure” is performed over
the functions in its bucket yielding a new function that does not “mention”X. This function
summarizes the “effect” ofX on the remainder of the problem. The new function is placed
in a lower bucket. Bucket-elimination algorithms areknowledge-compilationmethods,
since they generate not only an answer to a query, but also an equivalent representation
of the input problem from which various queries are answerable in polynomial time.

An important property of variable elimination algorithms is that their performance can
be predicted using a graph parameter calledinduced width, w∗. In general the structure
of a given theory will be associated with aninteraction graphdescribing dependencies
between variables. The induced-width describes the largest cluster in a tree-embedding of
that graph (also known as tree-width). The complexity of bucket-elimination istime and
spaceexponential in the induced width of the problem’s interaction graph. The size of
the induced width varies with various variable orderings, leading to different performance
guarantees.

Since all variable elimination algorithms havespacecomplexity exponential in the
problem’s induced width, bucket-elimination is unsuitable when a problem having a high
induced-width is encountered. To alleviate space complexity, another universal method for
problem solving, calledconditioning, can be used.

Conditioning is a generic term for algorithms that search the space of partial value
assignments or partial conditionings. Conditioning means splitting a problem into
subproblems based on a certain condition. A subset of variables known as conditioning
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variables will generally be instantiated. This generates a subproblem that can be solved
in different ways. If the resulting simplified subproblem has no solution or if more
solutions are needed, the algorithm can try different assignments to the conditioning
set. Algorithms such asbacktrackingsearch andbranch and boundmay be viewed as
conditioning algorithms.Cutset-conditioning[15,37] applies conditioning to a subset of
variables that cut all cycles of the interaction graph and solve the resulting subproblem by
bucket-elimination.

The complexity of conditioning algorithms is exponential in the conditioning set,
however, their space complexity is only linear. Also, empirical studies show that their
average performance is often far superior to their worst-case bound. This suggests
that combining elimination with conditioning may be essential for improving reasoning
processes. Tailoring the balance of elimination and conditioning to the problem instance
may improve the benefits in each scheme on a case by case basis; we may have
better performance guarantees, improved space complexity, and better overall average
performance.

We begin (Section 2) with an overview of known algorithms for deterministic networks,
rephrased as bucket elimination algorithms. These includeadaptive-consistencyfor
constraint satisfaction,directional resolutionfor propositional satisfiability and the Fourier
elimination algorithm for solving a set of linear inequalities over real numbers. We
summarize their performance as a function of theinduced-width, and finally, contrast those
algorithms with conditioning search methods.

Subsequent sections will provide a detailed derivation of bucket elimination algorithms
for probabilistic tasks. Following additional preliminaries (Section 3), we develop the
bucket-elimination algorithm for belief updating and analyze its performance in Section 4.
The algorithm is extended to find the most probable explanation (Section 5), the maximum
aposteriori hypothesis (Section 6) and the maximum expected utility (Section 7). Its
relationship to dynamic programming is given in Section 8. Section 9 relates the algorithms
to Pearl’s poly-tree algorithm and to join-tree clustering. Schemes for combining the
conditioning method with elimination are described in Section 10. We conclude with
related work (Section 11) and concluding remarks (Section 12).

2. Bucket elimination for deterministic networks

This section provides an overview of known algorithms for reasoning with deterministic
relationships, emphasizing their syntactic description as bucket elimination algorithms.

2.1. Bucket elimination for constraints

Constraint networks have been shown to be useful in formulating diverse problems such
as scene labeling, scheduling, natural language parsing and temporal reasoning [16].

Consider the following graph coloring problem in Fig. 1. The task is to assign a color to
each node in the graph so that adjacent nodes will have different colors. Here is one way to
solve this problem. Consider nodeE first. It can be colored either green or red. Since only
two colors are available it follows thatD andC must have identical colors, thus,C = D
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Fig. 1. A graph coloring example.

Bucket(E): E 6=D, E 6= C
Bucket(C): C 6= B
Bucket(D): D 6=A,
Bucket(B): B 6=A,
Bucket(A):

(a)

Bucket(E): E 6=D, E 6= C
Bucket(C): C 6= B || D = C
Bucket(D): D 6=A, || ,D 6= B
Bucket(B): B 6=A, || B =A
Bucket(A): ||

(b)

Fig. 2. A schematic execution of adaptive-consistency.

can be added to the constraints of the problem. We focus on variableC next. From the
inferredC =D and from the input constraintC 6= B we can infer thatD 6= B and add this
constraint to the problem, disregardingC andE from now on. Continuing in this fashion
with nodeD, we will infer A= B. However, since there is an input constraintA 6= B we
can conclude that the original set of constraints is inconsistent.

The algorithm which we just executed is the well known algorithm for solving constraint
satisfaction problems calledadaptive consistency[22]. It works by eliminating variables
one by one, while deducing the effect of the eliminated variable on the rest of the problem.
Adaptive-consistency can be described using the bucket data-structure. Given a variable
ordering such asd = A,B,D,C,E in our example, we process the variables from last to
first, namely, fromE toA. Step one is to partition the constraints intoordered buckets. All
the constraints mentioning the last variableE are put in a bucket designated asbucketE .
Subsequently, all the remaining constraints mentioningD are placed inD’s bucket, and
so on. The initial partitioning of the constraints is depicted in Fig. 2(a). In general, each
constraint is placed in the bucket of its latest variable.
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Algorithm Adaptive consistency
1. Input: A constraint problemR1, . . . ,Rt , orderingd =X1, . . . ,Xn.
2. Output: An equivalent backtrack-free set of constraints and a solution.
3. Initialize: Partition constraints intobucket1, . . . ,bucketn. bucketi contains
all relations whose scope includeXi but no higher indexed variable.
4. For p = n downto 1, processbucketp as follows

for all relationsR1, . . . ,Rm defined overS1, . . . , Sm ∈ bucketp do
(Find solutions tobucketp and project outXp:)

A←
m⋃
j=1

Sj − {Xi}

RA← RA ∩5A
(

m1
j=1

Rj

)
5. If RA is not empty, add it to the bucket of its latest variable.

Else, the problem is inconsistent.

6. Return
⋃
j bucketj and generate a solution: forp = 1 ton do

assign a value toXp that is consistent with previous assignments and satisfies
all the constraints inbucketp .

Fig. 3. Algorithm Adaptive-consistency.

After this initialization step, the buckets are processed from last to first. Processing
bucketE produces the constraintD = C, which is placed in bucketC. By processing
bucketC, the constraintD 6= B is generated and placed in bucketD. While process-
ing bucketD, we generate the constraintA = B and put it in bucketB. When process-
ing bucketB inconsistency is discovered. The buckets’ final contents are shown in
Fig. 2(b). The new inferred constraints are displayed to the right of the bar in each
bucket.

At each step the algorithm generates a reduced but equivalent problem with one less
variable expressed by the union of unprocessed buckets. Once the reduced problem is
solved its solution is guaranteed to be extendible to a full solution since it accounted
for the deduced constraints generated by the rest of the problem. Therefore, once all the
buckets are processed, and if there are no inconsistencies, a solution can be generated in a
backtrack-free manner. Namely, a solution is assembled progressively assigning values
to variables from the first variable to the last. A value of the first variable is selected
satisfying all the current constraints in its bucket. A value for the second variable is then
selected which satisfies all the constraints in the second bucket, and so on. Processing a
bucket amounts to solving a subproblem defined by the constraints appearing in the bucket,
and then restricting the solutions to all but the current bucket’s variable. A more formal
description requires additional definitions and notations.

A Constraint Networkconsists of a set ofVariablesX = {X1, . . . ,Xn}, DomainsD =
{D1, . . . ,Dn}, Di = {v1, . . . , vk} andConstraintsRS1, . . . ,RSt , whereSi ⊆X, 16 i 6 n.
A constraintis a pair(R,S) whereS is a subset of the variablesS = {X1, . . . ,Xr }, also
called its scopeandR is a relation defined overS, namely,R ⊆ D1 × D2, . . . ,×Dr ,
whose tuples denote the legal combination of values. The pair(R,S) is also denotedRS .
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A constraint graph associates each variable with a node and connects any two nodes whose
variables appear in the same scope.A solutionis an assignment of a value to each variable
that does not violate any constraint. Constraints can be expressed extensionally using
relations or intentionally by a mathematical formula or a procedure.

For instance, in the graph-coloring example, the nodes are the variables, the colors are
the domains of the variables and the constraints are the in-equation constraints for adjacent
variables. The constraint graph is identical to the graph to be colored.

The computation in a bucket can be described in terms of the relational operators of
join followed by projection. The join of two relationsRAB and RBC denotedRAB 1
RBC is the largest set of solutions overA,B,C satisfying the two constraintsRAB and
RBC. Projecting out a variableA from a relationRABC, written as5BC(RABC) removes
the assignment toA from each tuple inRABC and eliminates duplicate rows from the
resulting relation. Algorithm Adaptive-consistency is described in Fig. 3. For instance,
the computation in the bucket ofE of our example of Fig. 1 isRECD← RED 1 REC

followed by RCD ← 5CD(RECD), whereRED denotes the relationE 6= D, namely
RED= {(green, red)(red,green)} andREC stands for the relationE 6= C.

The complexity of adaptive-consistency is linear in the number of buckets and in the
time to process each bucket. However, since processing a bucket amounts to solving a
constraint-satisfaction subproblem its complexity is exponential in the number of variables
mentioned in a bucket. If the constraint graph is ordered along the bucket processing, then
the number of variables appearing in a bucket is bounded by theinduced-widthof the
constraint graph along that ordering [22]. We will demonstrate and analyze this relationship
more in Section 4, when discussing belief networks. In this section, we only provide a quick
exposure to the concepts and refer the reader to the relevant literature.

Given an undirected graphG and an orderingd =X1, . . . ,Xn of its nodes, theinduced
graph of G relative to orderingd is obtained by processing the nodes in reverse order
from last to first. For each node all its earlier neighbors are connected, while taking into
account old and new edges created during processing. Theinduced width of an ordered
graph, denotedw∗(d), is the maximum number of earlier neighbors over all nodes, in the
induced graph. Theinduced width of a graph, w∗, is the minimal induced width over all
its ordered graphs. Another known related concept istree-width. The tree-width of a graph
is identical to its induced-width plus one.

Consider for example, a slightly different graph coloring problem as depicted in
Fig. 4. Generating the induced-graph along the orderingd1 = A,B,C,D,E or d2 =
E,B,C,D,A leads to the two graphs in Fig. 5. Note that in all drawings from now on,
later nodes in the ordering appear on top of earlier ones. The broken arcs are the new added
arcs. The induced-width alongd1 andd2 are 2 and 3, respectively, suggesting different
complexity bounds for Adaptive-consistency. It was proven that [22],

Theorem 1. Adaptive-consistency decides if a set of constraints are consistent, and if they
are, generates an equivalent representation that is backtrack-free.

Theorem 2. The time and space complexity of Adaptive-consistency alongd is
O(nexp(w∗(d))).
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Fig. 4. A modified graph coloring problem.

Fig. 5. The induced-width along the orderings:d1 =A,B,C,D,E andd2 =E,B,C,D,A.

Fig. 6. Schematic execution of adaptive-consistency on a tree network.DX denotes unary constraints overX.
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As a result, problems having bounded induced-width (w∗ 6 b) for some constantb,
can be solved in polynomial time. In particular, Adaptive-consistency is linear for trees
as demonstrated in Fig. 6. The figure depicts a constraint graph that has no cycles. When
the graph is ordered alongd = A,B,C,D,E,F,G its width and induced width, equal 1.
Indeed as is demonstrated by the schematic execution of adaptive-consistency alongd , the
algorithm generates only unary relationships and is therefore very efficient.

It is known that findingw∗ (and the minimizing ordering) is NP-complete [2]. However
greedy heuristic ordering algorithms [5,28] and approximation orderings exist [4,50]. Also,
the induced width of a given ordering is easy to compute. Algorithm Adaptive-consistency
and its properties are discussed at length in [22,23].

2.2. Bucket elimination for propositional CNFs

Bucket elimination generality can be further illustrated with an algorithm in determinis-
tic reasoning for solving satisfiability [29].

Propositional variables take only two values{true, false} or “1” and “0”. We denote
propositional variables by uppercase lettersP,Q,R, . . ., propositional literals (i.e.,
P,¬P ) stand forP = “ true” or P = “ false”, and disjunctions of literals, orclauses, are
denoted byα,β, . . . . A unit clauseis a clause of size 1. The notation(α ∨ T ), when
α = (P ∨Q∨R) is shorthand for the disjunction(P ∨Q∨R∨T ). α∨β denotes the clause
whose literal appears in eitherα or β . Theresolutionoperation over two clauses(α ∨Q)
and(β ∨¬Q) results in a clause(α ∨ β), thus eliminatingQ. A formulaϕ in conjunctive
normal form (CNF) is a set of clausesϕ = {α1, . . . , αt } that denotes their conjunction.
The set ofmodels or solutionsof a formulaϕ is the set of all truth assignments to all its
symbols that do not violate any clause. Deciding if a theory is satisfiable is known to be
NP-complete [29].

It can be shown that the join-project operation used to process and eliminate a variable
by adaptive-consistency over relational constraints translates to pair-wise resolution when
applied to clauses [26]. This yields a bucket-elimination algorithm for propositional
satisfiability which we calldirectional resolution.

Algorithm directional resolution, (DR), is the core of the well-known Davis–Putnam
algorithm for satisfiability [13,24].

Algorithm DR (see Fig. 8) is described usingbucketspartitioning the set of clauses in the
theoryϕ. We call its output theoryEd(ϕ), thedirectional extensionof ϕ. Given an ordering
d =Q1, . . . ,Qn, all the clauses containingQi that do not contain any symbol higher in
the ordering are placed in the bucket ofQi , denotedbucketi . As previously noted, the
algorithm processes the buckets in the reverse order ofd . The processingbucketi resolves
overQi all possible pairs of clauses in the bucket and inserts the resolvents into appropriate
lower buckets.

Consider for example the following propositional theory:

ϕ = (A∨B ∨C)(¬A∨B ∨E)(¬B ∨C ∨D).
The initial partitioning into buckets along the orderingd = E,D,C,B,A as well as

the bucket’s content generated by the algorithm following resolution over each bucket
is depicted in Fig. 7. As demonstrated [24], once all the buckets are processed, and if
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Fig. 7. A schematic execution of directional resolution using orderingd =E,D,C,B,A.

Algorithm directional resolution
Input: A CNF theoryϕ, an orderingd =Q1, . . . ,Qn.
Output: A decision of whetherϕ is satisfiable. If it is, a theoryEd(ϕ),
equivalent toϕ; else, a statement “The problem is inconsistent”.
1. Initialize: Generate an ordered partition of the clauses,
bucket1, . . . ,bucketn, wherebucketi contains all the clauses whose highest
literal isQi .
2. Forp = n to 1, do
• if bucketp contains a unit clause, perform only unit resolution. Put each

resolvent in the appropriate bucket.
• else,resolve each pair{(α∨Qp), (β ∨¬Qp)} ⊆ bucketp . If γ = α ∨ β

is empty, return “the theory is not satisfiable”; else, determine the index
of γ and addγ to the appropriate bucket.

3. Return: Ed(ϕ)⇐H
⋃
i bucketi and generate a model in a backtrack-free

manner.

Fig. 8. Algorithmdirectional resolution.

inconsistency was not encountered (namely the empty clause was not generated), a model
can be assembled in a backtrack-free manner by consultingEd(ϕ) using the orderd as
follows: Assign toQ1 a truth value that is consistent with the clauses inbucket1 (if the
bucket is empty, assignQ1 an arbitrary value); after assigning values toQ1, . . . ,Qi−1,
assign a value toQi such that, together with the previous assignments,Qi will satisfy all
the clauses inbucketi .

The complexity of DR is exponentially bounded (time and space) in theinduced width
of the theory’sinteraction graphin which a node is associated with a proposition and an
arc connects any two nodes appearing in the same clause [24]. This is similar to adaptive-
consistency. For example, the interaction graph of theoryϕ along the orderingd is depicted
in Fig. 7 by the solid arcs. The broken arcs reflect induced connection of the induced graph.
Those are associated with the new clauses generated by resolution. The induced width of
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this ordering is 3 and, as shown, the maximum number of variables in a bucket, excluding
the bucket’s variable, is 3.

2.3. Bucket elimination for linear inequalities

A special type of constraint is one that can be expressed by linear inequalities. The
domains may be the real numbers, the rationals or finite subsets. In general, a linear
constraint betweenr variables or less is of the form

∑r
i=1aixi 6 c, whereai and c

are rational constants. For example,(3xi + 2xj 6 3) ∧ (−4xi + 5xj 6 1) are allowed
constraints between variablesxi andxj . In this special case, variable elimination amounts
to the standard Gaussian elimination. From the inequalitiesx − y 6 5 andx > 3 we can
deduce by eliminatingx thaty > 2. The elimination operation is defined by:

Definition 1. Let α =∑(r−1)
i=1 aixi + arxr 6 c, andβ =∑(r−1)

i=1 bixi + brxr 6 d . Then
elimr (α,β) is applicable only ifar andbr have opposite signs, in which case

elimr (α,β)=
r−1∑
i=1

(
−ai br

ar
+ bi

)
xi 6−br

ar
c+ d.

If ar andbr have the same sign the elimination implicitly generates the universal constraint.

Applying adaptive-consistency to linear constraints and processing each pair of relevant
inequalities in a bucket by linear elimination yields a bucket elimination algorithm which
coincides with the well known Fourier elimination algorithm (see [33]). From the general
principle of variable elimination, and as is already known, the algorithm decides the
solvability of any set of linear inequalities over the rationals and generates a problem
representation which is backtrack-free. The algorithm expressed as a bucket elimination
algorithm is summarized in Fig. 9. The complexity of Fourier elimination is not bounded
exponentially by the induced-width, however. The reason is that the number of feasible
linear inequalities that can be specified over a subset ofi variables cannot be bounded
exponentially byi. For a schematic execution of the algorithm see Fig. 10, and for more
details see [26].

Fourier algorithm
Input: A set of linear inequalities, an orderingo.
Output: An equivalent set of linear inequalities that is backtrack-free alongo.
Initialize: Partition inequalities intobucket1, . . . ,bucketn, by the ordered
partitioning rule.

For p← n downto 1

for each pair {α,β} ⊆ bucketp , computeγ = elimp(α,β).
If γ has no solutions, return inconsistency.
elseaddγ to the appropriate lower bucket.

return Eo(ϕ)←⋃
i bucketi .

Fig. 9. Fourier elimination algorithm.



R. Dechter / Artificial Intelligence 113 (1999) 41–85 51

bucketx : x − y 6 5, x > 3, t − x 6 10
buckety : y 6 10 ||−y 6 2, t − y 6 15
bucketz:
buckett : || t 6 25

Fig. 10. Bucket elimination for the set of linear inequalities:x − y 6 5, x > 3, t − x 6 10, y 6 10 along the
orderingd = t, z, y, x.

Fig. 11. The search tree of the graph coloring problem.

2.4. Conditioning

When a problem has a high induced-width the bucket-elimination algorithms such as
adaptive-consistency and directional resolution are not applicable due to the algorithm’s
exponential space complexity. Instead, the respective problems can be solved by a simple
conditioningsearch. The basic operation of the conditioning algorithm is assigning or
guessing a value to a single variable, thus creating a smaller and simpler subproblem. If a
solution to the subproblem is not found then a different value should be tried, leading to a
branching search space of partial value assignments that can be traversed by a backtracking
algorithm. Fig. 11 shows the two subproblems generated by assigningE = 1 andE = 0
to the graph coloring of Fig. 1, and the resulting search space. Although a backtracking
algorithm is worst-case exponential in the number of variables, it has the important virtue
of requiring only linear space. Only the currently pursued partial assignment needs to be
maintained.

Intensive research in the last two decades has been done on improving the basic
backtracking search for solving constraint satisfaction problems. For a recent survey
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Condition Elimination

Worst-case O(exp(n)) O(nexp(w∗))
w∗ 6 n

Average better than Same as worst-case
time worst-case

Space O(n) O(nexp(w∗))
w∗ 6 n

Output one solution knowledge
compilation

Fig. 12. Comparing elimination and conditioning.

see [21]. The most well known version of backtracking for propositional satisfiability is
the Davis–Logemann–Loveland (DPLL) algorithm [12], frequently called just (DP).

2.5. Summary

We observe that elimination algorithms are efficient for problems having small induced
width, otherwise their space requirements render them infeasible. Conditioning search
algorithms, while they do not have nice worst-case guarantees, require only linear
space. In addition, their average behavior is frequently much better than their worst-
case bounds. Fig. 12 summarizes the properties of elimination vs. conditioning search.
This complementary behavior calls for algorithms that combine the two approaches.
Indeed, such algorithms are being developed for constraint-satisfaction and propositional
satisfiability [10,15,18,41].

In the following sections we will focus in more detail on deriving bucket elimination
algorithms for processing probabilistic networks. We are presenting a syntactic and
uniform exposition emphasizing these algorithms’ form as a straightforward elimination
algorithm.

3. Preliminaries for probabilistic reasoning

The belief network algorithms we present next have much in common with directional
resolution and adaptive-consistency. They all possess the property of compiling a theory
into a backtrack-free (i.e., greedy) theory, and their complexity is dependent on the induced
width graph parameter. The algorithms are variations on known algorithms, and, for the
most part, are not new in the sense that the basic ideas have existed for some time [3,8,10,
31,34,35,37,46–49,51].

Definition 2 (Graph concepts). A directed graphis a pair,G = {V,E}, whereV =
{X1, . . . ,Xn} is a set of elements andE = {(Xi,Xj )|Xi,Xj ∈ V, i 6= j } is the set of edges.
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If (Xi,Xj ) ∈E, we say thatXi points toXj . For each variableXi , the set of parent nodes
of Xi , denotedpa(Xi), comprises the variables pointing toXi in G, while the set of child
nodes ofXi , denotedch(Xi), comprises the variables thatXi points to. We abbreviate
pa(Xi) by pai andch(Xi) by chi , when no possibility of confusion exists. The family of
Xi , Fi , includesXi and its parent variables. A directed graph isacyclicif it has no directed
cycles. In anundirected graph, the directions of the arcs are ignored:(Xi,Xj ) and(Xj ,Xi)
are identical.

Definition 3 (Belief network). Let X = {X1, . . . ,Xn} be a set of random variables over
multivalued domains,D1, . . . ,Dn, respectively. Abelief networkis a pair(G,P ) where
G = (X,E) is a directed acyclic graph over the variables, andP = {Pi}, wherePi
denotes conditional probability matricesPi = {P(Xi |pai )}. The belief network represents
a probability distribution overX having the product form

P(x1, . . . , xn)=
n∏
i=1

P(xi |xpai ),

where an assignment (X1= x1, . . . ,Xn = xn) is abbreviated tox = (x1, . . . , xn) and where
xS denotes the restriction of a tuplex over a subset of variablesS. An evidence sete is an
instantiated subset of variables.A= a denotes a partial assignment to a subset of variables
A from their respective domains. We use upper case letters for variables and nodes in a
graph and lower case letters for values in a variable’s domain. We also callXi ∪ pai the
scopeof Pi .

Belief networksprovide a formalism for reasoning about partial beliefs under conditions
of uncertainty. As we see, it is defined by a directed acyclic graph over nodes representing
random variables of interest (e.g., the temperature of a device, the gender of a patient,
a feature of an object, the occurrence of an event). The arcs signify the existence of
direct causal influences between the linked variables. The strength of these influences are
quantified by conditional probabilities that are attached to each cluster of parents-child
nodes in the network.

Example 1. The network in Fig. 13(a) can express causal relationship between ‘Season’
(A), ‘The configuration of an automatic sprinkler system,’ (B), ‘The amount of rain
expected’ (C), ‘The wetness of the pavement’ (F ) whether or not the pavement is slippery
(G) and ‘the amount of manual watering necessary’ (D). The belief network is defined by

∀a, b, v, d, f, g, P (g,f, d, c, b, a)

= P(g|f )P (f |c, b)P (d|b, a)P (b|a)P (c|a)P (a).
In this case,pa(F )= {B,C}.

The following queries are defined over belief networks:
(1) belief updating, given a set of observations, computing the posterior probability of

each proposition,
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(a) (b)

Fig. 13. Belief networkP (g,f, d, c, b, a) = P (g|f )P (f |c, b)P (d|b,a)P (b|a)P (c|a)P (a).

(2) finding the most probable explanation(mpe), given some observed variables, finding
a maximum probability assignment to all unobserved variables,

(3) finding the maximum aposteriori hypothesis(map), given some evidence, finding an
assignment to asubsetof the unobserved variables, called hypothesis variables, that
maximizes their probability,

(4) given also a utility function, finding an assignment to a subset of decision variables
thatmaximizes the expected utility(meu) of the problem.

These queries are applicable to tasks such as situation assessment, diagnosis and proba-
bilistic decoding, as well as planning and decision making. They are known to be NP-hard,
nevertheless, they all permit a polynomial propagation algorithm for singly-connected
networks [37]. The two main approaches for extending this propagation algorithm to
multiply-connectednetworks are thecycle-cutsetapproach, (cutset-conditioning), andtree-
clustering [34,37,46]. These methods work well for sparse networks with small cycle-
cutsets or clusters. In subsequent sections bucket-elimination algorithms for each of these
tasks will be presented and their relationship with existing methods will be discussed.

We conclude this section with some notational conventions. Letu be a partial tuple,S
a subset of variables, andXp a variable not inS. We use(uS, xp) to denote the tupleuS
appended by a valuexp of Xp .

Notation 1 (Elimination functions). Given a functionh defined over a subset of variables
S, called its scope and anX ∈ S, the functions(minXh), (maxXh), (meanXh), and(

∑
X h)

are defined overU = S − {X} as follows. For everyU = u, (minXh)(u) =minxh(u, x),
(maxXh)(u)=maxxh(u, x), (

∑
X h)(u)=

∑
x h(u, x). Given a set of functionsh1, . . . , hj

defined over the subsetsS1, . . . , Sj , the product function(
∏
j hj ) and

∑
j hj are defined

over the scopeU =⋃j Sj as follows. For everyU = u, (
∏
j hj )(u) =

∏
j hj (uSj ), and

(
∑
j hj )(u)=

∑
j hj (uSj ).

4. Bucket elimination for belief assessment

Belief updating is the primary inference task over belief networks. The task is to
maintain the probability of singleton propositions once new evidence arrives. For instance,
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if we observe that the pavement is slippery, we want to assess the likelihood that the
sprinkler was on in our example.

4.1. Deriving elim-bel

Following Pearl’s propagation algorithm for singly-connected networks [37], re-
searchers have investigated various approaches to belief updating. We will now present
a step by step derivation of a general variable-elimination algorithm for belief updating.
This process is typical for any derivation of elimination algorithms.

Let X = x be an atomic proposition. The problem is to assess and update the belief in
x1 given evidencee. We wish to computeP(X = x1|e) = αP(X = x, e), whereα is a
normalization constant. We will develop the algorithm using example 1 (Fig. 13). Assume
we have the evidenceg = 1. Consider the variables in the orderd1=A,C,B,F,D,G. By
definition we need to compute

P(a,g = 1)=
∑

c,b,f,d,g=1

P(g|f )P (f |b, c)P (d|a, b)P (c|a)P (b|a)P (a).

We can now apply some simple symbolic manipulation, migrating each conditional
probability table to the left of the summation variables which it does not reference. We
get

= P(a)
∑
c

P (c|a)
∑
b

P (b|a)
∑
f

P (f |b, c)
∑
d

P (d|b, a)
∑
g=1

P(g|f ). (1)

Carrying the computation from right to left (fromG toA), we first compute the rightmost
summation, which generates a function overf , λG(f ) defined by:λG(f )=∑g=1P(g|f )
and place it as far to the left as possible, yielding

= P(a)
∑
c

P (c|a)
∑
b

P (b|a)
∑
f

P (f |b, c)λG(f )
∑
d

P (d|b, a). (2)

Summing next overd (generating a function denotedλD(a, b), defined byλD(a, b) =∑
d P (d|a, b)), we get

= P(a)
∑
c

P (c|a)
∑
b

P (b|a)λD(a, b)
∑
f

P (f |b, c)λG(f ). (3)

Next, summing overf (generatingλF (b, c)=∑f P (f |b, c)λG(f )), we get,

= P(a)
∑
c

P (c|a)
∑
b

P (b|a)λD(a, b)λF (b, c). (4)

Summing overb (generatingλB(a, c)), we get

= P(a)
∑
c

P (c|a)λB(a, c). (5)

Finally, summing overc (generatingλC(a)), we get

P(a)λC(a). (6)
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bucketG = P(g|f ), g = 1
bucketD = P(d|b, a)
bucketF = P(f |b, c)
bucketB = P(b|a)
bucketC = P(c|a)
bucketA = P(a)

Fig. 14. Initial partitioning into buckets usingd1=A,C,B,F,D,G.

The answer to the queryP(a|g = 1) can be computed by normalizing the last prod-
uct.

The bucket-elimination algorithm mimics the above algebraic manipulation by the
familiar organizational device ofbuckets, as follows. First, the conditional probability
tables (CPTs, for short) are partitioned into buckets relative to the order used,d1 =
A,C,B,F,D,G. In bucketG we place all functions mentioningG. From the remaining
CPTs we place all those mentioningD in bucketD, and so on. The partitioning rule shown
earlier for constraint processing andcnf theories can be alternatively stated as follows. In
Xi ’s bucket we put all functions that mentionXi but do not mention any variable having
a higher index. The resulting initial partitioning for our example is given in Fig. 14. Note
that the observed variables are also placed in their corresponding bucket.

This initialization step corresponds to deriving the expression in Eq. (1). Now we process
the buckets from last to first (or top to bottom in the figures), implementing the right to left
computation of Eq. (1). Processing a bucket amounts to eliminating the variable in the
bucket from subsequent computation.BucketG is processed first. To eliminateG we sum
over all values ofg. Since in this case we have an observed valueg = 1, the summation
is over a singleton value. The functionλG(f )=∑g=1P(g|f ), is computed and placed in
bucketF (this corresponds to deriving Eq. (2) from Eq. (1)). New functions are placed in
lower buckets using the same placement rule.

BucketD is processed next. We sum-outD getting λD(b, a) =∑d P (d|b, a), which
is placed inbucketB , (which corresponds to deriving Eq. (3) from Eq. (2)). The next
variable isF . BucketF contains two functionsP(f |b, c) andλG(f ), and follows Eq. (4)
we generate the functionλF (b, c)=∑f P (f |b, c)λG(f ), which is placed inbucketB (this
corresponds to deriving Eq. (4) from Eq. (3)). In processing the nextbucketB , the function
λB(a, c) =∑b(P (b|a)λD(b, a)λF (b, c)) is computed and placed inbucketC (deriving
Eq. (5) from Eq. (4)). In processing the nextbucketC , λC(a) =∑c∈C P(c|a)λB(a, c) is
computed (which corresponds to deriving Eq. (6) from Eq. (5)). Finally, the belief ina

can be computed inbucketA, P(a|g = 1)= αP(a)λC(a). Fig. 15 summarizes the flow of
computation. Throughout this process we recorded two-dimensional functions at the most;
the complexity of the algorithm using orderingd1 is (roughly) time and space quadratic in
the domain sizes.

What will occur if we use a different variable ordering? For example, let’s apply the
algorithm usingd2 = A,F,D,C,B,G. Applying algebraic manipulation from right to
left alongd2 yields the following sequence of derivations:

P(a,g = 1)= P(a)
∑
f

∑
d

∑
c

P (c|a)
∑
b

P (b|a)P (d|a, b)P (f |b, c)
∑
g=1

P(g|f )
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Fig. 15. Bucket elimination along orderingd1 =A,C,B,F,D,G.

(a) (b)

Fig. 16. The bucket’s output when processing alongd2=A,F,D,C,B,G.

= P(a)
∑
f

λG(f )
∑
d

∑
c

P (c|a)
∑
b

P (b|a)P (d|a, b)P (f |b, c)

= P(a)
∑
f

λG(f )
∑
d

∑
c

P (c|a)λB(a, d, c, f )

= P(a)
∑
f

λg(f )
∑
d

λC(a, d,f )

= P(a)
∑
f

λG(f )λD(a,f )

= P(a)λF (a).
The bucket elimination process for orderingd2 is summarized in Fig. 16(a). Each bucket

contains the initialCPTs denoted byP s, and the functions generated throughout the
process, denoted byλs.
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We conclude with a general derivation of the bucket elimination algorithm, calledelim-
bel. Consider an ordering of the variablesX = (X1, . . . ,Xn) and assume we seekP(x1|e).
Using the notation̄xi = (x1, . . . , xi) andx̄ji = (xi, xi+1, . . . , xj ), whereFi is the family of
variableXi , we want to compute:

P(x1, e)=
∑
x=x̄n2

P(x̄n, e)=
∑
x̄
(n−1)
2

∑
xn

∏
i

P (xi , e|xpai ).

SeparatingXn from the rest of the variables results in:∑
x=x̄(n−1)

2

∏
Xi∈X−Fn

P (xi , e|xpai )
∑
xn

P (xn, e|xpan)
∏

Xi∈chn

P (xi , e|xpai )

=
∑

x=x̄(n−1)
2

∏
Xi∈X−Fn

P (xi , e|xpai )λn(xUn),

where

λn(xUn)=
∑
xn

P (xn, e|xpan)
∏

Xi∈chn

P (xi , e|xpai ) (7)

andUn denotes the variables appearing withXn in a probability component (excluding
Xn). The process continues recursively withXn−1.

Thus, the computation performed in bucketXn is captured by Eq. (7). Given ordering
d =X1, . . . ,Xn, where the queried variable appears first, theCPT s are partitioned using
the rule described earlier. Then buckets are processed from last to first. To process each
bucket, all the bucket’s functions, denotedλ1, . . . , λj and defined over subsetsS1, . . . , Sj
are multiplied. Then the bucket’s variable is eliminated by summation. The computed
function isλp :Up→ R, λp =∑Xp

∏j

i=1λi , whereUp =⋃i Si −Xp . This function is
placed in the bucket of its largest-index variable inUp. Once all the buckets are processed,
the answer is available in the first bucket. Algorithm elim-bel is described in Fig. 17. We
conclude:

Theorem 3. Algorithm elim-bel computes the posterior beliefP(x1|e) for any given
ordering of the variables which is initiated byX1.

The peeling algorithm for genetic trees [8], Zhang and Poole’s algorithm [52], as well
as the SPI algorithm by D’Ambrosio et al. [10] are all variations of elim-bel. Decimation
algorithms in statistical physics are also related and were applied to Boltzmann trees [44].

4.2. Complexity

We see that although elim-bel can be applied using any ordering, its complexity varies
considerably. Using orderingd1 we recorded functions on pairs of variables only, while
usingd2 we had to record functions on four variables (seeBucketC in Fig. 16(a)). The
arity of the function recorded in a bucket equals the number of variables appearing in
that processed bucket, excluding the bucket’s variable. Since computing and recording a
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Algorithm elim-bel
Input: A belief networkBN= {P1, . . . ,Pn}; an ordering of the variables,
d =X1, . . . ,Xn; evidencee.
Output: The beliefP(x1|e).
1. Initialize: Generate an ordered partition of the conditional probability
matrices,bucket1, . . . ,bucketn, wherebucketi contains all matrices whose
highest variable isXi . Put each observed variable in its bucket. LetS1, . . . , Sj
be the subset of variables in the processed bucket on which matrices (new or
old) are defined.
2. Backward: Forp← n downto 1, do
for all the matricesλ1, λ2, . . . , λj in bucketp , do
• If (observed variable)Xp = xp appears inbucketp, assignXp = xp to

eachλi and then put each resulting function in appropriate bucket.

• else,Up←⋃j
i=1Si −{Xp}. Generateλp =∑Xp

∏j
i=1λi and addλp

to the bucket of the largest-index variable inUp.
3. Return: Bel(x1) = α

∏
i λi(x1)(where theλi are in bucket1, α is a

normalizing constant).

Fig. 17. Algorithmelim-bel.

(a) (b) (c)

Fig. 18. Two orderings of the moral graph of our example problem.

function of arityr is time and space exponential inr we conclude that the complexity of
the algorithm is exponential in the size (number of variables) of the largest bucket.

Fortunately, as was observed earlier for adaptive-consistency and directional-resolution,
the bucket sizes can be easily predicted from an order associated with the elimination
process. Consider themoral graphof a given belief network. This graph has a node for
each variable and any two variables appearing in the sameCPT are connected. The moral
graph of the network in Fig. 13(a) is given in Fig. 13(b). Let us take this moral graph
and impose an ordering on its nodes. Figs. 18(a) and (b) depict the ordered moral graph
using the two orderingsd1 = A,C,B,F,D,G andd2 = A,F,D,C,B,G. The ordering
is pictured with the first variable at the bottom and the last variable at the top.

Thewidthof each variable in the ordered graph is the number of itsearlier neighbors in
the ordering. Thus, the width ofG in the ordered graph alongd1 is 1 and the width ofF is
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2. Notice now that when using orderingd1, the number of variables in the initial buckets of
G andF , are 1 and 2, respectively. Indeed, the number of variables mentioned in a bucket
in their initial partitioning (excluding the bucket’s variable) is always identical to the width
of that node in the ordered moral graph.

During processing we wish to maintain the correspondence that any two nodes in the
graph are connected if there is a function (new or old) defined on both. Since, during
processing, a function is recorded on all the variables appearing in a bucket of a variable
(which is the set of earlier neighbors of the variable in the ordered graph) these nodes
should be connected. If we perform this graph operation recursively from last node to first,
(for each node connecting its earliest neighbors) we get thethe induced graph. The width
of each node in this induced graph is identical to the bucket’s sizes generated during the
elimination process (Fig. 16(b)).

Example 2. The induced moral graph of Fig. 13(b), relative to orderingd1=A,C,B,F,
D,G is depicted in Fig. 18(a). In this case, the ordered graph and its induced ordered
graph are identical, since all the earlier neighbors of each node are already connected. The
maximum induced width is 2. In this case, the maximum arity of functions recorded by the
elimination algorithms is 2. Ford2 = A,F,D,C,B,G the induced graph is depicted in
Fig. 18(c). The width ofC is initially 2 (see Fig. 18(b)) while its induced width is 3. The
maximum induced width over all variables ford2 is 4, and so is the recorded function’s
dimensionality.

A formal definition of all these graph concepts is given next, partially reiterating con-
cepts defined in Section 2.

Definition 4. An ordered graphis a pair (G,d) whereG is an undirected graph and
d = X1, . . . ,Xn is an ordering of the nodes. Thewidth of a nodein an ordered graph
is the number of the node’s neighbors that precede it in the ordering. Thewidth of an
orderingd , denotedw(d), is the maximum width over all nodes. Theinduced width of an
ordered graph,w∗(d), is the width of the ordered graph obtained by processing the nodes
from last to first. When nodeX is processed, all its preceding neighbors are connected.
The resulting graph is called Induced-graph or triangulated graph. Theinduced width of a
graph,w∗, is the minimal induced width over all its orderings. The induced graph suggests
a hyper-tree embedding of the original graph whose tree-width equals the induced-width.
Thus, thetree-widthof a graph is the minimal induced width plus one [2].

As noted before, the established connection between buckets’ sizes and induced width
motivates finding an ordering with a smallest induced width, a task known to be hard [2].
However, useful greedy heuristics as well as approximation algorithms are available [4,16,
50].

In summary, the complexity of algorithm elim-bel is dominated by the time and space
needed to process a bucket. Recording a function on all the bucket’s variables is time and
space exponential in the number of variables mentioned in the bucket. The induced width
bounds the arity of the functions recorded: variables appearing in a bucket coincide with
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the earlier neighbors of the corresponding node in the ordered induced moral graph. In
conclusion,

Theorem 4. Given an orderingd the complexity of elim-bel is(time and space)
exponential in the induced widthw∗(d) of the network’s ordered moral graph.

4.3. Handling observations

Evidence should be handled in a special way during the processing of buckets.
Continuing with our example using elimination orderd1, suppose we wish to compute
the belief ina, having observedb = 1. This observation is relevant only when processing
bucketB . When the algorithm arrives at that bucket, the bucket contains the three functions
P(b|a), λD(b, a), andλF (b, c), as well as the observationb = 1 (see Fig. 15).

The processing rule dictates computingλB(a, c) = P(b = 1|a)λD(b = 1, a)λF (b =
1, c). Namely, generating and recording a two-dimensioned function. It would be more
effective, however, to apply the assignmentb = 1 to each function in the bucket separately
then put the individual resulting functions into lower buckets. In other words, we can
generateP(b = 1|a) andλD(b = 1, a), each of which will be placed in bucketA, and
λF (b = 1, c), which will be placed in bucketC. By doing so, we avoid increasing the
dimensionality of the recorded functions. Processing buckets containing observations in
this manner automatically exploits the cutset conditioning effect [37]. Therefore, the
algorithm has a special rule for processing buckets with observations. The observed value
is assigned to each function in the bucket, and each resulting function is individually moved
to a lower bucket.

Note that if bucketB had been last in ordering, as ind2, the virtue of condition-
ing on B could have been exploited earlier. During its processing,bucketB contains
P(b|a),P (d|b, a),P (f |c, b), andb = 1 (see Fig. 16(a)). The special rule for processing
buckets holding observations will placeP(b = 1|a) in bucketA, P(d|b = 1, a) in bucketD ,
andP(f |c, b = 1) in bucketF . In subsequent processing only one-dimensional functions
will be recorded. Thus, the presence of observations reduces complexity: Buckets of ob-
served variables are processed in linear time, their recorded functions do not create func-
tions on new subsets of variables, and therefore for observed variables no new arcs should
be added when computing the induced graph.

To capture this refinement we use the notion ofadjusted induced graphwhich is defined
recursively. Given an ordering and given a set of observed nodes, the adjusted induced
graph is generated (processing the ordered graph from last to first) by connecting only
the earlier neighbors of unobserved nodes. Theadjusted induced widthis the width of the
adjusted induced graph, disregarding observed nodes. For example, in Figs. 19(a) and (b)
we show the ordered moral graph and the induced ordered moral graph of Fig. 13. In
Fig. 19(c) the arcs connected to the observed nodes are marked by broken lines, resulting
in the adjusted induced-graph given in Fig. (d). In summary,

Theorem 5. Given a belief network havingn variables, algorithm elim-bel when using
orderingd and evidencee, is (time and space) exponential in the adjusted induced width
w∗(d, e) of the network’s ordered moral graph.
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(a) (b) (c) (d)

Fig. 19. Adjusted induced graph relative to observingB.

4.4. Relevant subnetworks

Here we will deviate from our emphasis on uniformity and focus instead on an
improvement of the algorithm suitable for belief-updating only. The belief-updating task
has special semantics which allows restricting the computation to relevant portions of the
belief network. These restrictions are already available in the literature in the context of
the existing algorithms [30,45].

Since summation over all values of a probability function is 1, the recorded functions of
some buckets will degenerate to the constant 1. If we can predict these cases in advance,
we can avoid needless computation by skipping some buckets. If we use atopological
orderingof the belief network’s acyclic graph (where parents precede their child nodes),
and assume that the queried variable initiates the ordering, we can identify skippable
buckets dynamically during the elimination process.

Proposition 6. Given a belief network and a topological orderingX1, . . . ,Xn, that is
initiated by a query variableX1, algorithm elim-bel, computingP(x1|e), can skip a bucket
if during processing the bucket contains no evidence variable and no newly computed
function.

Proof. If topological ordering is used, each bucket of a variableX contains initially at
most one function,P(X|pa(X)). Clearly, if there is no evidence nor new functions in the
bucket summation,

∑
x P (x|pa(X)) will yield the constant 1. 2

Example 3. Consider again the belief network whose acyclic graph is given in Fig. 13(a)
and the orderingd1= A,C,B,F,D,G. Assume we want to update the belief in variable
A given evidence onF . Obviously the buckets ofG andD can be skipped and processing
should start withbucketF . Once bucketF is processed, the remaining buckets are not
skippable.

Alternatively, the relevant portion of the network can be precomputed by using a
recursive marking procedure applied to the ordered moral graph (see also [52]). Since
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topological ordering initiated by the query variables are not always feasible (when query
nodes are not root nodes) we will define a marking scheme applicable to an arbitrary
ordering.

Definition 5. Given an acyclic graph and an orderingo that starts with the queried variable,
and given evidencee, the marking process proceeds as follows.
• Initial marking: an evidence node is marked and any node having a child appearing

earlier ino (namely violate the “parent preceding child rule”), is marked.
• Secondary marking: Processing the nodes from last to first ino, if a nodeX is marked,

mark all its earlier neighbors.

The marked belief subnetwork obtained by deleting allunmarkednodes can now be
processed by elim-bel to answer the belief-updating query.

Theorem 7. Let R = (G,P ) be a belief network,o = X1, . . . ,Xn and e set of evidence.
ThenP(x1|e) can be obtained by applying elim-bel over the marked network relative to
evidencee and orderingo, denotedM(R|e, o).

Proof. We will show that if elim-bel was applied to the original network along orderingo,
then any unmarked node is irrelevant, namely processing its bucket yields the constant 1.
Let R = (G,P ) be a belief network processed alongo by elim-bel, assuming evidencee.
Assume the claim is incorrect and letX be the first unmarked node (going from last to first
alongo) such that when elim-bel processesR the bucket ofX doesnot yield the constant
1, and is therefore relevant. SinceX is unmarked, it means that it is:

(1) not an evidence, and
(2) X does not have an earlier child relative too, and
(3) X does not have a later neighbor which is marked.

SinceX is not evidence, and since all its child nodes appear later ino, then, in the initial
marking it cannot be marked and in the initial bucket partitioning its bucket includes its
family P(X|pa(X)) only. Since the bucket is relevant, it must be the case that during the
processing of prior buckets (of variables appearing later ino), a computed function is
inserted to bucketX. LetY be the variable during whose processing a function was placed
in the bucket ofX. This implies thatX is connected toY . SinceY is clearly relevant and is
therefore marked (we assumedX was the first variable violating the claim, andY appears
later thanX), X must also be marked, yielding a contradiction.2
Corollary 1. The complexity of algorithm elim-bel along orderingo given evidencee is
exponential in the adjusted induced width of the marked ordered moral subgraph.

5. An elimination algorithm for mpe

In this section we focus on finding the most probable explanation. This task appears
in applications such as diagnosis and design as well as in probabilistic decoding. For
example, given data on clinical findings, it may suggest the most likely disease a patient is
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suffering from. In decoding, the task is to identify the most likely input message which was
transmitted over a noisy channel, given the observed output. Although the relevant task here
is finding the most likely assignment over asubsetof hypothesis variables (known as map
and analyzed in the next section), the mpe is close enough and is often used in applications.
Researchers have investigated various approaches to finding thempein a belief network
[9,37–39]. Recent proposals include best first-search algorithms [49] and algorithms based
on linear programming [42].

The problem is to findx0 such that

P(x0)=max
x
P (x, e)=max

x

∏
i

P (xi , e|xpai )

where x = (x1, . . . , xn) and e is a set of observations, on subsets of the variables.
Computing for a given orderingX1, . . . ,Xn, can be accomplished as previously shown
by performing the maximization operation along the ordering from right to left, while
migrating to the left all components that do not mention the maximizing variable. We get,

M =max
x̄n
P (x̄n, e)= max

x̄(n−1)
max
xn

∏
i

P (xi , e|xpai )

=max
x̄n−1

∏
Xi∈X−Fn

P (xi , e|xpai )max
xn
P (xn, e|xpan)

∏
Xi∈chn

P (xi , e|xpai )

= max
x=x̄n−1

∏
Xi∈X−Fn

P (xi , e|xpai )hn(xUn),

where

hn(xUn)=max
xn
P (xn, e|xpan)

∏
Xi∈chn

P (xi , e|xpai )

andUn are the variables appearing in components defined overXn. Clearly, the algebraic
manipulation of the above expressions is the same as the algebraic manipulation for belief
assessment where summation is replaced by maximization. Consequently, the bucket-
elimination procedureelim-mpeis identical to elim-bel except for this change. Given
orderingX1, . . . ,Xn, the conditional probability tables are partitioned as before. To
process each bucket, we multiply all the bucket’s matrices, which in this case are denoted
h1, . . . , hj and defined over subsetsS1, . . . , Sj , and then eliminate the bucket’s variable
by maximization as dictated by the algebraic derivation previously noted. The computed
function in this case ishp :Up → R, hp = maxXp

∏j

i=1hi , whereUp =⋃i Si − Xp .
The function obtained by processing a bucket is placed in an earlier bucket of its largest-
index variable inUp. In addition, a functionxop(u) = argmaxXphp(u), which relates an
optimizing value ofXp with each tuple ofUp, may be recorded and placed in the bucket
of Xp . 2 Constant functions can be placed either in the preceding bucket or directly in the
first bucket.3

This procedure continues recursively, processing the bucket of the next variable,
proceeding from the last to the first variable. Once all buckets are processed, thempevalue

2 This step is optional; the maximizing values can be recomputed from the information in each bucket.
3 Those are necessary to determine the exact mpe value.
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Algorithm elim-mpe
Input: A belief networkBN = {P1, . . . ,Pn}; an ordering of the variables,d;
observationse.
Output: The most probable assignment.
1. Initialize: Generate an ordered partition of the conditional probability
matrices, bucket1, . . . ,bucketn, where bucketi contains all matrices whose
highest variable isXi . Put each observed variable in its bucket. LetS1, . . . , Sj
be the subset of variables in the processed bucket on which matrices (new or old)
are defined.
2. Backward: Forp← n downto 1, do
for all the matricesh1, h2, . . . , hj in bucketp , do
• If (observed variable)bucketp containsXp = xp , assignXp = xp to each
hi and put each in appropriate bucket.

• else,Up←⋃j
i=1Si −{Xp}. Generate functionshp =maxXp

∏j
i=1hi and

xop = argmaxXphp. Add hp to bucket of largest-index variable inUp .
3. Forward: The mpe value is obtained by the product inbucket1.
An mpe tuple is obtained by assigning values in the orderingd

consulting recorded functions in each bucket as follows.
Given the assignmentx = (x1, . . . , xi−1) choosexi = xoi (x) (xo

i
is in bucketi ),

or Choosexi = argmaxXi
∏
{hj∈ bucketi | x=(x1,...,xi−1)} hj

Fig. 20. Algorithmelim-mpe.

can be extracted as the maximizing product of functions in the first bucket. When this
backwardsphase terminates, the algorithm initiates aforwards phaseto compute anmpe
tuple by assigning values along the ordering fromX1 to Xn, consulting the information
recorded in each bucket. Specifically, once the partial assignmentx = (x1, . . . , xi−1)

is selected, the value ofXi appended to this tuple isxoi (x), wherexo is the function
recorded in the backward phase. Alternatively, if the functionsxo were not recorded in
the backwards phase, the valuexi of Xi is selected to maximize the product inbucketi
given the partial assignmentx. This algorithm is presented in Fig. 20. Observed variables
are handled as in elim-bel.

The notion of irrelevant bucket is not applicable here.

Example 4. Consider again the belief network in Fig. 13. Given the orderingd =
A,C,B,F,D,G and the evidenceg = 1, process variables from last to first after
partitioning the conditional probability matrices into buckets, such thatbucketG =
{P(g|f ), g = 1}, bucketD = {P(d|b, a)}, bucketF = {P(f |b, c)}, bucketB = {P(b|a)},
bucketC = {P(c|a)}, andbucketA = {P(a)}. To processG, assigng = 1, gethG(f ) =
P(g = 1|f ), and place the result inbucketF . The functionGo(f ) = argmaxhG(f ) may
be computed and placed inbucketG as well. ProcessbucketD by computinghD(b, a) =
maxd P (d|b, a) and put the result inbucketB . Bucket F , next to be processed, now
contains two matrices:P(f |b, c) andhG(f ). ComputehF (b, c)=maxf p(f |b, c)hG(f ),
and place the resulting function inbucketB . To eliminateB, we record the function
hB(a, c) = maxb P (b|a)hD(b, a)hF (b, c) and place it inbucketC . To eliminateC, we
computehC(a) = maxc P (c|a)hB(a, c) and place it inbucketA. Finally, thempevalue
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given inbucketA,M =maxa P (a)hC(a), is determined. Next the mpe tuple is generated by
going forward through the buckets. First, the valuea0 satisfyinga0= argmaxaP (a)hC(a)
is selected. Subsequently the value ofC, c0 = argmaxcP (c|a0)hB(a

0, c) is determined.
Next b0 = argmaxbP (b|a0)hD(b, a

0)hF (b, c
0) is selected, and so on. The schematic

computation is summarized by Fig. 15 whereλ is replaced byh.

The backward process can be viewed as a compilation phase in which we compile
information regarding the most probable extension of partial tuples to variables higher
in the ordering (see also Section 7.2).

As in the case of belief updating, the complexity of elim-mpe is bounded exponentially
in the dimension of the recorded functions, and those functions are bounded by the induced
widthw∗(d, e) of the ordered moral graph. In summary,

Theorem 8. Algorithm elim-mpe is complete for the mpe task. Its complexity(time and
space) is O(nexp(w∗(d, e))), wheren is the number of variables andw∗(d, e) is the
adjusted induced width of the ordered moral graph.

6. An elimination algorithm for MAP

The map task is a generalization of both mpe and belief assessment. It asks for the
maximal belief associated with asubset of unobserved hypothesis variablesand is likewise
widely applicable to diagnosis tasks. Since the map task by its definition is a mixture of
the previous two tasks, in its corresponding algorithm some of the variables are eliminated
by summation, others by maximization.

Given a belief network, a subset of hypothesized variablesA = {A1, . . . ,Ak}, and
some evidencee, the problem is to find an assignment to the hypothesized variables that
maximizes their probability given the evidence, namely to find

ao = argmax
a1,...,ak

P (a1, . . . , ak, e).

We wish to compute maxāk P (a1, . . . , ak, e) = max̄ak
∑
x̄nk+1

∏n
i=1P(xi, e|xpai ) where

x = (a1, . . . , ak, xk+1, . . . , xn). Algorithm elim-mapin Fig. 21 considers only orderings
in which the hypothesized variables start the ordering. The algorithm has a backward
phase and a forward phase, but the forward phase is relative to the hypothesized variables
only. Maximization and summation may be somewhat interleaved to allow more effective
orderings, however for simplicity of exposition we do not incorporate this option here.
Note that the “relevant” graph for this task can be restricted by marking the summation
variables as was done for belief updating.

Theorem 9. Algorithm elim-map is complete for the map task. Its complexity is
O(nexp(w∗(d, e)), wheren is the number of variables in the relevant marked graph and
w∗(d, e) is the adjusted induced width of its marked moral graph.
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Algorithm elim-map
Input: A belief network BN = {P1, . . . ,Pn}; a subset of variablesA =
{A1, . . . ,Ak}; an ordering of the variables,d, in which theA’s are first in the order-
ing; observationse.
Output: A most probable assignmentA= a.
1. Initialize: Generate an ordered partition of the conditional probability matrices,
bucket1, . . . ,bucketn, wherebucketi contains all matrices whose highest variable is
Xi .
2. Backwards: Forp← n downto 1, do
for all the matricesβ1, β2, . . . , βj in bucketp, do
• If (observed variable)bucketp contains the observationXp = xp , assign
Xp = xp to eachβi and put each in appropriate bucket.

• else, Up←⋃j
i=1Si − {Xp}. If Xp not inA, thenβp =∑Xp

∏j
i=1βi ; else,

Xp ∈ A, andβp = maxXp
∏j
i=1βi anda0 = argmaxXpβp . Add βp to the

bucket of the largest-index variable inUp .
3. Forward: Assign values, in the orderingd = A1, . . . ,Ak , using the information
recorded in each bucket.

Fig. 21. Algorithmelim-map.

7. An elimination algorithm for MEU

The last and somewhat more complicated task is finding the maximum expected
utility. Given a belief network, evidencee, a real-valued utility functionu(x) additively
decomposable relative to functionsf1, . . . , fj defined overQ = {Q1, . . . ,Qj }, Qi ⊆
X, such thatu(x) = ∑Qj∈Q fj (xQj ), and given a subset of decision variablesD =
{D1, . . . ,Dk} that are assumed to be root nodes,4 the meu task is to find a set of
decisionsdo = (do1, . . . , d

o
k) (di ∈Di ), that maximizes the expected utility. We assume

that variablesnotappearing inD are indexedXk+1, . . . ,Xn. We want to compute

E = max
d1,...,dk

∑
xk+1,...,xn

n∏
i=1

P(xi, e|xpai , d1, . . . , dk)u(x),

and

d0= argmax
D

E.

As in previous tasks, we will begin by identifying the computation associated withXn
from which we will extract the computation in each bucket. We denote an assignment to
the decision variables byd = (d1, . . . , dk) and, as before,̄xjk = (xk, . . . , xj ). Algebraic
manipulation yields

4 We make this assumption for simplicity of presentation. The general case can be easily handled as is done for
general influence diagrams.
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E =max
d

∑
x̄n−1
k+1

∑
xn

n∏
i=1

P(xi, e|xpai , d)
∑
Qj∈Q

fj (xQj ).

We can now separate the components in the utility functions into those mentioning
Xn, denoted by the index settn, and those not mentioningXn, labeled with indexes
ln = {1, . . . , n} − tn. Accordingly we produce

E =max
d

∑
x̄
(n−1)
k+1

∑
xn

n∏
i=1

P(xi, e|xpai , d)

(∑
j∈ln

fj (xQj )+
∑
j∈tn

fj (xQj )

)
,

E =max
d

[ ∑
x̄
(n−1)
k+1

∑
xn

n∏
i=1

P(xi, e|xpai , d)
∑
j∈ln

fj (xQj )

+
∑
x̄
(n−1)
k+1

∑
xn

n∏
i=1

P(xi, e|xpai , d)
∑
j∈tn

fj (xQj )

]
.

By migrating to the left ofXn all of the elements that are not a function ofXn, we get

max
d

[∑
x̄n−1
k+1

∏
Xi∈X−Fn

P (xi , e|xpai , d)

(∑
j∈ln

fj (xQj )

)∑
xn

∏
Xi∈Fn

P (xi , e|xpai , d)

+
∑
x̄n−1
k+1

∏
Xi∈X−Fn

P (xi, e|xpai , d)
∑
xn

∏
Xi∈Fn

P (xi, e|xpai , d)
∑
j∈tn

fj (xQj )

]
. (8)

We denote byUn the subset of variables that appear withXn in a probabilistic component,
excludingXn itself, and byWn the union of variables that appear in probabilistic and
utility components withXn, excludingXn itself. We defineλn overUn as (x is a tuple over
Un ∪Xn)

λn(xUn |d)=
∑
xn

∏
Xi∈Fn

P (xi , e|xpai , d). (9)

We defineθn overWn as

θn(xWn |d)=
∑
xn

∏
Xi∈Fn

P (xi, e|xpai , d)
∑
j∈tn

fj (xQj ). (10)

After substituting Eqs. (9) and (10) into Eq. (8), we get

E =max
d

∑
x̄n−1
k+1

∏
Xi∈X−Fn

P (xi , e|xpai , d)λn(xUn |d)
[∑
j∈ln

fj (xQj )+
θn(xWn |d)
λn(xUn |d)

]
. (11)

The functionsθn andλn compute the effect of eliminatingXn. The result (Eq. (11)) is
an expression which does not includeXn, where the product has one more matrixλn
and the utility components have one more elementγn = θn/λn. Applying such algebraic
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Algorithm elim-meu
Input: A belief network BN = {P1, . . . ,Pn}; a subset of decision variables
D1, . . . ,Dk that are root nodes; a utility function overX, u(x) =∑j fj (xQj );
an ordering of the variables,o, in which theD’s appear first; observationse.
Output: An assignmentd1, . . . , dk that maximizes the expected utility.
1. Initialize: Partition components into buckets, wherebucketi contains all matrices
whose highest variable isXi . Call probability matricesλ1, . . . , λj and utility
matricesθ1, . . . , θl . Let S1, . . . , Sj be the scopes of probability functions and
Q1, . . . ,Ql be the scopes of the utility functions.
2. Backward: Forp← n downtok+ 1, do
for all matricesλ1, . . . , λj , θ1, . . . , θl in bucketp, do
• If (observed variable)bucketp contains the observationXp = xp , then assign
Xp = xp to eachλi , θi and puts each resulting matrix in appropriate bucket.

• else, Up ← ⋃j
i=1Si − {Xp} andWp ← Up ∪ (⋃l

i=1Qi − {Xp}). If Xp

is marked thenλp =∑Xp

∏
i λi and θp = (1/λp)∑Xp

∏j
i=1λi

∑l
j=1 θj ;

else,θp =∑Xp

∏j
i=1λi

∑l
j=1 θj . Addθp andλp to the bucket of the largest-

index variable inWp andUp , respectively.
3. Forward: Assign values in the orderingo =D1, . . . ,Dk using the information
recorded in each bucket of the decision variables.

Fig. 22. Algorithmelim-meu.

manipulation to the rest of the variables in order, yields the elimination algorithmelim-
meuin Fig. 22. Each bucket contains utility components,θi , and probability components,
λi . Variables can be marked as relevant or irrelevant as in the elim-bel case. If a bucket
is irrelevantλn is a constant. Otherwise, during processing, the algorithm generates theλi
of a bucket by multiplying all its probability components and summing overXi . Theθi
of bucketXi is computed as the average utility of the bucket; if the bucket is marked, the
average utility of the bucket is normalized by itsλ. The resultingθi andλi are placed into
the appropriate buckets.

Finally, the maximization over the decision variables can now be accomplished using
maximization as the elimination operator. We do not include this step explicitly; given our
simplifying assumption that all decisions are root nodes, this step is straightforward.

Example 5. Consider the network of Fig. 13 augmented by utility components and two de-
cision variablesD1 andD2. Assume that there are utility functionsu(f,g), u(b, c), u(d)
such that the utility of a value assignment is the sumu(f,g)+u(b, c)+u(d). The decision
variablesD1 andD2 have two options. DecisionD1 affects the outcome atG as speci-
fied byP(g|f,D1), while D2 affects variableA as specified byP(a|D2). The modified
belief network is shown in Fig. 23. The bucket’s partitioning and the schematic computa-
tion of this decision problem is given in Fig. 24. Initially,bucketG containsP(g|f,D1),
u(f,g) andg = 1. Since the bucket contains an observation, we generateλG(f,D1) =
P(g = 1|f,D1) andθG(f )= u(f,g = 1) and put both in bucketF . Next, bucketD, which
contains onlyP(d|b, a) andu(d), is processed. Since this bucket is notmarked, it will not
create a probabilistic term. The utility termθD(b, a)=∑d P (d|b, a)u(d) is created and
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Fig. 23. An influence diagram.

bucketG: P(f |g,D1), g = 1, u(f,g)
bucketD : P(d|b, a), u(d)
bucketF : P(f |b, c) || λG(f,D1), θG(f )

bucketB : P(b|a), u(b, c) || λF (b, c,D1), θD(b, a), θF (b, c,D1)

bucketC : P(c|a) || λB(a, c,D1), θB(a, c,D1)

bucketA: P(a|D2) || λC(a,D1), θC(a,D1)

bucketD1: || λA(D1,D2), θA(D1,D2)

bucketD2: || θD1(D2)

Fig. 24. A schematic execution of elim-meu.

placed in bucketB. Subsequently, when bucketF is processed, it generates the probabilis-
tic component

λF (b, c,D1)=
∑
f

P (f |b, c)λG(f,D1)

and the utility component

θF (b, c,D1)= 1

λF (b, c,D1)

∑
f

P (f |b, c)λG(f,D1)θG(f ).

Both new components are placed in bucketB. WhenbucketB is processed next, it creates
the componentλB(a, c,D1)=∑b P (b|a)λF (b, c,D1) and

θB(a, c,D1)= 1

λB(a, c,D1)

∑
b

P (b|a)λF (b, c,D1)

× [u(b, c)+ θD(b, a)+ θG(b, c,D1)
]
.

ProcessingbucketC generates

λC(a,D1)=
∑
c

P (c|a)λB(a, c,D1)
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and

θC(a,D1)= 1

λC(a,D1)

∑
c

P (c|a)λB(a, c,D1)θB(a, c,D1)

while placing the two new components inbucketA. ProcessingbucketA yields:

λA(D1,D2)=
∑
a

P (a|D2)λC(a,D1)

and

θA(D1,D2)= 1

λA(D1,D2)

∑
a

P (a|D2)λC(a,D1)θC(a,D1),

both placed inbucketD1. BucketD1 is processed next by maximization generatingθD1D2=
maxD1 θA(D1,D2) which is placed inbucketD2. Now the decision ofD2 that maximizes
θD1(D2), is selected. Subsequently, the decision that maximizesθA(D1,D2) tabulated in
bucketD1, is selected.

As before, the algorithm’s performance can be bounded as a function of the structure
of its augmented graph. The augmented graph is the moral graph augmented with arcs
connecting any two variables appearing in the same utility componentfi , for everyi.

Theorem 10. Algorithm elim-meu computes the meu of a belief network augmented with
utility components(i.e., an influence diagram) in O(nexp(w∗(d, e)) time and space, where
w∗(d, e) is the adjusted induced width alongd of the augmented moral graph.

Tatman and Schachter [51] have published an algorithm for the general influence
diagram that is a variation of elim-meu. Kjaerulff’s algorithm [32] can be viewed as a
variation of elim-meu tailored to dynamic probabilistic networks.

8. Cost networks and dynamic programming

As we have mentioned at the outset, bucket-elimination algorithms are variations of
dynamic programming. Here we make the connection explicit, observing that elim-mpe is
dynamic programming with some simple transformation.

That elim-mpe is dynamic programming becomes apparent once we transform the mpe’s
cost function, which has a product function, into the traditional additive function using the
log function. For example,

P(a, b, c, d, f, g)= P(a)P (b|a)P (c|a)P (f |b, c)P (d|a, b)P (g|f )
becomes

C(a, b, c, d, e)=− logP =C(a)+C(b, a)+C(c, a)+C(f,b, c)
+C(d, a, b)+C(g,f )

where eachCi =− logPi . Indeed, the general dynamic programming algorithm is defined
over cost networks. A cost networkis a triplet (X,D,C), whereX = {X1, . . . ,Xn} are
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Algorithm elim-opt
Input: A cost networkC = {C1, . . . ,Cl}; orderingo; assignmente.
Output: The minimal cost assignment.
1. Initialize: Partition the cost components into buckets.
2. Process bucketsfrom p← n downto 1
For costsh1, h2, . . . , hj in bucketp , do:
• If (observed variable)Xp = xp , assignXp = xp to eachhi and put in

buckets.
• Else,(sum and minimize)
hp =minXp

∑j
i=1hi . Add hp to its bucket.

3. Forward: Assign minimizing values in orderingo, consulting functions in each
bucket.

Fig. 25. Dynamic programming as elim-opt.

Fig. 26. Schematic execution of elim-opt.

variables over domainsD = {D1, . . . ,Dn}, C are real-valued cost functionsC1, . . . ,Cl .
defined over subsetsSi = {Xi1, . . . ,Xir }, Ci :1rj=1 Dij → R+. Thecost graphof a cost
networkhas a node for each variable and connects nodes denoting variables appearing in
the same cost component. The task is to find an assignment to the variables that minimizes∑
i Ci .
A straightforward elimination process similar to that of elim-mpe, (where the product is

replaced by summation and maximization by minimization) yields the non-serial dynamic
programming algorithm [5]. The algorithm, calledelim-opt, is given in Fig. 25.

A schematic execution of our example along orderingd =G,A,F,D,C,B is depicted
in Fig. 26. Clearly,

Theorem 11. Given a cost network, elim-opt generates a representation from which the
optimal solution can be generated in linear time by a greedy procedure. The algorithm’s
complexity is time and space exponential in the cost-graph’s adjusted induced-width.
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9. Relation with other methods

We show next that bucket-elimination is similar to a directional version of the poly-tree
propagation for singly-connected networks and to a directional version of tree-clustering
for general networks.

9.1. Poly-tree algorithm

When the belief network is a polytree, belief assessment, the mpe task and map task can
be accomplished efficiently using Pearl’s belief propagation algorithm [37]. As well, when
the augmented graph is a tree, themeucan be computed efficiently. Bucket elimination is
also guaranteed to be time and space linear on any polytree because the induced-width of
its moral graph is bounded by its largest family and realizing an ordering having a minimal
induced width is easy.

Theorem 12. Given a polytree, a bucket-elimination’s complexity is time and space
exponential in the largest family size.

We next show that Pearl’sbelief propagationand bucket-elimination are very similar
algorithms on polytrees. In fact, a directional version of belief propagation that computes
the belief in a single proposition only, is identical to elim-bel that processes the buckets of
each family assuper-buckets.

A polytree is a directed acyclic graph whose underlying undirected graph has no cycles
(see Fig. 27(a)). Belief propagation (we assume familiarity with this algorithm) is a
distributed, message-passing algorithm that computes the belief in each proposition by
transmitting two messages, one in each direction, on each link. The messages are calledλ’s
or π ’s, depending on whether they are transmitted upwards or downwards in the directed
polytree.

If only a belief in a single proposition is desired, propagation can be restricted to
one direction only. Messages will only propagate along the paths leading to the queried
variable. Many orderings can accommodate this message-passing and will be termedlegal

(a) (b)

Fig. 27. (a) A polytree and (b) a legal processing ordering.



74 R. Dechter / Artificial Intelligence 113 (1999) 41–85

orderings. In particular, a reversed, breadth-first traversal ordering initiated at the queried
proposition can be used.

We denote by DBP thedirectional belief propagationalgorithm. Given a legal ordering,
the algorithm processes the variables in a reverse ordering, where each node, in turn,
computes and sends its message to its neighbor along the path to the root. We will show via
an example that when using the same ordering this directional version of belief propagation
is identical to elim-bel.

Assume that we seekP(x1|z1 = 0, z2 = 0, z3 = 0, y1 = 0) for the network in
Fig. 27(a). A breadth-first ordering of the (underlying undirected) tree initiated atX1 is
d = X1,U3,U2,U1, Y1,Z1,Z2,Z3. (Clearly a breadth-first ordering is just one feasible
ordering. In fact any ordering in which child nodes are eliminated before their parents
is satisfactory.) DBP will send messages from the last variable to the first. The message
sent by eachZi towardsUi is λZi (ui)= P(zi = 0|ui)= P(zi ′|ui) (we denote by primes
instantiated variables and by lower case uninstantiated variables). The next message sent
by Y1 is λY1(x1)= P(y1′|x1). Subsequently,U1,U2,U3, each multiply the messages they
receive byP(ui), yieldingπUi (x1)= P(ui)λZi (ui), which is sent toX1. VariableX1 now
computes itsπ message as:

π(x1)= P(x1)
∑

u1,u2,u3

P(x1|u1, u2, u3)πU1(x1)πU2(x1)πU3(x1). (12)

Finally,X1 computes its own beliefBel(x1)= π(x1)λY1(x1).
Let us follow elim-bel’s performance along the same ordering. The initial partitioning

into buckets is:

bucket(Z3)= P(z3|u3), z3= 0.

bucket(Z2)= P(z2|u2), z2= 0.

bucket(Z1)= P(z1|u1), z1= 0.

bucket(Y1)= P(y1|x1), y1= 0.

bucket(U3)= P(u3), P (x1|u1, u2, u3),

bucket(U2)= P(u2),

bucket(U1)= P(u1),

bucket(X1)= P(x1).

Processing the initial buckets ofZ3,Z2, andZ1, generatesλZi (ui) = P(z′i |ui). Each
is placed inbucket(Ui), i ∈ {1,2,3}. These functions are identical to theλ messages sent
from theZis to theUis by DBP. Likewise, bucket(Y1) creates the functionλY1(x1) =
P(y′1|x1), which goes into bucket(X1) and is identical to the message sent fromY1 toX1
by DBP. Processing bucketsU3, U2 andU1 produces

λU3(u1, u2, x1)=
∑
u3

P(x1|u1, u2, u3)λz1(u1)P (u3),

which is put in bucket(U2). Processing bucket(U2) generates

λU2(u1, x1)=
∑
u2

λU2(x1, u1, u2)λz2(u2)P (u2),
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which is positioned in bucket(U1). Subsequently, bucket(U1) yields

λU1(x1)=
∑
u1

λU2(x1, u1)λZ1(u1)P (u1)

which is assigned to bucket(X1). The combined computation in bucketsU1, U2 andU3
is equivalent to the message computed in Eq. (12). Notice thatλU1(x1) generated in
bucket(U1) is identical to the messageπ(x1) produced by BDP (Eq. (12)). Subsequently, in
bucket(X1) we take the product of all functions and normalize. The final resulting buckets
are:

bucket(Z3)= P(z3|u3), z3= 0.

bucket(Z2)= P(z2|u2), z2= 0.

bucket(Z1)= P(z1|u1), z1= 0.

bucket(Y1)= P(y1|x1), y1= 0.

bucket(U3)= P(u3),P (x1|u1, u2, u3), || λZ3(u3),

bucket(U2)= P(u2), || λZ2(u2), λU3(x1, u2, u1),

bucket(U1)= P(u1), || λZ1(u1), λU2(x1, u1),

bucket(X1)= P(x1) || λY1(x1), λU1(x1).

We see that all theDBP messages map to functions recorded by elim-bel. However, in
elim-bel we had two additional functions (generated inbucket(U3) andbucket(U2)) that are
avoided by DBP. A simple modification of elim-bel can avoid recording those functions:
all the buckets that correspond to the same family can be processed simultaneously, as a
singlesuper-bucketwhere summation is applied over all the variables in the family. The
two algorithms, directional belief propagation and elim-bel, become identical with these
modifications.

The super-bucket idea can be implemented by using orderings that allow nodes of
the same family to appear consecutively. These adjacent nodes are collected into super-
buckets. Appropriate ordering is achieved by reversed breadth-first ordering. Processing
a super-bucket amounts to eliminating all the super-bucket’s variables without recording
intermediate results.

Consider the polytree in Fig. 27(a) and the ordering in Fig. 27(b). Instead of processing
each bucket(Ui) separately, we compute the functionλU1,U2,U3(x1) in the super-bucket
bucket(U1,U2,U3) and place the result in bucket(X1), creating the unary function

λU1,U2,U3(x1)

=
∑

u1,u2,u3

P(u3)P (x1|u1, u2, u3)P (z′3|u3)P (u2)P (z′2|u2)P (u1)P (z′1|u1).

In summary, elim-bel with the super-bucket processing yields the following buckets:

bucket(Z3)= P(z3|u3), z3= 0.

bucket(Z2)= P(z2|u2), z2= 0.
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bucket(Z1)= P(z1|u1), z1= 0.

bucket(Y1)= P(y1|x1), y1= 0.

bucket(U3,U2,U1)

= P(u3),P (u2),P (u1),P (x1|u1, u2, u3), || λZ3(u3), λZ2(u2), λZ1(u1),

bucket(X1)= P(x1) || λY1(x1), λU1,U2,U3(x1)

We demonstrated that,

Proposition 13. Given a polytree and a breadth-first orderingd , initiated at the queried
variable, the set of functions generated by the modified elim-bel usingd is identical to the
messages generated by DBP when messages are generated in reverse order ofd .

9.2. Join-tree clustering

The polytree algorithm was extended to general networks by a method, similar
to bucket elimination, known asJoin-tree clustering[34]. The two algorithms (i.e.,
bucket-elimination and join-tree clustering) are closely related, and their worst-case
complexity (time and space) is essentially the same (as already observed for constraint
processing [23]).

Join-tree clustering is initiated bytriangulating the moral graph along a given variable
ordering. The maximal cliques (i.e., maximally fully connected subgraphs) of the
triangulated graph are used to identify new subproblems that can be connected in a tree-like
network called a join-tree. The complexity of tree-clustering is time and space exponential
in the size of the largest clique because it is necessary to compile subproblems over the
cliques (we assume familiarity with the join-tree algorithm). Since the triangulated graph
is the same as the induced graph, the cliques’ sizes in a join-tree clustering are identical
to the induced-width (plus one). Therefore, the time and space complexity of join-tree
clustering and bucket-elimination are the same.

This congruence in complexity is a result of the inherent similarity between the
algorithms themselves. A directional version of join-tree clustering that updates a singleton
belief is equivalent to elim-bel. In full tree-clustering, once the join-tree structure is
identified, the cliques’ potentials are compiled by taking the product of the conditional
probabilities associated with each clique. Once the potentials are available, the problem
resembles a tree. This allows message-passing between cliques in a manner similar to the
message-passing in a polytree [34,37].

In a directional version of join-tree clustering, message-passing is restricted to one
direction only: from leaf cliques towards a clique which contain the queried proposition,
called a root. Moreover, instead of computing a clique’s potential first, the computation of
potentials and message-passing can be interleaved.

We will demonstrate next that a bucket-elimination trace corresponds to executing
directional join-tree clustering. An ordering used by bucket-elimination generates a
corresponding ordered induced moral graph (or triangulated moral graph). Each variable
and its earlier neighbors in the induced moral graph form a clique, and each clique can be
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(a) (b)

Fig. 28. Clique-tree associated with the induced graph of Fig. 7(a).

connected to an earlier clique with whom it shares a largest subset of variables [23]. For
example, the induced graph in Fig. 28(a) may generate the clique-tree in Fig. 28(b).

The performance of directional join-tree parallels elim-bel in this example, assuming we
seek the beliefP(a|g = 1). The ordering of cliquesd1 = (CBA,FCB,DBA,GF) is used
for join-tree clustering, while the corresponding ordering ofd2 = (A,C,B,F,D,G) is
used for elim-bel.

Join-tree processingGF: Its clique contains onlyP(G|F), so no potential is updated.
Message-passing assigns the valueg = 1 resulting in the messageP(g = 1|f ) that is
propagated to cliqueFCB. The corresponding elim-bel step is to process bucket(G).
P(g = 1|F) is generated and put in Bucket(F ).

Join-tree processing ofDBA: The clique which containsP(d|b, a), P(b|a) andP(a),
results in the potentialh(d, b, a)= P(d|b, a)P (b|a)P (a). Subsequently, the message sent
to cliqueCBAis the marginal

∑
d h(a, b, d)= P(b|a)P (a). A corresponding elim-bel step

processes Bucket(D), computingλD(b, a)=∑D P(d|b, a), yields the constant 1. (Note
thatP(b|a) already resides in bucket(B) andP(a) is already in bucket(A)).

Join-tree processFCB: This clique containsP(f |c, b) and the messageP(g = 1|f ).
The potential remainsP(f |c, b). The message

λF (c, b)=
∑
F

P (f |c, b)P (g = 1|f )

will then be computed and sent to cliqueCBA. Elim-bel processingbucket(F ) computes
the same functionλF (b, c) and places it inbucket(B).

Join-tree processingCBA: It computes the potentialh(a, b, c)= P(b|a)P (c|a)P (a),
incorporates the message it received earlier,λF (c, b), and computes the desired belief

P(a|g = 1)= α
∑
b,c

h(a, b, c)λF (c, b).

Elim-bel now processes bucketsC,B,A in sequence (or alternatively the super-bucket
bucket(B,C,A)) resulting in:λC(a, b) =∑c P (c|a)λF (c, b) then λB(a) =∑b P (b|a)× λC(a, b) and finally, the desired belief:P(a|g = 1)= αP(a)λB(a).
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The relationship between directional join-tree clustering and bucket elimination provides
semantics to the functions computed by bucket-elimination. Focusing first on the most
probable explanation, mpe, the functionhp(u) recorded inbucketp by elim-mpe and
defined overUp = ⋃

i Si − {Xp}, is the maximum probability extension ofUp =
u, to variables appearing later in the ordering, and restricted to the clique-subtree
rooted at the clique containingUp. For instance,hF (b, c) recorded by elim-mpe equals
maxf,g P (b, c, f, g), sinceF andG appear in the clique-tree rooted at cliqueFCB. For

belief assessment the functionλp =∑Xp

∏j

i=1λi , defined overUp =⋃i Si−Xp, denotes

the probability of all the evidencee+p observed in the clique subtree rooted at a clique
containingUp, conjoined withu, specifically,λp(u)= αP(e+p,u).

Algorithms for join-tree clustering in belief networks are sometimes ambiguous in that
they seem to imply that only topological orderings are acceptable for triangulation. In fact,
the tree-clustering algorithm is correct for any ordering. Its efficiency, however, (its clique
size) indeed depends on the ordering selected. For tasks other than belief updating, the
considerations for identifying good orderings are identical to those associated with con-
straint satisfaction. However, in belief updating, because of the ability to exploit relevant
subgraphs, orderings that are consistent with the acyclic graph may be more suitable.

10. Combining elimination and conditioning

As noted earlier for deterministic reasoning, a serious drawback of elimination
and clustering algorithms is that they require considerable memory for recording the
intermediate functions. Conditioning search, on the other hand, requires only linear space.
By combining conditioning and elimination, we may be able to reduce the amount of
memory needed while still having performance guarantee.

Full conditioning for probabilistic networks is search, namely, traversing the tree of
partial value assignments and accumulating the appropriate sums of probabilities. (It can
be viewed as an algorithm for processing the algebraic expressions from left to right, rather
than from right to left as was demonstrated for elimination.) For example, we can compute
the expression for mpe in the network of Fig. 13:

M = max
a,c,b,f,d,g

P (g|f )P (f |b, c)P (d|a, b)P (c|a)P (b|a)P (a)
=max

a
P (a)max

c
P (c|a)max

b
P (b|a)max

f
P (f |b, c)

× max
d
P (d|b, a)max

g
P (g|f ), (13)

by traversing the tree in Fig. 29, going along the ordering from first variable to last variable.
The tree can be traversed either breadth-first or depth-first resulting in algorithms such as
best-first search and branch and bound, respectively.

We will demonstrate one scheme of combining conditioning with elimination using the
mpe task.

Notation: LetX be a subset of variables andV = v be a value assignment toV . f (X)|v
denotes the functionf where the arguments inX ∩ V are assigned the corresponding
values inv.
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Fig. 29. Probability tree.

Algorithm elim-cond-mpe
Input: A belief networkBN= {P1, . . . ,Pn}; an ordering of the variables,d; a
subsetC of conditioned variables; observationse.
Output: The most probable assignment.
Initialize: p= 0.
1. For every assignmentC = c, do
• p1← The output of elim-mpe withc ∪ e as observations.
• p←max{p,p1} (update the maximum probability).

2. Return p and a maximizing tuple.

Fig. 30. Algorithmelim-cond-mpe.

LetC be a subset of conditioned variables,C ⊆X, andV =X−C. We denote byv an
assignment toV and byc an assignment toC. Obviously,

max
x
P (x, e)=max

c
max
v
P (c, v, e)=max

c,v

∏
i

P (xi |xpai )|(c,v,e).

Therefore, for every partial tuplec, we can compute maxv P (v, c, e) and a corresponding
maximizing tuple

(xoV )(c)= argmax
V

n∏
i=1

P(xi |xpai )|(c,e)

using variable elimination, while treating the conditioned variables as observed variables.
This basic computation will be enumerated for all value combinations of the conditioned
variables, and the tuple retaining the maximum probability will be kept. This straightfor-
ward algorithm is presented in Fig. 30.

Given a particular value assignmentc, the time and space complexity of computing the
maximum probability over the rest of the variables is bounded exponentially by the induced
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width w∗(d, e ∪ c) of the ordered moral graph alongd adjusted for both observed and
conditioned nodes. Therefore, the induced graph is generated without connecting earlier
neighbors of both evidence and conditioned variables.

Theorem 14. Given a set of conditioning variables,C, the space complexity of algorithm
elim-cond-mpe isO(nexp(w∗(d, c ∪ e)), while its time complexity isO(nexp(w∗(d, e ∪
c)+ |C|)), where the induced widthw∗(d, c∪ e), is computed on the ordered moral graph
that was adjusted relative toe andc.

When the variables ine ∪ c constitute a cycle-cutset of the graph, the graph can be
ordered so that its adjusted induced width equals 1 and elim-cond-mpe reduces to the
known loop-cutset algorithms [15,37].

In general Theorem 14 calls for a secondary optimization task on graphs:

Definition 6 (Secondary-optimization task). Given a graphG= (V ,E) and a constantr,
find a smallest subset of nodesCr , such thatG′ = (V −Cr,E′), whereE′ includes all the
edgs inE that are not incident to nodes inCr , has induced-width less or equalr.

Clearly, the minimal cycle-cutset corresponds to the case where the induced-width is
r = 1. The general task is clearly NP-complete.

Clearly, algorithm elim-cond-mpe can be implemented more effectively if we take
advantage of shared partial assignments to the conditioned variables. There are a variety
of possible hybrids between conditioning and elimination that can refine this basic
procedure. One method imposes an upper bound on the arity of functions recorded and
decides dynamically, during processing, whether to process a bucket by elimination or by
conditioning (see [41]). Another method which uses the super-bucket approach collects
a set of consecutive buckets into one super-bucket that it processes by conditioning, thus
avoiding recording some intermediate results [18,27]. See also [11].

11. Additional related work

We have mentioned throughout this paper algorithms in probabilistic and deterministic
reasoning that can be viewed as bucket-elimination algorithms. Among those are the
peeling algorithm for genetic trees [8], Zhang and Poole’s VE1 algorithm [52] which is
identical to elim-bel, SPI algorithm by D’Ambrosio et al. [10], which preceded both elim-
bel and VE1 and provided the principle ideas in the context of belief updating. Decimation
algorithms in statistical physics are also related and were applied to Boltzmann trees
[44]. We also made explicit the observation that bucket elimination algorithms resemble
tree-clustering methods, an observation that was made earlier in the context of constraint
satisfaction tasks [23].

The observation that a variety of tasks allow efficient algorithms of hyper-trees
and therefore can benefit from a tree-clustering approach was recognized by several
works in the last decade. In [14] the connection between optimization and constraint
satisfaction and its relationship to dynamic programming is explicated. In the work
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of [36,48] and later in [6] an axiomatic framework that characterize tasks that can
be solved polynomially over hyper-trees, is introduced. Such tasks can be described
using combinationand projection operators over real-valued functions, and satisfy a
certain set of axioms. The axiomatic framework [48] was shown to capture optimization
tasks, inference problems in probabilistic reasoning, as well as constraint satisfaction.
Indeed, the tasks considered in this paper can be expressed using operators obeying
those axioms and therefore their solution by tree-clustering methods follows. Since, as
shown in [23] and here, tree-clustering and bucket elimination schemes are closely related,
tasks that fall within the axiomatic framework [48] can be accomplished by bucket
elimination algorithms as well. In [6] a different axiomatic scheme is presented using
semi-ring structures showing that impotent semi-rings characterize the applicability of
constraint propagation algorithms. Most of the tasks considered here do not belong to this
class.

In contrast, the contribution of this paper is in making the derivation process of variable
elimination algorithms from the algebraic expression of the tasks, explicit. This makes
the algorithms more accessible and their properties better understood. The associated
complexity analysis and the connection to graph parameters are also made explicit. Task
specific properties are also studied (e.g., irrelevant buckets in belief updating).

The work we show here also fits into the framework developed by Arnborg and
Proskourowski [1,2]. They present table-based reductions for various NP-hard graph
problems such as the independent-set problem, network reliability, vertex cover, graph
k-colorability, and Hamilton circuits. Here and elsewhere [19,25] we extend the approach
to a different set of problems.

The following paragraphs summarize and generalizes the bucket elimination algorithm
using two operators ofcombinationandmarginalization. The task at hand can be defined
in terms of a triplet(X,D,F) whereX = {X1, . . . ,Xn} is a set of variables having domain
of values{D1, . . . ,Dn}. andF = {f1, . . . , fk} is a set of functions, where eachfi is defined
over a scopeSi ⊆ X. Given a functionh defined over scopeS ⊆ X, and givenY ⊆ S, the
(generalized) projection operator⇓Y f is defined by enumeration as

⇓Y h ∈
{

max
S−Y h,min

S−Y h,
∏
S−Y

h,
∑
S−Y

h

}
and the (generalized) combination operator

⊗
j fj is defined overU =⋃j Sj .

k⊗
j=1

fj ∈
{ k∏
j=1

fj ,

k∑
j=1

fj , 1j fj
}
.

The problem is to compute

⇓Y
n⊗
i=1

fi .

(In [48] the fi are called valuations.) We showed that such problems can be solved by
the bucket-elimination algorithm, stated using this general form in Fig. 31. For example,
elim-bel is obtained when⇓Y= ∑S−Y and

⊗
j =

∏
j , elim-mpe is obtained when
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Algorithm bucket-elimination
Input: A set of functionsF = {f1, . . . , fn} over scopesS1, . . . , Sn; an ordering
of the variables,d =X1, . . . ,Xn; A subsetY .
Output: A new compiled set of functions
from which⇓Y

⊗n
i=1fi can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into
bucket1, . . . ,bucketn, where bucketi contains all the functions whose high-
est variable in their scope isXi . Let S1, . . . , Sj be the subset of variables in the
processed bucket on which functions (new or old) are defined.
2. Backward: Forp← n downto 1, do
for all the functionsλ1, λ2, . . . , λj in bucketp , do
• If (observed variable)Xp = xp appears inbucketp, assignXp = xp to each
λi and then put each resulting function in appropriate bucket.

• else, Up ←⋃j
i=1Si − {Xp}. Generateλp =⇓Up

⊗j
i=1λi and addλp to

the largest-index variable inUp .
3. Return: all the functions in each bucket.

Fig. 31. Algorithmbucket-elimination.

⇓Y= maxS−Y and
⊗

j =
∏
j , and adaptive consistency corresponds to⇓Y=∏S−Y and⊗

j =1j . Similarly, Fourier elimination, directional resolution as well as elim-meu can be
shown to be expressible in terms of such operators.

12. Conclusion

The paper describes the bucket-elimination framework which unifies variable elimina-
tion algorithms appearing for deterministic and probabilistic reasoning as well as for op-
timization tasks. In this framework, the algorithms exploit the structure of the relevant
network without conscious effort on the part of the designer. Most bucket-elimination algo-
rithms5 are time and space exponential in the induced-width of the underlying dependency
graph of the problem.

The simplicity of the proposed framework highlights the features common to bucket-
elimination and join-tree clustering, and allows focusing belief-assessment procedures on
the relevant portions of the network. Such enhancements were accompanied by graph-
based complexity bounds which are even more refined than the standard induced-width
bound.

The performance of bucket-elimination and tree-clustering algorithms suffers from the
usual difficulty associated with dynamic programming: exponential space and exponen-
tial time in the worst case. Such performance deficiencies also plague resolution and
constraint-satisfaction algorithms [19,24]. Space complexity can be reduced using con-
ditioning search. We have presented one generic scheme showing how conditioning can
be combined on top of elimination, reducing the space requirement while still exploiting
topological features.

5 All those mentioned except Fourier algorithm.
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In summary, we provided a uniform exposition across several tasks, applicable to both
probabilistic and deterministic reasoning, which facilitates the transfer of ideas between
several areas of research. More importantly, the organizational benefit associated with
the use of buckets should allow all the bucket-elimination algorithms to be improved
uniformly. This can be done either by combining conditioning with elimination as we have
shown, or via approximation algorithms as is shown in [19].

Finally, no attempt was made in this paper to optimize the algorithms for distributed
computation, nor to exploit compilation vs. run-time resources. These issues should
be addressed. In particular, improvements exploiting the structure of the conditional
probability matrices as presented recently in [7,40,43] can be incorporated on top of
bucket-elimination.
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