
Maintenance scheduling problems as benchmarks

for constraint algorithms

Daniel Frost and Rina Dechter�

Dept. of Information and Computer Science,

University of California, Irvine, CA 92697-3425 U.S.A.

ffrost, dechterg@ics.uci.edu

Abstract

The paper focuses on evaluating constraint satisfaction search algorithms on ap-
plication based random problem instances. The application we use is a well-studied
problem in the electric power industry: optimally scheduling preventive maintenance
of power generating units within a power plant. We show how these scheduling prob-
lems can be cast as constraint satisfaction problems and used to de�ne the struc-
ture of randomly generated non-binary CSPs. The random problem instances are
then used to evaluate several previously studied algorithms. The paper also demon-
strates how constraint satisfaction can be used for optimization tasks. To �nd an
optimal maintenance schedule, a series of CSPs are solved with successively tighter
cost-bound constraints. We introduce and experiment with an \iterative learning"
algorithm which records additional constraints uncovered during search. The con-
straints recorded during the solution of one instance with a certain cost-bound are
used again on subsequent instances with tighter cost-bounds. Our results show that
on a class of randomly generated maintenance scheduling problems, iterative learning
reduces the time required to �nd a good schedule.

1 Introduction

The last three decades have seen the development of many algorithms and heuristics
for solving constraint satisfaction problems (CSPs). Determining which algorithms
are superior to others remains di�cult. Theoretical analysis provides worst-case guar-
antees which often do not re
ect average performance. For instance, a backtracking-
based algorithm that incorporates features such as variable ordering heuristics will

�The authors thank the Electric Power Research Institute for its support through grant RP 8014-06.

1

often in practice have substantially better performance than a simpler algorithm
without this feature [12, 8], and yet the two share the same worst-case complexity.
Similarly, one algorithm may be better than another on problems with a certain
characteristic, and worse on another category of problem. Ideally, we would be able
to identify this characteristic in advance and use it to guide our choice of algorithm.

Algorithms and heuristics have often been compared by observing their perfor-
mance on benchmark problems, such as the 8-queens puzzle, or on suites of random
instances generated from a simple, uniform distribution. The advantage of using a
benchmark problem is that if it is an interesting problem (to someone), then infor-
mation about which algorithm works well on it is also interesting. The drawback
is that if algorithm A beats algorithm B on a single benchmark problem, it is hard
to extrapolate from this fact. An advantage of using random problems is that there
are many of them, and researchers can design carefully controlled experiments and
report averages and other statistics. A drawback of random problems is that they
may not re
ect any real life situations.

In this paper we demonstrate another method for comparing CSP search algo-
rithms, by applying them to random problems that have been generated with a par-
ticular structure. The structure, in the present case, was derived from a well-studied
problem of the electric power industry: optimally scheduling preventive maintenance
of power generating units within an electric power plant. Our approach was to de�ne
a formal model which captures most of the interesting characteristics of maintenance
scheduling, and then to cast the model as a constraint satisfaction problem. A pro-
gram was written to create speci�c problem instances which adhered to this model,
had certain parameters (such as number of time periods to be scheduled) �xed in
advance, and used pseudo-random numbers to determine other characteristics of the
instances (such as the power output of individual generating units). With this e�ec-
tively unlimited supply of structured random CSP instances, we have a new technique
for evaluating the performance of CSP algorithms in the context of a speci�c problem
domain.

Within this general methodology of evaluating algorithms on realistic problems,
while obtaining statistically signi�cant results, we present a case-study. We chose
for our comparison �ve backtracking based constraint techniques that have been de-
veloped in recent years: backtracking with dynamic variable ordering and integrated
arc-consistency (BT+DVO+IAC), con
ict-directed backjumping with dynamic vari-
able ordering (BJ+DVO), BJ+DVO with constraint learning (BJ+DVO+LRN),
BJ+DVO with look-ahead value ordering (BJ+DVO+LVO), and a combination of
the last two called BJ+DVO+LRN+LVO. Each algorithm has shown itself to be
\best of breed," in that it is superior to other similar algorithms [10, 9, 11, 4, 15].
However, no clear dominance relationship between these algorithms has been revealed
in the past. We restricted our attention to comparisons of complete, backtracking
based CSP algorithms; this study does not extend either to algorithms based on
stochastic local search (such as GSAT or WSAT), or to algorithms designed speci�-

2

cally for optimization problems (such as branch and bound). An experimental com-
parison of backtracking based search algorithms on many instances with a real-life
structure has not, to our knowledge, been carried out previously. We found that two
algorithms stood out. BJ+DVO, which among the algorithms we experimented with
does the least work per node in the search tree, was the fastest on large problems and
the worst on small problems. BT+DVO+IAC, which performs extensive look-ahead
processing at each node, was best on small problems and worst on large problems.

In addition to a general methodology of using application based random problems
and a speci�c case-study, the third contribution of this paper is a demonstration of
optimization using constraint algorithms. The constraint framework consists entirely
of hard constraints, which must be satis�ed for a solution to be valid. The mainte-
nance scheduling problem is fundamentally an optimization problem, which has both
hard constraints and a cost function to be minimized. We converted the optimization
problem to a constraint satisfaction problem by �xing a maximum value for the cost
function and then searched for a schedule at or below that cost. When we wanted
to �nd an optimal or near-optimal schedule, we transformed the problem into one of
searching a series of CSPs with ever-tightening constraints until an optimal schedule
was found by proving that no schedule exists with a tighter cost-bound. This ap-
proach inspired the development of a new variant of CSP learning, called \iterative
learning," that is particularly suited towards optimization problems.

In section 2 we describe the maintenance scheduling problem in detail. Section
3 provides a brief description of the constraint satisfaction problem framework and
describes a method for casting maintenance scheduling problems as CSPs. The al-
gorithms we experimented with, including the new iterative learning algorithm, are
described in section 4. Section 5 covers the program that generated random mainte-
nance scheduling type problem instances. In section 6, we report the results of several
experiments. Section 7 describes related work, and in section 8 we summarize our
results and our conclusions.

2 Maintenance Scheduling Problems

The problem of scheduling o�-line preventive maintenance of power generating units
is of substantial interest to the electric power industry. A typical power plant consists
of one or two dozen power generating units which can be individually scheduled for
preventive maintenance. Both the required duration of each unit's maintenance and
a reasonably accurate estimate of the power demand that the plant will be required
to meet throughout the planning period are known in advance. The general purpose
of determining a maintenance schedule is to determine the duration and sequence of
outages of power generating units over a given time period, while minimizing operat-
ing and maintenance costs over the planning period, subject to various constraints. A
maintenance schedule is often prepared in advance for a year at a time, and schedul-
ing is done most frequently on a week-by-week basis. The power industry generally

3

Week 1

Unit 1

Week 1

Unit 2

Week 1

Unit 3

Week 1

Unit 4

Week 1

Unit 5

Week 2

Unit 1

Week 2

Unit 2

Week 2

Unit 3

Week 2

Unit 4

Week 2

Unit 5

� � �

� � �

� � �

� � �

� � �

Wk 12

Unit 1

Wk 12

Unit 2

Wk 12

Unit 3

Wk 12

Unit 4

Wk 12

Unit 5

Figure 1: A diagrammatic representation of a maintenance scheduling constraint satisfac-
tion problem. Each circle stands for a variable representing the status of one unit in one
week. The dashed vertical ovals indicate constraints between all of the units in one week:
meeting the minimum power demand and optimizing the cost per week. The horizontal
ovals represent constraints on one unit over the entire period: scheduling an adequate
period for maintenance.

considers shorter term scheduling, up to a period of one or two weeks into the future,
to be a separate problem called \unit commitment."

As a problem for an electric power plant operator, maintenance scheduling must
take into consideration such complexities as local holidays, weather patterns, con-
straints on suppliers and contractors, national and local laws and regulations, and
other factors that are germane only to a particular power plant. Our simpli�ed
model is similar to those appearing in most scholarly articles, and follows closely the
approach of Yellen and his co-authors [1, 16].

2.1 Parameters

The maintenance scheduling problem can be visualized as a rectangular matrix
(Fig. 1). Each entry in the matrix represents the status of one generating unit
for one week. We will use the terms week and time period interchangeably. A unit
can be in one of three states: on, off, or maint. A speci�c maintenance scheduling
problem, in our formulation, is de�ned by a set of parameters, which are listed in
Fig. 2. Parameters U , the number of units, and W , the number of weeks, control the
size of the schedule. Many power plants have a �xed number of crews available to
carry out maintenance; therefore, the parameter M speci�es the maximum number

4

Input:
U number of power generating units
W number of weeks to be scheduled
M maximum number of units which can be maintained simultaneously
mit cost of maintaining unit i in period t

cit operating cost of unit i in period t

ki power output capacity of unit i
ei earliest maintenance start time for unit i
li latest maintenance start time for unit i
di duration of maintenance for unit i
N set of pairs of units which cannot be maintained simultaneously
Dt energy (output) demand in period t

Output:
xit status of unit i in period t: on, off or maint

Figure 2: Parameters which de�ne a speci�c maintenance scheduling problem.

of units which can be undergoing maintenance at any one time.
In this paragraph and elsewhere in the paper we adopt the convention of quan-

tifying the subscript i over the units, 0 � i � U � 1, and the subscript t over the
weeks, 0 � t � W � 1. Several parameters specify the characteristics of the power
generating units. The costs involved in preventive maintenance, mit, can vary from
unit to unit and from week to week; for instance, hydroelectric units are cheaper to
maintain during periods of low water
ow. The predicted operating cost of unit i in
week t is given by cit. This quantity varies by type of unit and also in response to
fuel costs. For example, the fuel costs of nuclear units are low and change little over
the year, while oil-�red units are typically more expensive to operate in the winter,
when oil prices often increase.

Parameter ki speci�es the maximum power output of unit i. Most formulations of
maintenance scheduling consider this quantity constant over time, although in reality
it can
uctuate, particularly for hydro-electric units.

The permissible window for scheduling the maintenance of a unit is controlled
by parameters ei, the earliest starting time, and li, the latest allowed starting time.
These parameters are often not utilized (that is, ei is set to 1 and li is set to W)
because maintenance can be performed at any time. The duration of maintenance
is speci�ed by parameter di.

Sometimes the maintenance of two particular units cannot be allowed to overlap,
since they both require a particular unique resource, perhaps a piece of equipment

5

or a highly trained crew member. Such incompatible pairs of units are speci�ed in
the set N = f(j1; j2); . . . ; (jn�1; jn)g.

The �nal input parameter, Dt, is the predicted power demand on the plant in
each week t. The variables xit are the output of the scheduling procedure, and de�ne
the maintenance schedule. xit can take on one of three values:

� on: unit i is on for week t, can deliver ki power for the week, and will cost cit
to run;

� off: unit i is o� for week t, will deliver no power and will not result in any
cost;

� maint: unit i is being maintained for week t, will deliver no power, and will
cost mit.

2.2 Schedule Requirements

A valid maintenance schedule must meet the following requirements, which arise
naturally from the de�nition and intent of the parameters.

First, the schedule must permit the overall power demand of the plant to be met
for each week. Thus the sum of the power output capacity of all units scheduled to
be on must be not less than the predicted demand, for each week. Let zit = 1 if xit =
on, and 0 otherwise. Then the schedule must satisfy the following inequalities:

X

i

zitki � Dt for each time period t (1)

Additional requirements are that maintenance must start and be completed within
the prescribed window, and the single maintenance period must be continuous, un-
interrupted, and of the desired length. The following conditions must hold true for
each unit i.

(start) if t < ei then xit 6= maint (2)

(end) if t � li + di then xit 6= maint (3)

(continuous) if xit1 = maint and xit2 = maint and t1 < t2

then for all t; t1 < t < t2; xit = maint (4)

(length) if t1 = min
t
(xit = maint) and t2 = max

t
(xit = maint)

then t2 � t1 + 1 = di (5)

(existence) 9t such that xit = maint (6)

The third type of requirement is that no more thanM units can be scheduled for
maintenance simultaneously. Let yit = 1 if xit = maint, and 0 otherwise.

X

i

yit �M for each time period t (7)

6

The �nal requirement of a maintenance schedule is that incompatible pairs of units
cannot be scheduled for simultaneous maintenance.

if (i1; i2) 2 N and xi1t = maint then xi2t 6= maint for each time period t (8)

After meeting the above constraints, we want to �nd a schedule which minimizes
the maintenance and operating costs during the planning period. Let wit = mit if
xit = maint, cit if xit = on, and 0 if xit = off.

Minimize
X

i

X

t

wit (9)

Objective functions other than (9) can also be used. For example, it may be
necessary to reschedule the projected maintenance midway through the planning
period. In this case, a new schedule which is as close as possible to the previous
schedule may be desired, even if such a schedule does not have a minimal cost.

3 Formalizing Maintenance Problems as CSPs

The constraint satisfaction problem framework is a well-studied model that formalizes
many real-life problems [5]. A constraint satisfaction problem consists of a �nite
number of variables. Associated with each variable is a �nite domain of values.
The problem also has a set of constraints. Each constraint pertains to a subset of
the variables and speci�es which combinations of assignments of values to variables
are permitted. The \arity" of a constraint is the number of variables to which
it refers. A solution to a CSP assigns to each variable a value from its domain,
such that no constraint is violated. Algorithms for CSPs usually �nd one or more
solutions, or report that no solution exists. Many CSP search algorithms are based
on backtracking, or depth-�rst search. The general constraint satisfaction problem
is NP-complete.

Formalizing a maintenance scheduling problem as a constraint satisfaction prob-
lem entails deciding on the variables, the domains, and the constraints which will
represent the requirements of the problem, as described in the previous section. The
goal, of course, is to develop a scheme that is conducive to �nding a solution {
a schedule { speedily. The formulation must trade o� between the number of vari-
ables, the number of values per variable, and the arities of the constraints. In general,
problems having fewer variables, smaller value domains, and constraints of smaller
arity will tend to be easier to solve. Since real-life problems are often large, these
three conditions cannot be met simultaneously, and compromises must be made to
achieve a satisfactory representation as a constraint satisfaction problem. How to
best make these compromises and how the choices made a�ect the performance of an
algorithm are important directions for further research. In this section we describe
the representation used in the case-study, without making any claim that it is the

7

best possible. We specify most of the constraints in a relational manner in order
to allow our implementations of general purpose CSP algorithms to be applied with
minimal modi�cation.

We encode maintenance scheduling problems as CSPs with 3�U �W variables.
The variables can be divided into a set of U �W visible variables, and two U �W

size sets which we call hidden variables. (The distinction between visible and hidden
variables is used for explanatory purposes only; the CSP solving program treats each
variable in the same way.) Each variable has two or three values in its domain. Both
binary and higher arity constraints appear in the problem. The visible variables Xit

correspond directly to the output parameters xit of the problem de�nition, and have
the domain fon, off, maintg.

The �rst set of hidden variables, Yit, signi�es the maintenance status of unit i
during week t. The domain of each Y variable is ffirst, subsequent, notg. Yit =
first indicates that week t is the beginning of unit i's maintenance period. Yit =
subsequent indicates that unit i is scheduled for maintenance during week t and
for at least one prior week. Yit = not indicates no maintenance during week t.
Binary constraints between each Xit and Yit are required to keep the two variables
synchronized. We list the compatible value combinations:

Xit Yit
on not

off not

maint first

maint subsequent

The second set of hidden variables, Zit, are variables with the domain fnone,
fullg. They indicate whether unit i is producing power output during week t. The
obvious binary constraints are de�ned between each Xit and the corresponding Zit.

Constraint (1) { weekly power demand
Each demand constraint involves the U visible variables that relate to a partic-

ular week. The basic idea is to enforce a U -ary constraint between these variables
which guarantees that enough of the variables will be on to meet the power demand
for the week. This constraint can be implemented as a table of compatible value
combinations, or as a table of incompatible combinations or tuples, or as a procedure
which takes as input the U variables and returns true or false. Our implemen-
tation uses a table of incompatible combinations. For example, suppose there are
four generating units, with output capacities k1=100; k2=200; k3=300; k4=400. For
week 5, the demand is D5=800. The following 4-ary constraint among variables
(Z1;5; Z2;5; Z3;5; Z4;5) is created (incompatible tuples are listed).

8

Z1;5 Z2;5 Z3;5 Z4;5 comment (output level)
none none none none 0
none none none full 400
none none full none 300
none none full full 700
none full none none 200
none full none full 600
none full full none 500
full none none none 100
full none none full 500
full none full none 400
full full none none 300
full full none full 700
full full full none 600

Because the domain size of the Z variables is 2, a U -ary constraint can have as many
as 2U � 1 tuples. If this constraint were imposed on the X variables directly, which
have domains of size 3, there would be 79 tuples (34� 5) instead of 13 (24� 3). This
is one reason for creating the hidden Z variables: to reduce the size of the demand
constraint for an implementation that stores constraints as a list of incompatible
value combinations.

Constraints (2) and (3) { earliest and latest maintenance start date
These constraints are easily implemented by removing the value first from the

domains of the appropriate Y variables.

Constraint (4) { continuous maintenance period
To encode this domain constraint in our formalism, we enforce three conditions:

1. There is only one �rst week of maintenance.

2. Week 1 cannot be a subsequent week of maintenance.

3. Every subsequent week of maintenance must be preceded by a �rst week of
maintenance or by a subsequent week of maintenance.

Each of these conditions can be enforced by unary or binary constraints on the Y
variables.

Constraint (5) { length of maintenance period
A maintenance period of the correct length should not be too short or too long.

For each unit i, each time period t, and every �; t < � < t + di, the following binary
constraint prevents a short maintenance period (disallowed tuple listed):

Yit Yi�
first not

9

To ensure that too many weeks of maintenance are not scheduled, it is only necessary
to prohibit a subsequent maintenance week in the �rst week that maintenance should
have ended. This results in the following constraint for each i and t, letting t1 = t+di
(disallowed tuple listed):

Yit Yit1
first subsequent

Constraint (6) { existence of maintenance period

This requirement is enforced by a high arity constraint among the Y variables for
each unit. Only the weeks between the earlist start week and the latest start week
need be involved. At least one Yit; ei � t � li, must have the value start. It is
simpler to prevent them from all having the value not, and let constraints (4) and
(5) ensure that a proper maintenance period is established. Thus the (li�ei+1)-arity
constraint for each unit i is (disallowed tuple listed):

Yili . . . Yiei
not not not

Constraint (7) { no more than M units maintained at once

If M units are scheduled for maintenance in a particular week, constraints must
prevent the scheduling of an additional unit for maintenance during that week. Thus
the CSP must have (M + 1)-ary constraints among the X variables which prevent
any M + 1 from having the value of maint in any given week. There will be

� U
M+1

�

of these constraints for each of the W weeks. They will have the form (disallowed
tuple listed):

Xi1t . . . XiM t

maint maint maint

The number of no-goods will be exponential inM . IfM is big, it may be bene�cial
to express this constraint in a procedural (rather than relational) form. However, as
stated earlier we preferred a relational representation whenever possible.

Constraint (8) { incompatible pairs of units
The requirement that certain units not be scheduled for overlapping maintenance

is easily encoded in binary constraints. For every week t, and for every pair of units
(i1; i2) 2 N , the following binary constraint is created (incompatible pair listed):

Xi1t Yi2t

maint maint

Objective function (9) { minimize cost
To achieve optimization within the context of our constraint framework, we cre-

ate a constraint that speci�es that the total cost must be less than or equal to a

10

set amount. In order to reduce the arity of the cost constraint, we introduce a
simpli�cation to the problem: we minimize the maximum cost per week, instead of
minimizing the sum of costs over all weeks. Clearly, an optimal solution to the more
restricted cost function may not optimize the original function. Our motivation for
using weekly cost instead of total cost is our knowledge that CSP algorithms can
more e�ectively exploit more local constraints.

We implemented the cost constraint as a procedure in our CSP solving program.
This procedure is called after each X type variable is instantiated. The input to
the procedure is the week, t, of the variable, and the procedure returns true if the
total cost corresponding to week t variables assigned on or maint is less than or
equal to CW , a new problem parameter (not referenced in Fig. 2) which speci�es the
maximum cost allowed in any period. This is the only constraint in our formulation
that is implemented procedurally.

4 Constraint Algorithms

We investigated the e�cacy of various constraint satisfaction algorithms on mainte-
nance scheduling CSPs. This section describes several algorithms which have been
reported earlier and which we used in our experiments. We then describe iterative
learning, which takes advantage of our approach to optimization problems in the
CSP framework.

4.1 Algorithms for CSPs

The algorithms used in this study are all variants of backtracking [3]. Backtracking
is based on the idea of considering the problem's variables one at a time, and instan-
tiating the current variable V with a value from its domain that does not violate any
constraints. If no non-con
icting value is available, then a dead-end occurs, and the
algorithm backtracks to the previously instantiated variable and selects for it a new
value. The backtracking algorithm traverses the search space of partial assignments
in a depth-�rst manner.

Four of the �ve algorithms used in the experiments are based on a backtracking
variant called backjumping with dynamic variable ordering (BJ+DVO) [10], which
is described in Fig. 3. Backjumping is a re�nement of backtracking. In response to a
dead-end, backjumping identi�es a variable U , not necessarily the most recently in-
stantiated, which is in some way connected to the dead-end. The algorithm \jumps
back" to U , uninstantiates all variables more recent than U , and tries to �nd a
new, compatible value for U from U 's domain. Our implementation is based on the
version of backjumping generally accepted to be the most e�ective, called con
ict-
directed backjumping [15]. When a backtracking or backjumping algorithm uses a
dynamic variable ordering heuristic, the order of variable instantiation is decided at
run time, and may vary at di�erent points in the search. The DVO portion of the

11

Algorithm BJ+DVO

Input: A set of n variables X1 . . .Xn; for each variable Xi a domain Di; and a set of
constraints.
Output: Either an assignment of one value to each variable, or \inconsistent,"
indicating no such assignment is possible.

0. (Initialize internal variables.) Set D0

i Di for 1 � i � n.

1. (Step forward.) If all variables have value assignments, then exit with this
solution. Otherwise, set cur equal to the index of the variable Xi for which
jD0

ij is smallest (breaking ties randomly). Set Pcur ;.

2. Select a value x 2 D0

cur . Do this as follows:

(a) If D0

cur = ; (deadend), go to 3.

(b) Pop x from D0

cur and instantiate Xcur x.

(c) Remove values incompatible with Xcur = x, as follows.
Let U � fX1; . . . ; Xng be the variables not yet assigned values.
For each Xu 2 U ,
for each v in D0

u,
if Xu = v con
icts with the current partial assignment,
then remove v from D0

u,
add Xcur to Pu,
if D0

u is now empty,
then go to (d) (without examining other Xu's).

(d) Go to 1.

3. (Backjump.) If Pcur = ; (there is no previous variable), exit with
\inconsistent." Otherwise, set P Pcur ; set cur equal to the index of the last
variable in P . Set Pcur Pcur [P � fXcurg. Reset all D

0 sets to the way they
were before Xcur was last instantiated. Go to 2.

Figure 3: Pseudo-code for the BJ+DVO algorithm.

BJ+DVO algorithm includes a \look-ahead" component which �lters the domains
of uninstantiated variables, removing values that are incompatible with the current
partial assignment. This look-ahead is equivalent to that of the forward checking al-
gorithm [12]. The variable ordering heuristic selects the uninstantiated variable with
the smallest remaining domain. This idea was proposed by Haralick and Elliot under
the rubric \fail �rst" [12]. In [10] we showed that BJ+DVO dominates backtracking
and con
ict-directed backjumping without DVO and DVO without backjumping.

In addition to experimenting with BJ+DVO, we also used two extensions to this

12

algorithm, individually and together. Look-ahead value ordering (LVO) is a heuristic
for ordering the values in the domain of the current variable; combined with BJ+DVO
it yields BJ+DVO+LVO [11]. LVO ranks the values of the current variable, using a
formula based on the number of con
icts each value has with values in the domains
of uninstantiated variables. Experiments in [8] show that the variant of look-ahead
value ordering used in the case-study can be of substantial bene�t, especially on
hard constraint satisfaction problems. Of course, the LVO heuristic does not always
correctly predict which values will lead to solutions, but it is frequently more accurate
than an uninformed ordering of values.

We refer to BJ+DVO with learning [4, 9, 2] as BJ+DVO+LRN. Learning in CSPs,
also known as constraint recording, involves a during-search transformation of the
problem representation into one that may be searched more e�ectively. This is done
by enriching the problem description by new constraints, also called no-goods, which
do not change the set of solutions, but make the problem more explicit. Learning
comes into play at dead-ends; whenever a dead-end is reached a constraint explicated
by the dead-end is recorded. Learning during search has the potential for reducing the
size of the search space, since additional constraints may cause unfruitful branches
of the remaining search to be cut o� at an earlier point. The risk is that the com-
putational e�ort spent recording and then consulting the additional constraints may
overwhelm the savings. When only constraints with i or fewer variables are recorded
by learning, the result is called ith-order learning. The kind of learning employed in
this paper takes advantage of processing already performed by the backjumping algo-
rithm to identify the new constraint to be learned; it was shown in experiments with
structureless random problems to be better than other versions of learning tested in
[9, 8]. As LVO and learning are orthogonal techniques for improving CSP search,
they can be combined in a straight forward manner. We refer to the combination as
BJ+DVO+LRN+LVO [8].

The �fth algorithm, called BT+DVO+IAC [8], uses backtracking instead of back-
jumping and does more work at each instantiation by integrating an AC-3 based
arc-consistency procedure [14]. With IAC (for \integrated arc-consistency"), values
for uninstantiated variables are removed not only if they are inconsistent with the
current partial assignment, but also if they are not compatible with at least one value
in the remaining domain of each other uninstantiated variable. At the cost of more
processing per node, BT+DVO+IAC increases the likelihood of detecting early on
that a partial assignment cannot lead to a solution.

For more details about these and other constraint processing algorithms, see [12,
10, 9, 11, 8, 4, 15, 5].

4.2 Optimizing with CSPs

The constraint satisfaction framework is a decision procedure; any solution that
can be found is equally good. We can �nd an optimal schedule by treating the

13

Solution Procedure for Optimization

Input: A CSP with both hard constraints and an objective function that is
compared to a cost-bound.
Output: The lowest cost-bound for which a solution was found, and a solution with
that cost-bound.

1. Set the cost-bound to a high value.

2. (a) Add a constraint (or set of constraints) to the CSP specifying that the
value of the objective function must be less than the cost-bound.

(b) Solve the CSP using a constraint algorithm.

(c) If a solution was found, decrement the cost-bound and go to 2 (a).

3. Return the last solution found, and the corresponding cost-bound.

Figure 4: The solution procedure for optimization.

maintenance scheduling problem as a series of CSPs. The procedure is described in
Fig. 4. Initially, a schedule is found with a very high cost-bound. The cost-bound is
then gradually lowered, with a new solution found each time. Eventually, the cost-
bound is so low that no solution exists which meets it, and the last schedule found is
optimal, within the tolerance of the amount by which the cost-bound was lowered.
A more sophisticated control algorithm, based on a binary search approach, can be
envisioned. In the experiments reported below, we used the simple decrement only
technique.

4.3 Optimization with Learning

To make the optimization process more e�cient, we introduce the notion of a memory
that exists between successive iterations of step 2 in Fig. 4. The idea is to use a
learning algorithm, such as BJ+DVO+LRN, to solve the maintenance scheduling
CSPs. and the new constraints introduced by learning are retained for use in later
iterations. We call this approach iterative learning.

Retaining a memory of constraints is safe because as the cost-bound is lower the
constraints become tighter. Any solution to an CSP with a certain cost-bound is also
a valid solution to the same problem with a higher cost-bound. If the cost-bound
were both lowered and raised, as suggested in the previous section with a binary
search approach, then some learned constraints would have to be \forgotten" when
the cost-bound was raised.

14

5 Problem Instance Generator

We propose evaluating the e�cacy of various CSP algorithms and heuristics when
applied to maintenance scheduling CSPs (MSCSPs). Performing an experimental
average-case analysis requires a source of many MSCSPs. We therefore developed an
MSCSP generator, which can create any number of problems that adhere to a set of
input parameters.

The \maintgen" instance generator is a program that reads in a text �le and
creates in an output �le one or more MSCSP instances to be solved by the CSP
solver. The input to the generator is a �le containing the problem parameters, either
by explicit enumeration, by listing particular values that are then interpolated, or
by specifying the parameters of a normal distribution from which the scheduling
problem parameters are randomly drawn. The parameters given to the generator
specify the fundamental size parameters: the number of weeks W , the number of
generating units U , and the number of units which can be maintained at one time
M . Also, the demand for some number of weeks is speci�ed. The demand for weeks
that are not explicitly speci�ed is computed by a linear interpolation between the
surrounding speci�ed weeks. The initial maximum cost per week, and the amount
it is to be decremented after each successful search for a schedule, are also speci�ed.

The characteristics of the units, that is, their output capacities and required
maintenance times, are not speci�ed individually. Instead, these values are randomly
selected from normal distributions whose means and standard deviations are spec-
i�ed. Currently the earliest and latest maintenance start dates are not speci�ed in
the input �le to maintgen, and are always set to minimum and maximum values in
the output �le. Maintenance costs are speci�ed by the standard deviation and by a
sample of weekly demands per unit. As with demand, values for weeks that are not
given explicitly are interpolated. Operating costs are de�ned with exactly the same
structure. The last piece of information is the number of incompatible pairs of units.
The requested number of pairs is selected randomly from a uniform distribution of
the units. We have not studied the rami�cations of the particular structure of the
maintgen program, for example using linear interpolation at some points and drawing
from a normal distribution elsewhere. We do not claim it to be better or in any way
more realistic than another similarly designed procedure would be.

Here is an example of an input �le to the maintgen generator followed by a
speci�cation of one problem instance that was generated.

lines beginning with # are comments

first line has weeks, units, maximum simultaneous units

4 6 2

#

next few lines have several points on the demand curve,

given as week and demand. Other weeks are interpolated.

0 700

15

3 1000

end this list with EOL

EOL

#

next line has initial max cost per week, and decrement amount

60000 3000

#

next line has average unit capacity and standard deviation

200 25

#

next line has average unit maintenance time and std. dev.

2 1

#

next line has standard deviation for maintenance costs

1000

#

next lines have points on the maintenance cost curve,

first number is week, then one column per unit;

0 10000 10000 10000 10000 10000 10000

3 13000 16000 19000 10000 7000 10000

#

next number is standard deviation for operating costs

2000

next few lines have some points on the operating cost curve,

first number is week, then one column per unit

0 5000 5000 5000 5000 5000 5000

the next line specifies the number of incompatible pairs

2

and that's it!

Below is a corresponding generated problem instance.

comments begin with

first line has weeks W, units U, max-simultaneous M

4 6 2

demand, one line per week

700

800

900

1000

next line has initial max cost per week, and decrement amount

60000 3000

one line per unit:

16

capacity maint length earliest maint start latest maint start date

194 1 0 3

171 3 0 3

209 1 0 3

166 1 0 3

219 2 0 3

217 2 0 3

maintenance costs, one line per week, one column per unit

11085 10034 9374 8945 10858 10045

11056 11988 13670 10465 9301 10625

12745 14625 15422 10422 8099 7629

12534 15394 21098 9841 6748 9364

operating costs, one line per week, one column per unit

4284 6857 3847 5050 5145 4998

5987 7352 1967 4635 6152 4635

3746 6475 5151 3988 8172 4131

6152 3436 5475 5600 4366 6070

incompatible pairs of units (numbering starts from 0)

1 3

2 3

EOL

and that's it!

The output problem instance is in a format which is recognized by our CSP
solver.

6 Experimental Results

We present the results of experiments with two sets of 100 MSCSPs each. The
smaller problems had 15 units and 13 time periods, resulting in 585 variables. The
larger problems had 20 units and 20 time periods, resulting in 1200 variables. These
problems are probably somewhat smaller than those typically encountered in indus-
try, which may have a few dozen units and, often, 52 one-week time periods. The
implementation was written in C, and the processor used was a Sun SparcStation 4,
running at 110 MHz, with 32 megabytes of main memory.

We conducted two experiments with each set of 100 problems. In the �rst we
used the algorithms BJ+DVO and iterative learning based on BJ+DVO+LRN to
solve the optimization task. In the second we compared the performance of all �ve
algorithms described in section 4, using a �xed cost-bound that is close to the lowest
feasible one.

17

6.1 Optimization with Learning

In the �rst experiment, we tried to �nd an optimal schedule for each MSCSP in the
smaller and larger sets, using BJ+DVO and iterative learning. Iterative learning
used BJ+DVO+LRN. The results are shown in Fig. 5 and Fig. 6.

For the 100 smaller problems, the cost-bound was set initially at 110,000 per
week, and then reduced by 5,000 for each iteration. All 100 MSCSPs had schedules
at cost-bound 85,000 and above. Only 38 had schedules within the 80,000 bound;
at 75,000 only four problems were solvable. On the set of 100 larger MSCSPs, the
cost-bound started at 150,000 per week and was reduced by 5,000. Schedules were
found for all instances at cost-bound 120,000 and above. 97 instances had schedules
at cost-bound 115,000 and 110,000; 11 at cost-bound 105,000; and two at cost-bound
100,000 and 95,000.

Iterative learning performed better, on average, than BJ+DVO on these random
maintenance scheduling problems. For instance, on the set of smaller problems, after
�nding a schedule with cost-bound 95,000 the average number of learned constraints
was 214. Tightening the cost-bound to 90,000 resulted in over twice as much CPU
time needed for BJ+DVO (54.01 CPU seconds compared to 23.28), but only a 71%
increase for iterative learning (29.41 compared to 17.20). Iterative learning was less
e�ective on the larger MSCSPs. It required less CPU time on average, but the
improvement over BJ+DVO was much less than on the smaller problems.

6.2 Comparison of Constraint Algorithms

The second experiment utilized the same sets of 100 smaller MSCSP instances and
100 larger instances, but we did not try to �nd an optimal schedule. For the smaller
problems we set the cost-bound at 85,000 and for the larger problems we set the
cost-bound at 120,000. Each bound was the lowest level at which schedules could
be found for all problems. We used the �ve algorithms described earlier to �nd a
schedule for each problem. The results are summarized in Table 1, where the column
labeled \CC" reports the average number of consistency checks made, \Nodes" is the
average number of times a value was assigned to a variable, and \CPU" is average
CPU time in seconds.

Among the �ve algorithms, BJ+DVO performed least well on the smaller prob-
lems and best on the larger problems, when average CPU time is the criterion. On
the other hand, BT+DVO+IAC was the best performer on the smaller problems and
the worst on the larger problems. This reversal in e�ectiveness may be related to the
increased size of the higher arity constraints on the larger problems. The high arity
constraints, such as those pertaining to the cost-bound, the weekly power demand,
and the existence of a maintenance period, become looser as the number of units and
number of weeks increase. Previous results [8] have indicated that more look-ahead,
such as is performed by integrated arc-consistency, is e�ective on problems with
tight constraints, and detrimental on problems with loose constraints. Nevertheless,

18

� with learning
? without learning
� num. constraints

110 105 100 95 90 85 80 75

cost bound (in thousands)

10

20

30

40

50

60

70

80

90

CPU

� � �

�

�
�

�

�

? ? ?

?

?

?

?

?

100

200

300

400

� �

�

�

�

� � �

Figure 5: Average CPU seconds on 100 small problems (15 units, 13 weeks) to �nd a
schedule meeting the cost-bound on the y-axis, using BJ+DVO with iterative learning
(�) and without learning (?). Cumulative number of constraints learned corresponds to
right-hand scale.

backjumping remains an e�ective technique on the larger problems. Another expla-
nation for the inferiority of BT+DVO+IAC on large problems, when compared to
BJ+DVO, is that the naive backtracking technique (not utilizing backjumping) really
penalizes BT+DVO+IAC on this suite of problems. As is evident from the number
of nodes expanded and the number of consistency checks, BJ+DVO not only had a
smaller overhead per node expansion, it also explored a smaller search space (28,540
nodes instead of 32,105). This, of course, calls for augmenting IAC with backjumping
rather than backtracking. However, a BJ+DVO+IAC combination requires a careful
analysis of the jumpback strategies which we have not yet implemented. It is also in-
teresting to note that a comparison of BJ+DVO and BJ+DVO+LRN indicates that
the overhead of learning does not pay o� on these problems. However, when embed-
ded in interative learning the learning procedure is bene�cial (see Figs. 5 and 6),
due to iterative learning's ability to take advantage of the learned constraints over
several problem instances. Further experiments are required to determine how the
relative e�cacy of di�erent algorithms is in
uenced by factors such as the size of the
problem (number of weeks and units) and characteristics such as the homogeneity of
the units.

19

� with learning
? without learning
� num. constraints

150 145 140 135 130 125 120 115 110 105 100 95

cost bound (in thousands)

100

200

300

400

500

600

700

800

900

1000

CPU

� � �
�

�

�
�

�

�

�
� �

? ? ?

?

?

?
?

?

?

? ?
?

100

200

300

400

500

� �

�

�

�

� � � �
� �

�

Figure 6: Average CPU seconds on 100 large problems (20 units, 20 weeks) to �nd a
schedule meeting the cost-bound on the y-axis, using BJ+DVO with iterative learning
(�) and without learning (?). Cumulative number of constraints learned corresponds to
right-hand scale.

7 Related Work

Computational approaches to maintenance scheduling have been studied since the
mid 1970's. Dopazo and Merrill [6] formulated the maintenance scheduling problem
as a 0-1 integer linear program. Zurm and Quintana [17] used a dynamic program-
ming approach. Egan [7] studied a branch and bound technique. More recently,
techniques such as simulated annealing, arti�cial neural networks, genetic algorithms,
and tabu search have been applied [13]. No one approach has been found particu-
larly superior, and the �eld is still one of active research. Since no standard set of
benchmarks, or formalism for de�ning the problem, has been agreed on, it is di�cult
to compare the results from paper to paper. (Many studies report the result of an
experiment on a single instance.) For these reasons, we have not attempted in this
paper to compare our results with other work in the literature.

20

Average
Algorithm CC Nodes CPU

100 smaller problems:

BT+DVO+IAC 315,988 3,761 51.65
BJ+DVO 619,122 8,981 70.07
BJ+DVO+LVO 384,263 5,219 54.48
BJ+DVO+LRN 671,756 8,078 67.51
BJ+DVO+LRN+LVO 476,901 5,085 57.45

100 larger problems:

BT+DVO+IAC 7,673,173 32,105 694.02
BJ+DVO 2,619,766 28,540 460.42
BJ+DVO+LVO 6,987,091 26,650 469.65
BJ+DVO+LRN 5,892,065 27,342 521.89
BJ+DVO+LRN+LVO 6,811,663 26,402 475.12

Table 1: Statistics of �ve algorithms on MSCSPs.

8 Conclusions

The �rst contribution of this paper addresses the broad problem of comparing and
evaluating the performance of CSP search algorithms. We presented a methodology
for evaluating algorithms on suites of application-based, structured random problems.
This approach has the potential of producing results which are interestingly connected
to problems arising in industry and science, while allowing statistics such as average
performance to be determined and reported.

As a case-study of the methodology, we examined maintenance scheduling prob-
lems from the electric power industry, Using maintenance scheduling problems cast
in the constraint framework as the structure, we constructed a random problem gen-
erator and used it to create two suites of problem instances with which we could
experiment. We compared �ve algorithms which have the same worst-case perfor-
mance. Our comparisons indicated that no one algorithm was superior to the others.
When considering average CPU time, the relatively simple BJ+DVO performed best
on the larger problems and worst on the smaller set. The reverse held true for
BT+DVO+IAC, which does considerably more processing of uninstantiated vari-
ables after a value is assigned to the current variable. It was the best performer on
the smaller problems, and the worst on the large set. BJ+DVO+LVO resulted in a
good algorithm for both sizes of problems, being second best in both cases.

The fact that maintenance scheduling is inherently an optimization problem led
to the third contribution reported in the paper, a new algorithm called iterative
learning. Iterative learning applies learned constraints over multiple iterations of

21

solving versions of a single problem. The multiple versions arise when a optimization
problem is considered as a series of constraint problems with increasingly tight cost-
bounds. While the experiments indicated that using learning was not particularly
e�ective on single problems, the incremental approach employed by the iterative
learning algorithm was shown superior to BJ+DVO for solving the optimization
problem, both on large and small instances.

References

[1] T. M. Al-Khamis, S. Vemuri, L. Lemonidis, and J. Yellen. Unit maintenance
scheduling with fuel constraints. IEEE Trans. on Power Systems, 7(2):933{939,
1992.

[2] Roberto Bayardo and Daniel Mirankar. A complexity analysis of space-bounded
learning algorithms for the constraint satisfaction problem. In Proceedings of the

Thirteenth National Conference on Arti�cial Intelligence, pages 298{304, 1996.

[3] James R. Bitner and Edward M. Reingold. Backtrack Programming Techniques.
Communications of the ACM, 18(11):651{656, 1975.

[4] Rina Dechter. Enhancement Schemes for Constraint Processing: Backjumping,
Learning, and Cutset Decomposition. Arti�cial Intelligence, 41:273{312, 1990.

[5] Rina Dechter. Constraint networks. In Encyclopedia of Arti�cial Intelligence,
pages 276{285. John Wiley & Sons, 2nd edition, 1992.

[6] J. F. Dopazo and H. M. Merrill. Optimal Generator Maintenance Scheduling
using Integer Programming. IEEE Trans. on Power Apparatus and Systems,
PAS-94(5):1537{1545, 1975.

[7] G. T. Egan. An Experimental Method of Determination of Optimal Maintenance
Schedules in Power Systems Using the Branch-and-Bound Technique. IEEE

Trans. SMC, SMC-6(8), 1976.

[8] Daniel Frost. Algorithms and Heuristics for Constraint Satisfaction Problems.
PhD thesis, University of California, Irvine, CA 92697-3425, 1997.

[9] Daniel Frost and Rina Dechter. Dead-end driven learning. In Proceedings of the

Twelfth National Conference on Arti�cial Intelligence, pages 294{300, 1994.

[10] Daniel Frost and Rina Dechter. In search of the best constraint satisfaction
search. In Proceedings of the Twelfth National Conference on Arti�cial Intelli-

gence, pages 301{306, 1994.

[11] Daniel Frost and Rina Dechter. Look-ahead value ordering for constraint satis-
faction problems. In Proceedings of the Fourteenth International Joint Confer-

ence on Arti�cial Intelligence, pages 572{578, 1995.

[12] R. M. Haralick and G. L. Elliott. Increasing Tree Search E�ciency for Constraint
Satisfaction Problems. Arti�cial Intelligence, 14:263{313, 1980.

22

[13] Hyunchul Kin, Yasuhiro Hayashi, and Koichi Nara. An Algorithm for Thermal
Unit Maintenance Scheduling Through Combined Use of GA SA and TS. IEEE
Trans. on Power Systems, 12(1):329{335, 1996.

[14] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems. Arti�cial In-

telligence, 25:65{74, 1985.

[15] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem.
Computational Intelligence, 9(3):268{299, 1993.

[16] J. Yellen, T. M. Al-Khamis, S. Vemuri, and L. Lemonidis. A decomposition
approach to unit maintenance scheduling. IEEE Trans. on Power Systems,
7(2):726{731, 1992.

[17] H. H. Zurm and V. H. Quintana. Generator Maintenance Scheduling Via Succes-
sive Approximation Dynamic Programming. IEEE Trans. on Power Apparatus

and Systems, PAS-94(2), 1975.

23

