
On the Complexity of Interval-Based Constraint

Networks

Rony Shapiro1, Yishai A. Feldman2, and Rina Dechter3

September 19, 1998

Abstract

Acyclic constraint satisfaction problems with arithmetic constraints

and domains consisting of sets of disjoint intervals have exponential

complexity, since disjunctions of intervals may be introduced while

propagating through the constraints. This has prompted many re-

searchers to use approximations on the bounds of sets of intervals,

resulting in sound, but incomplete, algorithms.

We delineate the complexity of propagation of sets of intervals through

arithmetic constraints. For many types of constraint networks, our ana-

lysis shows linear, rather than exponential, complexity bounds. Further-

more, exponential complexity is a worst-case scenario that is surpris-

ingly hard to achieve. In some cases, the number of disjoint intervals in

the output of an acyclic constraint satisfaction problem is independent

of the number of disjoint intervals in the input.

Some empirical results are presented, showing that the worst-case

bound is not achieved for random intervals.

1 Introduction

Intuitively, when two or more sets of disjoint intervals are propagated through
an aritmetic constraint, we expect the number of intervals in the result to be
the product of the number of intervals in the inputs. Surprisingly, the number

1Department of Computer Science Tel-Aviv University (rshapiro@idc.ac.il).
2School of Computer and Media Sciences, The Interdisciplinary Center, Herzliya 46150,

Israel (yishai@idc.ac.il, http://www1.idc.ac.il/yishai).
3Department of Information and Computer Science, University of Irvine, California

(dechter@ics.uci.edu).

1

of disjoint intervals in the result is often much less. For example, given the
intervals A = [5; 25], B = [28; 38], C = [55; 60]; and D = [65; 80], the sum of
the interval sets fA;Bg+ fC;Dg is the set of intervals

f[60; 85]; [70; 105]; [83; 98]; [93; 118]g:

Note, however, that the intervals overlap, and are therefore equivalent to the
single interval [60; 118].

The rest of this paper elaborates on the above, investigating several con-
straints which can introduce disjunctions, and the behavior of simple combina-
tions of such constraints. We also present some empirical results of arithmetic
on sets of intervals, which are summarised in Table 1.

Worst-Case Empirical
Constraints in Network Complexity Results

+ O(
Qs

i=1mi) constant
� O(

Qs
i=1mi) constant

jxj and x2 O(2m) linear
Distance O(2m) linear
+;� O(mFib(n+ 1)) constant
+; x2 or jxj O(m2n) constant
�; x2; jxj O(2mn) constant
+, Distance O(

Qs
i=1mi) linear

�, Distance O(mFib(n+ 1)) linear

mi = the number of intervals in the ith input variable

s = the number of input variables

n = the number of constraints in the network

Table 1: Complexity of interval propagation through networks of constraints

2 Propagating Interval Sets

We consider the following arithmetic constraints: addition, multiplication, ab-
solute value, square, and distance. For each constraint type, we analyze the
propagation of intervals through a single constraint, and through networks
consisting entirely of constraints of a single type. We then analyze the com-
plexity of acyclic networks of combinations of these constraints. (An acyclic

2

network is a network with no sequence of connected nodes in which the start
and end nodes are the same.) Table 1 summarises our results.

2.1 Arithmetic Constraints

In this section, we will examine the propagation of intervals through simple
arithmentic constraints, and homogeneous combinations of such constraints.
We will use de�nitions of interval arithmetic similar to those de�ned by Moore
[5].

2.1.1 Addition Constraints

Constraint Properties: Given an addition constraint A+B = C, values
can propagate as follows: C A+B, B C �A; or A C � B.

The sum of two intervals, x+ y, is [x+ y; x+ y]: (If x is an interval, we
denote its endpoints by x and x. Thus, x = [x; x].) Likewise, the di�erence
of two intervals, x� y, is [x� y; x� y]. The sum of two interval sets, X + Y ,
is the set of of disjoint intervals derived from the sum of each pair of intervals
fx + y j x 2 X; y 2 Y g by merging overlapping intervals. The di�erence
is similarly de�ned. The generalization to n arguments is straightforward,
and the following discussion applies to n-variable addition and subtraction
constraints.

For both addition and subtraction, the number of intervals in the output
variable is limited by the product of the number of intervals in each of the
input variables. Speci�cally, if each variable is a single interval, the output
variable will also be a single interval. If the number of intervals in variable
Xi is mi, then the upper bound on the number of intervals in the output
variableXj is

Q
i 6=j mi. This is an upper bound because we merge overlapping

intervals. It is not di�cult to prove, by induction, the following theorem:

Theorem 1 For every n;m > 0, it is possible to construct interval sets A

and B of n and m disjoint intervals, respectively, such that the interval set

A+B has n�m disjoint intervals.

From this theorem we may conclude that the combinatorial explosion of
intervals with a single addition constraint is always possible. However, given
random and uniform (non-intersecting) sets of intervals, such an explosion is
improbable, since the number of constraints that must hold between all of the
intervals in both sets in order to reach the upper bound increases in quadratic

3

proportion to the product of the number of disjoint intervals in the sets. In
Section 3, we show some empirical results to that e�ect.

Combining Addition Constraints: Consider a constraint network con-
sisting of n addition constraints and m variables. If each variable contains a
single interval, then propagation in any direction will not create a new inter-
val (1�1� : : :�1 = 1). Similarly, if only a single variable has more than one
interval, say k > 1, then after propagation, there will be at most k intervals
in each variable. It is not hard to prove by induction (using Theorem 1) the
following theorem:

Theorem 2 In any acyclic constraint network consisting of addition con-

straints and variables x1; : : : ; xm; with the interval set corresponding to xi
consisting initially of si disjoint intervals, the upper bound on the number

of intervals in any variable after all the intervals have been propagated isQm
i=1 si. Furthermore, this bound is reachable | it is possible to construct

such a network.

2.1.2 Multiplication Constraints

Constraint Properties: Given a multiplication constraint A � B = C,
intervals can propagate as follows.

If the interval sets A and B are given, C may be calculated by calculating
the interval product of each pair of intervals from A and B, and deriving the
disjoint interval set. The interval product of a pair of intervals is a � b =
[min(ab; ab; ab; ab);max(ab; ab; ab; ab)]:

The number of intervals in the product C is bounded by the product of
the number of intervals in the multiplicands. This bound is reachable | the
proof (by construction) is similar to that of Theorem 1.

Note that the product of an interval that contains zero with another in-
terval will always contain zero, hence all such interval products will overlap.
This means that we may treat products interval sets that are wholly positive
(or wholly negative) di�erently from products interval sets with intervals that
may contain zeroes.

Theorem 3 Given two interval sets, A and B, with n and m disjoint inter-

vals, respectively, the upper bound on the number of intervals in their product

is nm if none of the multiplicand intervals contain zero, (n� 1)m+ 1 if an

interval in A contains zero, n(m � 1) + 1 if an interval in B contains zero,

or (m� 1)(n� 1) + 1 if both do. In particular, if one multiplicand has any

4

number of disjoint intervals, and the other has a single interval that contains

zero, the product will be a single interval.

The proof is by induction, analogous to that of Theorem 1, except that if
an interval a0 2 A contains zero, then the product of any interval b 2 B with
a0 will also contain zero. Therefore, all of the products a0b overlap, resulting
in a single interval.

If the interval sets A and C are given, with n andm intervals, respectively,
then for each pair of intervals a 2 A; c 2 C, we need to check what the possible
values of b are (the roles of A and B are interchangeable in this discussion).

� If neither c nor a contain 0, then b is the quotient c�a = c� [1=a; 1=a]:
The number of intervals in the quotient will be bounded by mn: It is
easy to show that this bound is reachable by construction.

� If c contains zero, but a does not, then the above also applies. Note
that the resulting b also contains zero. The bound on the number of
intervals, according to Theorem 3, is then (m� 1)n+ 1.

� If c does not contain zero, but a does, then we can exclude f0g from a,
since we know that the product of a and b is non-zero. This implies that
b cannot contain zero as well. The result is two (open) intervals. Since
any two quotients with a divisor containing zero result in two pairs of
overlapping intervals, the upper bound on the number of intervals in the
quotient in this case is n(m� 1) + 2.

� If both c and a contain zero, then we have no information on b to
propagate.

Combining Multiplication Constraints: In a network consisting only
of multiplication constraints, there may be a path through which a chain of
divisions will occur while propagating intervals. Since each division by an
interval containing zero will create two disjoint intervals, we would expect an
exponential number of disjoint intervals as the output of the division chain.
But, if we have a disjunction as a result of division, neither of the intervals in
the disjunction will contain zero, and therefore, using them in a divisor will
not result in two more disjunctions. If we multiply an open interval by an
interval that contains zero, then we will get an interval that also contains zero,
but, as we have seen in Theorem 3, both open intervals will be transformed
into an interval that contains zero (this will be the open interval (�1;1)),
so once again, the result is not exponential.

5

The complexity of propagating sets of intervals through a graph of mul-
tiplication constraints is the same as that of a graph of addition constraints,
that is,

Qm
i=1 si, where m is the number of interval sets, and si is the number

of intervals in the ith set. This is because a single multiplication constraint is
similar to an addition constraint with regard to interval set propagation (by
Theorems 1 and 3). Therefore, Theorem 2 holds for multiplication constraints
as well as for addition.

2.1.3 Absolute Value and Square

Constraint Properties (Absolute Value): The absolute value of an in-
terval is:

jxj =
8><
>:

[0;max(jxj; jxj)] if 0 2 x
x if x > 0
[�x;�x] if x < 0

Given an interval, we can uniquely �nd its absolute value. Given an absolute
value, though, the information we can deduce about the interval is ambiguous,
since there are potentially an in�nite number of intervals whose absolute value
is the given one. For example, if the absolute value of an interval is [0; a], then
the interval is either [�a; b];where 0 � b � a; or [b; a];where�a � b � 0. The
largest possible interval with an absolute value of [0; a], however, is [�a; a],
so we must propagate this value. If A and B are sets of intervals, withm and
n intervals, respectively, A = jBj, and B is given, with b > 0 for all b 2 B
then m = 2n, since the absolute value of each interval b is [b; b] [[�b;�b],
that is, there are two disjoint intervals in A for each interval in B. Thus, if
the intervals in B are disjoint, then so are those in A.

Constraint Properties (Square): Unlike arithmetic over <, x2 is not
always equal to x�x. For example, [�5; 3]�[�5; 3] = [�15; 25]:But, [�5; 3]2 =
fx2jx 2 [�5; 3]g = [0; 25]: This is a good reason for treating the square
constraint separately.

In general, given an interval x = [x; x]:

x2 =

(
[0;max(jxj; jxj)2] if 0 2 x
[min(jxj; jxj)2;max(jxj; jxj)2] otherwise

As with the absolute value constraint, this can potentially reduce the number
of disjoint intervals passing through it in this direction. For example, [�5;�3]
and [3; 5] are disjoint, but their squares coincide.

6

Given y = [y; y], with the constraint that y � 0, x could be a union:

x =

(
[�py;�py]_ [py;py] if y > 0

[�py;py] if y = 0

This means that for A = B2 with B given, there are (at most) two disjoint
intervals in A for each interval in B:

Combining Absolute Value or Square Constraints: Since these con-
straints are binary, the only way to combine them is by chaining. The number
of intervals in the output of such a chain cannot be more than twice the num-
ber of intervals in the input, since a negative interval that may have been
created by one absolute value or square constraint will not be propagated
through the next, by the constraint's de�nition.

2.1.4 Distance

Constraint Properties: The distance constraint is of the form

d = k(px; py); (qx; qy)k

This constraint de�nes the Euclidean distance between two points on a plane;
d is always non-negative. The other variables represent the coordinates of two
points on the plain, and are unrestricted. This constraint may be represen-
ted as a network of the addition and square constraints discussed above:
px + w = qx; py + h = qy ;W = (w)2;H = (h)2;W + H = D; d2 = D:

This network represents the equation d =
q
(px � qx)2 + (py � qy)2. Such a

network, of addition and square constraints, has exponential complexity (see
Section 2.2.2). If we treat the distance contraint as a primitve constraint,
however, the resulting complexity is linear in the number of intervals.

As noted in Section 2.1.3, a union in the square root of an interval exists
i� the lower bound of the interval is greater than zero. In the context of the
distance constraint, this means that if we set a non-zero minimum on the
distance (d > 0), then at least one of addends W or H must have a lower
bound greater than zero (because they cannot be negative), therefore one or
both of the square roots (w, h) must be a union of intervals. In general, n
disjoint intervals constraints on d will propagate to 2n intervals in a coordinate
variable if none of the intervals contain zero, and 2n � 1 disjoint intervals if
one of d's intervals contain zero.

7

If we consider the problem geometrically, as a circle centered around
(px; py) with radius d, then it is obvious that the e�ect of restricting the
values of of a single coordinate variable, say qx; to an interval [a,b] is to
de�ne a vertical \strip" of the circle, or ; if a > px + d or b < px � d:

Combining Distance Constraints: Constraining the distance variable to
n disjoint constraints results in at most 2n disjoint interval constraints on the
other variables. If there arem distance constraints so connected, there will be
2nm intervals propagated. If a coordinate variable is shared, no disjunctions
are introduced, and interval constraints on the shared variable propagate
without change to the other variables. A tree of distance constraints may be
created, with each non-leaf coordinate variable being the distance variable
of another distance constraint. The complexity in this case is as that of
an addition tree, that is, the product of the number of interval sets in the
coordinate variables.

2.2 Mixing Constraints

In the following sections, we discuss the e�ects of mixing constraints of dif-
ferent types on the complexity of the propagated interval sets.

For each pair of the constraints discussed above, we will see under which
circumstances we may get an exponential explosion of interval sets, given,
initially, single intervals at all the variables. We want to �nd both the largest
problem that is tractable, and the smallest that is not.

2.2.1 Addition and Multiplication

As we have seen in Sections 2.1.1 and 2.1.2, acyclic networks consisting only
of addition constraints or only of multiplication constraints are tractable when
the variables are all initially single intervals (addition cannot cause intervals
to split, whereas the splits possibly introduced by division are self-bounding).

When addition and multiplication constraints are combined, the number
of intervals may increase exponentially. Let (�1;�q]; [q;1) be the quotient
of two intervals propagated by a multiplication constraint. We will constrain
the two intervals by a single interval, [�b; b]; with b > q, such that we now
have two disjoint, but closed, intervals, one wholly positive, the other wholly
negative: [�b;�q]; [q; b]: By using an addition constraint to add a constant
value to intervals, we can \shift" them, causing one of them to straddle zero.
For example, we could add the interval [(b+ q)=2; (b+ q)=2]. The sum with

8

the negative interval would be [(q� b)=2; (b� q)=2], which contains zero. The
sum with the positive interval would remain wholly positive. If we propagate
this pair through another multiplication constraint as a quotient, using each
interval in turn as the divisor of a third interval, we will have another split,
that is, three intervals in the new quotient.

For example, the quotient [5; 5]� [�1; 1] is (�1;�5], [5;1). Intersecting
these intervals with [�10; 10] results in [�10;�5]; [5; 10]: Adding the interval
[7; 7] to this pair gives [�3; 2]; [12; 17]: Note that one interval contains zero.
We now use this pair of intervals as the divisor of a quotient, say [1; 1]�
f[�3; 2]; [12; 17]g:The result is three disjoint intervals: (�1;�1=3]; [1=2;1);
and [1=17; 1=12]: The process can be repeated.

Thus, by chaining n pairs of addition, intersection and multiplication
constraints, one could get exactly Fib(n + 1) intervals, as follows. After the
�rst multiplication, there may be two intervals, one wholly negative, the other
wholly positive. We will mark this as 1=1. If we add an appropriate constant,
one of the intervals will now straddle zero, so multiplying the two segments
by a third will now result in one segment above zero, and two below (the new
one and the one from the previous multiplication), i.e. 2=1. Now, by adding
another constant, we can get one of the lower pair to straddle zero, so that
multiplication will split two intervals, resulting in �ve intervals: 2=3. At each
step, one side has the number of intervals on the other side added to it, with
the total number of intervals being the sum of intervals on both sides of zero.
This is, for n stages, Fib(n+ 1), which is exponential.

2.2.2 Addition and Absolute Value or Square

A network of alternating addition and absolute value constraints that results
in 2n intervals after n pairs of constraints, may be created as follows:

The absolute value constraints will propagate intervals in the \backward"
direction, that is, given an absolute value, it returns the intervals which pro-
duced it. As we have seen in Section 2.1.3, this results in a union of in-
tervals, one wholly positive, the other wholly negative. Using an addition
constraint, we may add an interval large enough so that the sum union
of intervals is wholly positive (and still disjoint): If the interval pair is
f[�b;�a]; [a; b]g; we can add the interval [c; c]; where c > b. This would
result in f[(c� b); (c� a)]; [(c+ a); (c+ b)]g; which is wholly positive. Feed-
ing this pair into an absolute value constraint would result in four disjoint
intervals, and we can repeat the process.

With addition and square constraints, one could create a chain similar to

9

that described in Section 2.2.1, alternating addition and square roots. The
addition constraints could shift the intervals f[�

p
Y ;�pY]; [pY ;

p
Y]g so

that both will be fully positive (by adding k > j
p
Y j), so that the result-

ant intervals would both be wholly positive input for another square root
constraint, resulting in four intervals. This could be continued inde�nitely
(assuming in�nite precision arithmetic), giving, after n stages, 2n intervals.

2.2.3 Multiplication and Absolute Value or Square

In Section 2.2.2, we used the addition constraint to \shift" a wholly positive
and wholly negative pair of interval sets to be wholly positive, thus enabling
a doubling of the intervals in the next absolute value constraint. This method
is not possible with multiplication constraints, since multiplication (and di-
vision) is symmetrical regarding sign. Therefore, multiplication and absolute
value constraints together can result in no more than twice as many disjoint
intervals as multiplication alone, that is, 2

Qm
i=1 si, where m is the number

of interval sets, and si is the number of intervals in the ith set, as shown in
Section 2.1.2.

The square root of an interval is a union of two intervals, one wholly
positive and the other wholly negative, of the form f[�b;�a]; [a; b]g, where a
and b are the respective square roots of the interval [a2; b2]:Due to the identity
of the form of the union of intervals with that of the form of union of intervals
of the absolute value constraint, the arguments and conclusions describing
multiplication and absolute value apply to the combination of multiplication
and square.

2.2.4 Distance and Other Constraints

As discussed in Section 2.1.4, the propagation of intervals through a dis-
tance constraint may be compared to the propagation through an addition
constraint, unless the distance variable is the input, and the interval sets
propagate to the coordinate variables. In this case, the number of intervals
may be twice the number of interval constraints on the distance variable.
Therefore, a constraint network consisting of distance constraints and addi-
tion constraints will have the same properties as a network consisting wholly
of addition constraints. Similarly, a constraint network comprised of multi-
plication and distance constraints will have the same properties as a network
of multiplication and addition constraints.

10

3 Empirical Results

In this section, we will present some results of propagating sets of intervals
through interval extensions of arithmetic operations. All the results presented
here were generated by a C++ program using double precision arithmetic
and the standard C library random number generator. Each data point is the
average of ten trials.

3.1 Sum and Product of Two Interval Sets

In Figure 1 we see the number of disjoint intervals in the sum and product
of two disjoint interval sets, where the average width of the intervals in the
input is 1; 000, and the range of endpoint values is restricted to �50; 000.
The number of intervals in both input sets is equal, and is varied from 1 to
60. When there are few intervals in the input, the number of disjoint intervals
in the output increases as expected, that is, as the product of the number of
intervals in the input. When the number of intervals in the input increases,
however, the number of disjoint intervals in the result decreases. Another

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Number of
intervals
in output

Number of intervals in input

jA+Bj +

+
+
+

+

+

+

+

+

+
++
+

+

+
+
+

+

++
+

++
+
+
+

++

++
+
+++++++++++++

++
+++

+
+++++++++++

jA� Bj �

��
�
�
�
�
��
�
���
��
�
�
��
�

�
����
������������������������������������

Figure 1: Number of intervals in sum and product of two interval sets

11

interesting point about these results is that the number of intervals in the
product tends to be less than the number of intervals in the sum, for the same
input. This is because the number of disjoint intervals in a product where a
multiplicand interval contains zero will be less than the corresponding sum,
as explained in Section 2.1.2.

3.2 Sum and Product of Four Interval Sets

We show the result of sums and product of four input interval sets. The
conditions are the same as described in the previous section, i.e., the average
width of the intervals in the input is 1; 000, and the range of endpoint values
is restricted to �50; 000. The number of intervals in both input sets is equal,
and is varied from 1 to 30. The result is shown in Figure 2. As may be
expected, the number of disjoint intervals in the result decreases much more
sharply than when the input consists of only two interval sets.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

Number of
intervals
in output

Number of intervals in input

jA+B + C +Dj +

+

+

+

+

+

+

++
+++++++

++++
++

+++++++++

jA�B � C �Dj �

�

�

��

��
������������������������

Figure 2: Number of intervals in sum and product of four interval sets

12

4 Related Work

Sam-Haroud and Faltings [6] developed algorithms for solving constraint sys-
tems with continuous domains and relations de�ned by sets of algebraic or
transcendental constraints that are polynomial-time for a large set of prob-
lems.

Temporal constraint networks extend the network-based methods of con-
straint satisfaction to continuous variables. Dechter, Meiri, and Pearl [2]
de�ne temporal constraint satisfaction problems (TCSP) as follows: Vari-
ables V1; : : : ; Vn have continuous domains. The constraints are either unary,
restricting the domain of a variable to a given set of (disjoint) intervals, or
binary, restricting the distance Xi �Xj between two variables to a given set
of (disjoint) intervals. They show that the problem is easy when the set of
intervals is restricted to a single interval.

Schwalb and Dechter [9] show that the complexity of enforcing path con-
sistency on TCSPs is exponential, due to the fragmentation of intervals into
subintervals. They present algorithms that bound the fragmentation by com-
puting looser constraints that subsume the subintervals (at the cost of losing
precision).

Koubarakis [3] discusses a tractable special case of the problem. He shows
that strong (2V + 1)-consistency is necessary and su�cient for global con-
sistency, where V is the maximum number of variables in any disjunction of
inequations. In a later work [4], the class of constraints is extended to include
disjunctions of inequations with at most one inequality per disjunction.

Graphic editors are applications that can incorporate constraint networks
in a useful manner. In such applications, there is usually a constrint network
with a given solution, which is perturbed, either by adding a constraint, or by
changing the value of one or more of the variables. The goal is to �nd a new
solution for the perturbed network.

DeltaBlue [8] and SkyBlue [7] are constraint engines for graphic editors
that support linear equalities in an e�cient manner, as long as the constraint
graph is acyclic. SkyBlue supports cycles in constraint graphs indirectly, by
detecting them and calling an external mechanism, such as a simultaneous lin-
ear equation solver. Recently, Indigo [1] has extended the class of constraints
to include linear inequalities.

13

5 Conclusions and Future Work

In this paper, we have analyzed the complexity of propagating sets of intervals
through algebraic constraints. The results of the analysis are applicable to
the analysis of the trade-o�s between the expressive power of a constraint
engine and the complexity involved.

From our analysis of arithmetic constraints, we see that if no interval sets
are introduced in the constraint network, then none will be generated during
propagation in the following networks:

� Only addition and unary (domain) constraints.

� Only multiplication and unary constraints, if the domain is restricted
to wholly positive numbers (without zero).

� Algebraic constraint networks in which the intervals will not contain
zero in the course of propagation. Zeroes may be introduced, for ex-
ample, by the di�erence between two wholly positive intervals.

Throughout this paper, we have considered only acyclic constraint net-
works. There are many practical problems, however, which map to constraint
networks with cycles. Investigating the actual limits of interval complexity in
such networks might reveal some surprises.

References

[1] A. Borning, R. Anderson, and B. Freeman-Benson. The Indigo algorithm.
Technical Report 96-05-01, Department of Computer Science and Engin-
eering, University of Washington, July 1996.

[2] R. Decther, I. Meiri, and J. Pearl. Temporal constraint networks. Arti�-
cial Intelligence, 49:61{95, 1991.

[3] M. Koubarakis. From local to global consistency in temporal constraint
networks. In Proc. 1st Int. Conf. Principles and Practice of Constraint

Programming, LNCS 976, pages 53{69, Sept. 1995.

[4] M. Koubarakis. Tractable disjunctions of linear constraints: Basic results
and applications to temporal reasoning. In Proc. 2nd Int. Conf. Principles

and Practice of Constraint Programming, LNCS 1118, pages 297{307,
Aug. 1996.

14

[5] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, 1979.

[6] D. Sam-Haroud and B. Faltings. Consistency techniques for continuous
constraints. Constraints, 1:85{118, 1996.

[7] M. Sannella. SkyBlue: A multi-way local propagation constraint solver
for user interface construction. In Proc. 1994 ACM Symp. User Interface

Software and Technology, pages 137{146, 1994.

[8] M. Sannella, J. Maloney, B. Freeman-Benson, and A. Borning. Multi-
way versus one-way constraints in user interfaces: Experience with the
DeltaBlue algorithm. Software Practice and Experience, 23(5):529{566,
May 1993.

[9] E. Schwalb and R. Dechter. Processing disjunctions in temporal constraint
networks. Arti�cial Intelligence, 93:29{61, 1997.

15

