
On the impact of causal independence

Irina Rish and Rina Dechter

Department of Information and Computer Science

University of California, Irvine

firinar,dechterg@ics.uci.edu

October 13, 1998

Abstract

Reasoning in Bayesian networks is exponential in a graph parameter w� known
as induced width (also known as tree-width and max-clique size). In this paper, we
investigate the potential of causal independence (CI) for improving this performance.
We consider several tasks, such as belief updating, �nding a most probable expla-
nation (MPE), �nding a maximum aposteriori hypothesis (MAP), and �nding the
maximum expected utility (MEU).

We show that exploiting CI in belief updating can signi�cantly reduce the e�ec-
tive w�, sometimes down to the induced width of the unmoralized network's graph.
For example, for poly-trees, CI reduces complexity from exponential to linear in the
family size. Similar results hold for the MAP and MEU tasks, while the MPE task
is less sensitive to CI. These enhancements are incorporated into bucket-elimination
algorithms based on known approaches of network transformations [10, 13] and elim-
ination [18]. We provide an ordering heuristic which guarantees that exploiting CI
will never hurt the performance.

Finally, we discuss an e�cient way of propagating evidence in CI-networks using
arc-consistency, and apply this idea to noisy-OR networks. The resulting algorithm
generalizes the Quickscore algorithm [9] for BN2O networks.

1 Introduction

Bayesian networks is a widely used framework for reasoning under uncertainty. However,
probabilistic inference in Bayesian networks is NP-hard [4]. Commonly used structure-
exploiting algorithms such as join-tree propagation [12, 11, 16] and variable elimination
[18, 7] are time and space exponential in the induced width (the maximal clique size) of
the network's moral graph. The induced width is often large, especially in the networks

1

with large families. Even the input conditional probability tables (CPTs) (which are
exponential in the family size) are too large to be speci�ed explicitly in such networks.
One way to cope with this problem is to identify the structural properties that simplify the
CPT's speci�cation. In this paper, we focus on a property known as causal independence
[10, 17, 18], where multiple causes contribute independently to a common e�ect. Examples
of causally-independent probabilistic relationships are noisy-OR and noisy-MAX, that are
used as simplifying assumptions in large practical systems such as QMR-DT network for
medical diagnosis [15].

Our work is developed along the two main approaches of [10, 13] and [18], which demon-
strate some computational bene�ts of causal independence. The �rst approach transforms
each family into a binary-tree Bayesian network using hidden variables. This results in a
probabilistic network whose largest parent set size is bounded by two. The second approach
(called VE1 in [18]) applies a network transformation implicitly during the execution of a
variable-elimination algorithm. We identify cases in which VE1 may be less e�cient than
the general-purpose elimination and compensate for this by using an appropriate ordering
heuristic.

We demonstrate that the \e�ective" induced width of algorithms exploiting causal
independence can be signi�cantly reduced: it can be as small as the induced width of
the unmoralized network's graph, and is guaranteed not to exceed the induced width of
the network's moral graph if a proper variable ordering is used. For each given network,
the anticipated computational bene�ts can be evaluated in advance and contrasted with
those of the general-purpose algorithm. For example, exploiting causal independence in
poly-trees with arbitrary large family size m reduces the e�ective induced width from m
to 2.

Next, the impact of causal independence on �nding a most probable explanation (MPE),
�nding a maximum aposteriori hypothesis (MAP), and �nding the maximum expected
utility (MEU) is investigated. Surprisingly, while causal independence can signi�cantly
reduce the complexity of belief updating and �nding MAP and MEU, it does not generally
help in �nding MPE.

We show that causal independence allows a more e�cient way of handling observations.
A causally-independent network can be transformed into one that combines probabilis-
tic and deterministic relations. Constraint-propagation techniques can be applied to the
transformed network in order to simplify probabilistic inference. In particular, given an ob-
servation of a child node, arc-consistency can further propagate this evidence through the
network. We outline a general belief-updating algorithm for causally-independent networks
that uses evidence propagation. We also present a customized version of this algorithm
for noisy-OR networks that generalizes the Quickscore algorithm proposed by [9] for a
particular class of binary-node two-layer noisy-OR networks (BN2O networks).

We will proceed in the following manner. Section 2 supplies some necessary de�nitions,
while Section 3 provides background on causal independence. In Section 4 prior work

2

on network transformations is reviewed and analyzed. A variable elimination approach
to causal independence is presented in Section 5, while Section 6 discusses the connection
between this approach and previous ones. In Section 7, our analysis is extended to the tasks
of �nding MPE, MAP and MEU. Evidence propagation in general causally-independent
networks is discussed in Section 8, while its application to noisy-OR networks is presented
in Section 9. Section 10 concludes the paper.

2 De�nitions and preliminaries

Let X = fx1; :::; xNg be a set of random variables over a domain of size d. A belief network
is a pair (G;P), where G is a directed acyclic graph on X, and P = fP (xijpai)ji = 1; :::; Ng
is the set of conditional probabilities de�ned for each xi and its parents pai (a node y is
called a parent of x if there is a directed edge from y to x). The belief network represents
a joint probability distribution over X having the product form

P (x1; :::; xN) =
NY

i=1

P (xijpai):

We call a node and its parents a family. The moral graph GM of a belief network (G;P) is
obtained by connecting the parents of each node in G and dropping directionality of edges.
An example of a belief network is shown in Figure 1a, where the dashed line denotes the
edge added by moralization. An evidence e is an instantiated subset of variables. The
following tasks can be de�ned on belief networks:

1. belief updating, i.e. �nding the posterior probability P (Y je) of query nodes Y � X
given evidence e;

2. �nding most probable explanation (MPE), i.e. �nding a maximum probability assign-
ment to unobserved variables given evidence;

3. �nding maximum aposteriory hypothesis (MAP), i.e. �nding a maximum probability
assignment to a set of hypothesis nodes, given evidence;

4. given a utility function, �nding the maximum expected utility (MEU), namely, �nding
assignment to a set of decision nodes that maximizes the expected utility function
speci�ed on the network's nodes.

The most common belief-updating algorithms include join-tree propagation [12, 11, 16]
and variable elimination [5, 18, 7].

We brie
y review the bucket elimination algorithm elim-bel [7] for belief updating.
Assume that the set of query nodes is Y = fx1g. By de�nition of conditional probability,

P (x1je) = �P (x1; e) = �
X

x2

. . .
X

xN

Y

i

P (xijpai); (1)

3

E
D

B

A

C

P(d|b,a)

P(e|b,c)

P(b|a) P(c|a)

P(a)

A

B

C

D

E B

C

D

E

A

(a) (b) (c)

Figure 1: (a) Bayesian network. (b) The induced graph along o = (a; b; c; d; e). (c) The
induced graph along o = (a; e; d; c; b)

where � is a normalizing constant. By distributivity law,

X

x2

. . .
X

xN

Y

i

P (xijpai) = F1

X

x2

F2 . . .
X

xN

FN ; (2)

where each Fi =
Q

x P (xjpa(x)) is the product of all probabilistic components such that
either x = xi, or xi 2 pa(x). The set of all such components is initially placed in the
bucket of xi (denoted bucketi). Algorithm elim-bel processes the buckets from N to 1, thus
computing the summation 2 from right to left. For each bucketi, it multiplies the bucket's
components, sums over xi, and puts the resulting function in the bucket of its highest-index
variable. Similar bucket elimination algorithms can be derived for �nding MPE, MAP, and
MEU [7].

The example below illustrates elim-bel on the network in Figure 1a.

Example 1: Given a belief network in Figure 1a, the ordering o = (a; b; c; d; e) and
evidence e = 0, let us �nd P (aje = 0):

P (aje = 0) =
X

b;c;d;e=0

P (a; b; c; d; e) =
X

b

X

c

X

d

X

e=0

P (a)P (cja)P (ejb; c)P (dja; b)P (bja) =

X

b

P (bja)
X

c

P (cja)
X

d

P (dja; b)
X

e=0

P (ejb; c):

The bucket elimination algorithms computes the sum from right to left as follows:
1. bucket e: he(b; c) = P (e = 0jb; c)
2. bucket d: hd(a; b) =

P
d P (dja; b)

4

3. bucket c: hc(a; b) =
P

c P (cja)h
e(b; c)

4. bucket e: hb(a) =
P

b P (bja)h
c(a; b)

5. bucket a: P (aje = 0) = �hb(a),
where � is a normalization constant.

The complexity of the bucket elimination algorithms is exponential in the induced width
w�
o [8] of the network's moral graph along the processed ordering o. Given a graph G, the

width of xi along o is the number of xi's earlier neighbors in o. The width of the graph
along o, wo, is the largest width along o. The induced graph of G along o is obtained by
connecting the preceding neighbors of each xi, proceeding from xN to x1. The induced
width along o, w�

o, is the width of the induced graph along o, while the induced width w�

is the minimum induced width along any ordering. For example, Figures 1b and 1c show
the induced graphs of the moral graph in Figure 1a along the orderings o = (a; b; c; d; e)
and o0 = (a; e; d ; c; b), respectively. Obviously, w�

o = 2 and w�
o0 = 4. It can be shown that

the induced width of each node xi is identical to the number of arguments of a function
computed in bucketi. Therefore,

Theorem 1: [7] The complexity of algorithm elim-bel is O(Ndw
�

o+1), where w�
o is the

induced width of the moral graph along ordering o.

Although �nding an ordering having smallest induced width is NP-hard [1], good heuristic
orderings are available [3, 6, 2].

3 Causal independence

Causal independence assumes that several causes contribute independently to a common
e�ect. Speci�cally, a probabilistic relation between a set of causes c1; :::; cn and an e�ect e
(Figure 2a) can be decomposed into a noisy transformation of each cause ci into a hidden
variable ui, and a deterministic function e = u1 � ::: � un, where � is a commutative and
associative binary operator. A graph depicting this relation (dependency graph) is shown
in Figure 2b. Formally,

De�nition 1: [10, 18] Let c1; :::; cm the parents of e in a Bayesian network. The variables
c1; :::; cm are said to be causally-independent w.r.t. e if there exists a set of random variables
ue1; :::; u

e
m, a set of probabilities P (u

e
i jci), and a binary commutative and associative operator

� such that

1. for each i, uei is independent on any of cj and uej , i 6= j, given ci, i.e.
P (uei jc1; :::; cn; u

e
1; :::; u

e
n) = P (uei jci); and

2. e = ue1 � . . . � u
e
n:

5

cn

e

c2c1

2ue

2c

e

1ue

1c

nue

nc

y1 yi

e

2ue
1ue

1

nue

n2c c c

(a) (b) (c)

Figure 2: (a) causally-independent belief network; (b) its dependency graph and (c) its
decomposition network

A CPT of such a causally-independent family can therefore be speci�ed by m components
P (uei jci) and expressed as

P (ejce1; :::c
e
m) =

X

fue
1
...uemje=ue

1
�...�uemg

mY

i=1

P (uei jc
e
i): (3)

This summation can be computed linearly in m using pairwise decomposition, such as

X

fue
1
;y1je=ue1�y1g

P (ue1jc
e
1)

X

fue
2
;y2 jy1=ue2�y2g

P (ue2jc
e
2) . . .

X

fuem�1
;uemjym�2=uem�1

�uemg

P (uem�1jc
e
m�1)P (u

e
mjc

e
m);

where yj are hidden variables introduced for keeping the intermediate results. Such pairwise
summation corresponds to a traversal of a binary computation tree (Figure 2c), where each
non-leaf node y represents the result of an operation y = yl � yk on its children yl and yk.

Given a belief network (G;P), replacing each causally-independent family in G by such
computation tree (i.e., replacing Figure 2a by Figure 2c) yields a decomposition graph
GD. This transformation introduces hidden nodes to G, which include both the nodes uei
due to the de�nition of causal independence, and the nodes yj of each computation tree.
We assume that the probabilities in P are speci�ed as P = fP (uxj jc

x
j)jc

x
j 2 pa(x)g. A

decomposition network of a belief network (G;P) is de�ned by tuple (GD; P; C), where GD

is a decomposition graph, and C is the set of constraints y = yl � yk introduced by the
computation trees. The nodes of the input belief network are called the input nodes.

A decomposition network closely resembles the network transformations [10, 13] dis-
cussed in the next section with a minor variation: instead of compiling a new CPT for each
hidden variable y having parents yl and yk, a decomposition network keeps the constraint
y = yl � yk.

6

x1 x2

y

xx3 4 x1 x2

y1 y2

x

y

x

y3

3 4

y1

y

y2

x3 x4x1 x2

(a) (b) (c)

Figure 3: (a) A Bayesian network; (b) temporal transformation (c) parent divorcing.

4 Network transformations

It was shown that a causally independent family can be transformed into a belief network
with a smaller parent size. This transformation can be achieved by various means. We will
elaborate �rst on two known methods: temporal transformation [10] and parent divorcing
[13].

Example 2: [temporal transformation]
Consider the causally-independent network in Figure 3(a). By de�nition of causal inde-
pendence,

P (yjx1; x2; x3; x4) =
X

fu1;u2;u3;u4jy=u1�u2�u3�u4g

P (u1jx1)P (u2jx2)P (u3jx3)P (u4jx4):

Since � is commutative and associative, y = u1 � u2 � u3 � u4 can be computed in several
di�erent ways. Assume the computation order y = ((u1 � u2) � u3) � u4. Let y1 = u1,
y2 = y1 � u2, y3 = y2 � u3, then P (yjx1; x2; x3; x4) =

=
X

fy3;u4jy=y3�u4g

X

fy2;u3jy3=y2�u3g

X

fy1;u2jy2=y1�u2g

P (y1jx1)P (u2jx2)P (u3jx3)P (u4jx4) =

=
X

y3

X

fu4jy=y3�u4g

P (u4jx4)
X

y2

X

fu3jy=y2�u3g

P (u3jx3)
X

y1

X

fu2jy2=y1�u2g

P (u2jx2)P (y1jx1):

Conditional probabilities for y1, y2, y3, and y can now be de�ned as: P (y1jx1) = P (u1jx1);
P (y2jy1; x2) =

P
fu2jy2=y1�u2g P (u2jx2);

P (y3jy2; x3) =
P

fu3jy3=y2�u3g P (u3jx3); P (yjy3; x4) =
P

fu4jy=y3�u4g P (u4jx4); then

P (yjx1; x2; x3; x4) =
X

y3

P (yjy3; x4)
X

y2

P (y3jy2; x3)
X

y1

P (y2jy1; x2)P (y1jx1):

In other words, the original network is transformed into an equivalent one having two ad-
ditional (hidden) variables y1 and y2 (Figure 3(b)). Clearly, queries de�ned on the original
network can be answered using an equivalent transformed network. The transformation
described above is known as temporal transformation proposed by Heckerman and Breese
[10].

7

Example 3: [parent divorcing]
Another network transformation method known as parent divorcing [13], is illustrated in
Figure 3c. Parent divorcing assumes the computation ordering y = (x1 � x2) � (x3 � x4),
while temporal transformation assumes y = (x1 � x2) � x3) � x4. Then

P (yjx1; x2; x3; x4) =
X

fu1;u2;u3;u4jy=u1�u2�u3�u4g

P (u1jx1)P (u2jx2)P (u3jx3)P (u4jx4) =

=
X

fy1;y2jy=y1�y2g

X

fu1 ;u2jy1=u1�u2g

X

fu3;u4jy2=u3�u4g

P (u1jx1)P (u2jx2)P (u3jx3)P (u4jx4) =

=
X

fy1;y2jy=y1�y2g

X

fu1;u2jy1=u1�u2g

P (u1jx1)P (u2jx2)
X

fu3;u4jy2=u3�u4g

P (u3jx3)P (u4jx4) =

=
X

fy1;y2jy=y1�y2g

P (y1jx1; x2)P (y2jx3; x4) =
X

y1

X

y2

P (yjy1; y2)P (y1jx1; x2)P (y2jx3; x4);

where
P (y1jx1; x2) =

P
fu1;u2jy1=u1�u2g P (u1jx1)P (u2jx2);

P (y2jx3; x4) =
P

fu3;u4jy2=u3�u4g P (u3jx3)P (u4jx4), and
P (yjy1; y2) = 1 if y = y1 � y2:

Introducing hidden variables that cache intermediate results decreases CPT size. Given
a causally-independent family having m parents x1,...,xm, temporal transformation adds
m� 1 hidden variables y1,...,ym�1 and de�nes the new CPTs as follows:
P (y1jx1) = P (uy1jx1);
P (yijxi; yi�1) =

P
fuy

i
jyi=yi�1�uig P (u

y
i jxi),

P (yjxm; ym�1) =
P

fuymjy=ym�1�umg P (u
y
mjxm).

The parent divorcing method builds a binary tree with the leaf nodes x1,...,xm and the root
y, introducing hidden variables yji level by level, from the parent level j = 0 to the child
level j = log(m).

There are many possible transformations of a causally independent family into a binary
tree. Each transformation represents a particular order of computations.

De�nition 2: Given a belief network, we denote the result of its possible temporal
transformation by TT , and the result of its possible parent-divorcing transformation by
PD. In general, the result of an arbitrary binary-tree transformation is denoted by T .

Once the transformed network is available, a standard junction tree or a variable elimi-
nation algorithm can be applied. As noted in [10], the transformation ordering may have a
signi�cant impact on the performance of an inference algorithm. However, �nding a good
transformation ordering may be intricate, especially in large complex networks.

8

4.1 Complexity analysis

In this section we make a few observations regarding the relative computational gain when
exploiting causal independence. We assume a belief network de�ned on N nodes, each
having a domain of size d and no more than m parents.

Since network transformations convert each CPT de�ned on m + 1 nodes (m parents
and a child) into a belief network where each family has no more than 3 variables, the size
of a problem's speci�cation decreases from O(dm+1) to O(md3).

Proposition 1: [transformation complexity]
The complexity of a network transformation and the size of its output T is O(Nmd3).

Proof: For each causally-independent family having m parents, its transformation
introduces no more than m hidden variables (the number of internal nodes in a binary tree
having m leaves). Correspondingly, there are no more than m new CPTs, each de�ned on
3 variables. This yields O(md3) time and space complexity. Since T has O(Nm) nodes
and family sizes not exceeding 3, its speci�cation requires O(Nmd3) space. 2

Since T has O(Nm) nodes, it immediately follows from Theorem 1 that

Proposition 2: [inference complexity]
The complexity of belief updating in a causally-independent network is O(Nmdw

�

o+1), where
w�
o is the induced width of the moralized transformed network along an ordering o. 2

An ordering having a relatively low induced width can be found in advance using greedy
ordering heuristics (see [3, 6] for details) on the transformed network's graph.

Occasionally network transformations allow a signi�cant decrease in the induced width,
which leads to an exponential complexity reduction.

Proposition 3: [poly-trees]
Given a causally-independent poly-tree, the complexity of belief update on the transformed
network is O(Nmd3), while its complexity on the original network is O(Ndm+1).

Proof: A family with m parents is associated with a CPT on m + 1 variables which
yields a O(dm+1) time and space complexity. Obversely, a transformed network is a poly-
tree having families of size 3 or smaller. It allows an ordering having w� = 2, where query
nodes appear at the beginning (as required by elim-bel). Therefore, the complexity of
elim-bel on the transformed poly-trees is O(Nmd3). 2

Proposition 3 generalizes Pearl's result for noisy-OR poly-trees [14]. Remember, the
standard poly-tree algorithm is exponential in size of a largest parent set, i.e. O(Ndm).

Although the transformations always reduce the family size of the input network, it
is not obvious how introducing hidden variables a�ects w�. We will now examine the
relationship between w� of the transformed network relative to w� of the unmoralized
input network.

9

x1 x2 x3

y

z z

y y

x1 x2 x3

y1 2

(a) (b)

Figure 4: (a) A Bayesian network and (b) its (moralized) temporal transformation

Proposition 4: [w� on the input variables]
Given an (unmoralized) network BN having induced width w� along an ordering o, and
given a transformed network T , there exists an extension of o to o0 such that the induced
width of moralized T along o0, computed only with regard to the variables of BN, is not
larger than w�. 2

The proof of this proposition can be found in the Appendix.
We will explore some classes of networks in which the induced width of the transformed

network is the same as the induced width of the unmoralized input network.

Example 4: Consider the network in Figure 4a and its moralized temporal transformation
in Figure 4b. Given the ordering o = z; y; x3; x2; x1, the induced width of the original
unmoralized network is 2. The induced width of the moralized transformed network along
the ordering o0 = z; y; y1; y2; x3; x2; x1 is also 2. Note that the induced width of the
moralized original network is 3.

In general,

Proposition 5: If no two convergent variables in a network BN have more than one
common parent (e.g., Figure 4a), then the induced width of T equals the induced width of
the unmoralized BN. 2

See Appendix for proof.
Causal independence is exploited whenever parents are eliminated before their children,

otherwise eliminating a child will reconstruct the full CPT. However, there are cases when
it is better to ignore causal independence.

Example 5: Consider the network in Figure 5a, and its decomposition network in Figure
5b. Eliminating each parent xi connects uai ; u

b
i ; and u

c
i to each other, therefore, eliminating

next the pair fua1; u
a
2g connects a to the rest of the hidden variables, yielding w� = 5.

10

x x

a b c

1 2

a b c

1 2 12
aa

1 2
b b c c

x1 x2

u u u u u u

(a) (b)

Figure 5: (a) A 2-3 network and (b) its decomposition network

However, the induced width of the original moral graph (Figure 5a) along o =(a, b, c, x1,
x2) is just 2. The same w� is attained in the decomposition network when the hidden
variables are eliminated �rst (i.e., the original CPTs are reconstructed).

The network in Figure 5a is an example of a k-n-network, which is a two-layer network
with k nodes in the top layer, each connected to (some of) n nodes in the bottom layer.
Other examples of k-n-networks are binary-node 2-layer noisy-OR (BN2O) networks, such
as the ones used in QMR-DT knowledge base [15].

The example above suggests that eliminating parents (e.g., x1 and x2) before their
children and before their hidden nodes in a k-n-network yields O((k + n)d2n) complexity,
while the complexity of eliminating the hidden nodes �rst (thus reconstructing the CPTs)
is O((k + n)dk). Therefore,

Proposition 6: [k-n-networks] The complexity of belief update in a causally-independent
k-n-network is O(dminfk;2ng). 2

Note that when k > 2n, exploiting causal independence can exponentially improve
the performance of standard belief update algorithms. However, when k < 2n, causal
independence should be ignored.

Figure 6 presents a variable ordering procedure which guarantees that exploiting causal
independence does not hurt the performance of belief update algorithms. The procedure
�nds a good heuristic ordering of the transformed network and then, if necessary, restores
some CPTs in order to keep w� of the transformed network lower than or equal to w� of
the original network.

The impact of the network transformations on the performance of elim-bel can be
summarized as follows:

1. On poly-trees, exploiting causal independence improves the performance of belief
update from O(Ndm) to O(Nmd3), where N is the number of nodes in BN, d is the
domain size, and m bounds the parent set size.

11

Procedure: Order
Input: a network BN, and a transformed network T .
Output: an ordering oT of T s.t. w�

oT
� w�

oI
,

where w�
oI
is the restriction of oT to the variables of BN.

1. �nd a good heuristic ordering oT of the transformed network.
Let oI be the restriction of oT to the variables of BN.

2. For each variable x in oT , going from last to �rst,
If w�

oT
(x) > w�

oI
:

If x is an input variable, move all hidden variables yxi
related to x to the top of the ordering oT .
Else if x = yzi is a hidden variable of some convergent variable z,
put all z's hidden variables at the top of the ordering oT .

3. Return oT .

Figure 6: Procedure order.

2. In many cases, when the w� of moralized transformed network equals the w� of the
unmoralized input network, the performance improves exponentially.

3. Exploiting causal independence in k-n-networks yields O((k + n)dminfk;2ng) complex-
ity, which is better than O((k + n)dk) complexity of general-purpose algorithms for
bounded n and increasing k.

4. Sometimes a bad ordering of the hidden variables may increase the inference complex-
ity. We provide the ordering repair procedure order that guarantees non-increasing
complexity when using network transformations.

5 Variable Elimination

In this section, we present algorithm ci-elim-bel for belief updating in causally-independent
networks. This algorithm is a re-derivation of elimination algorithm VE1 [18] that avoids
certain ordering restrictions of the latter and allows a better performance. Our algorithm
works directly on the input speci�cation of causally-independent families, and uses a graph
transformation only to guide the ordering.

The algorithm's derivation is demonstrated below.

Example 6: Consider the noisy-OR belief network in Figure 7a. Causal independence is
explicitly depicted by the graph in Figure 7b. The query P (x3jx1 = 0) can be computed

12

x1 x2 x3

y

z
1x

z

y

1 2u

2x

u3

x3

u y yy

1x

z

y

1 2u

2x

u3

x3

u y yy

y1

(a) (b) (c)

Figure 7: (a) A belief network, (b) its dependency graph, and (c) its decomposition graph

as follows: X

z;y;x2;x1=0

P (z)P (x1jz)P (x2jz)P (x3jz)P (yjx1; x2; x3) =

X

z;y;x2;x1=0

P (z)P (x1jz)P (x2jz)P (x3jz)
X

fu
y
1
;u
y
2
;u
y
3
jy=uy

1
_u

y
2
_u

y
3
g

P (uy1jx1)P (u
y
2jx2)P (u

y
3jx3):

Assuming the decomposition network in Figure 7c, decomposing
P

fuy
1
;u
y
2
;u
y
3
jy=uy

1
_uy

2
_uy

3
g ac-

cordingly, and pushing the summation over x1 and x2 as far to the right as possible, yields:

X

z

P (z)P (x3jz)
X

y

X

fy1;u
y
3
jy=y1_u

y
3
g

P (uy3jx3)
X

fuy
1
;u
y
2
jy1=u

y
1
_uy

2
g

X

x2

P (x2jz)P (u
y
2jx2)

X

x1=0

P (x1jz)P (u
y
1jx1):

The variables can be summed out from right to left along the ordering o = (x3, z, y,
fy1; u

y
3g, fu

y
1; u

y
2g, x2, x1).

The summations can be rearranged in any legal order, where each pair of hidden variables
fyl; ykg, where y = yl � yk, is summed out before its parent y in the decomposition tree.
The de�nition of width and induced width can be easily extended to orderings that include
subsets of variables.

Algorithm ci-elim-bel (Figure 8) computes P (x1je). It assumes as an input a decompo-
sition network (GD; P; C), a legal ordering o = (Z1; :::; Zn), where Z1 = fx1g, and evidence
e. As previously noted, Zi may be either a single variable, or a pair of hidden sibling vari-
ables in the decomposition network. Each Zi is associated with its bucket (bucketi) relative
to o. First, the components of P , C and e are partitioned into buckets. Each component
is placed in the bucket of its highest-index variable. Then the buckets are processed along
the reverse ordering, from Zn to Z1. If bucketi contains evidence x = a, the algorithm
instantiates x in all components and place each in an appropriate lower bucket. Otherwise,
it computes the product F of the bucket's components and sum out Zi's variable(s). If Zi

is a single variable x, we compute
P

x F . Otherwise, if Zi is a pair (yl; yk), then constraint

13

y = yl � yk is in the bucket. We compute
P

fyl;ykjy=yl�ykg F and add the resulting compo-
nent in the bucket of its highest variable. Finally, P (x1je) is computed in bucket1 as the
normalized product of all its components.

The complexity analysis of ci-elim-bel can be expressed in terms of the decomposition
graph and is identical to that of the transformation networks.

Algorithm ci-elim-bel

Input: A decomposition network, a legal ordering o = (Z1; :::; Zn),
and evidence e.

Output: P (x1je).
1. For i = n to i = 1, /* create buckets */

For each x 2 Zi, put in bucketi all network's components
whose highest ordered variable is x.

2. For i = n downto 1 do /* process buckets */
/* �1; :::; �m are probabilistic components in bucketi. */

� If x = a is in the bucket, replace x by a in each �i
and put the result in appropriate lower bucket.

� else
if Zi = fxg, /* input variable */
�Zi

P
x�j�j.

else /* Zi = fyl; ykg, y = yl � yk. */
�Zi

P
fyl;ykjy=yl�ykg

�j�j .
Put �Zi in the highest bucket that mentions �Zi 's variable.

3. Return Bel(x1) = ��x1 , where � is a normalizing constant.

Figure 8: Algorithm ci-elim-bel

6 Connection between network transformations, VE1,

and ci-elim-bel

Algorithm ci-elim-bel is similar to network transformations. Both methods assume a de-
composition of the input network into its decomposition graph. However, rather than
computing the CPTs of the transformed network in advance, ci-elim-bel postpones this
computation until the bucket processing.

On the other hand, ci-elim-bel is very similar to the variable elimination algorithm
VE1 proposed in [18]. Like ci-elim-bel, VE1 exploits the causal independence within the
elimination process and uses a \�ne-grain" representation of causally-independent CPTs

14

P (xjpa(x)) via their contributing factors P (uxi jyi), yi 2 pa(x). This algorithm is applied to
the input network, and does not explicitly mention the hidden variables uxi introduced by
causal independence. These variables are eliminated implicitly, using a new operator
.
This makes the derivation of the algorithm less transparent and assumes some restrictions
on the elimination ordering of the hidden variables. In certain cases, such as k-n-networks,
those restrictions can make VE1 exponentially worse than the original algorithm it tries to
improve, similar to what we observed with certain orderings of the transformed networks.
The
exibility of hidden variable ordering in the network transformation approach and
in the ci-elim-bel approach allows for ordering repair (Figure 6). Algorithm ci-elim-bel
bridges the gap between VE1 and the network transformations. On one hand, it is a
variable elimination variant of the network transformation approach. On the other hand,
it is identical to VE1 for certain restricted orderings. VE1 handles hidden variables uei in
contributing factors f i(e; ci) = P (uei jci) (see de�nition 1) using a new operator
 de�ned
as follows:

f
 g(e1 = �1; :::; ek = �k; Y) =
X

�11��12=�1

:::
X

�k1��k2=�k

f(e1 = �11; :::; ek = �k1; Y1) � g(e1 = �12; :::; ek = �k2; Y2);

where e1; :::; ek are all convergent variables that appear both in f and g, and Y = Y1 [Y2
is the set of all the other variables involved in f and g.

Using the operator
 and denoting f i(e; ci) = P (uei ; ci) shortens the notation. Consider
the network in Figure 5. An expression for P (c)
X

b

X

a

X

fuax1 ;u
a
x2
ja=uax1_u

a
x2
g

X

fubx1 ;u
b
x2
jb=ubx1_u

b
x2
g

X

fucx1 ;u
c
x2
jc=ucx1_u

c
x2
g

X

x2

P (uax2jx2)P (u
b
x2
jx2)P (u

c
x2
jx2)�

�
X

x1

P (uax1 jx1)P (u
b
x2
jx2)P (u

c
x1
jx1) = (4)

can be written as follows:

P (c) =
X

b

X

a

(
X

x2

f2a (a; x2)f
2
b (b; x2)f

2
c (c; x2))
 (

X

x1

f1a (a; x1)f
1
b (b; x1)f

1
c (c; x1)):

Algorithm VE1 is equivalent to ci-elim-bel along any ordering of the input variables
where hidden variables are eliminated by
 inside the buckets of input variables. In each
bucket, VE1 applies �rst
 to the appropriate components, and then sums over the bucket's
variable. For example, VE1 computes the sum 6 as:

1. Bucket x1 : ff
1
a (a; x1); f

1
b (b; x1); f

1
c (c; x1)g !

hx1(a; b; c) =
P

x1=0 f
1
a (a; x1)f

1
b (b; x2)f

1
c (c; x1)! put in bucket of a.

2. Bucket x2 : ff1a (a; x2); f
2
b (b; x2); f

2
c (c; x2)g !

hx2(a; b; c) =
P

x1=0 f
2
a (a; x2)f

2
b (b; x2)f

2
c (c; x2)! put in bucket of a.

15

3. Bucket a : fhx1(a; b; c); hx2(a; b; c)g !
3.1. h(a; b; c) = hx1(a; b; c)
 hx2(a; b; c)
3.2. ha(b; c) =

P
a h(a; b; c)!

put in bucket of b.

4. Bucket b : fh(a; b; c)g ! hb(c) =
P

b h
a(b; c)!

put in bucket of c.

5. Bucket c : fhb(c)g ! P (c) = �hb(c); where � is a normalizing constant.

The elimination ordering (c; b; a; x2; x1) used by VE1 corresponds to ci-elim-bel ordering
c; b; a; fucx1; u

c
x2
g; fubx1; u

b
x2
g; fuax1; u

a
x2
g; x1, x2. Note, that since the input ordering for

VE1 mentions only the input variables, hidden variable elimination ordering is restricted.
For example, the hidden variables uax1, u

b
x1
, ucx1 cannot be eliminated before both x1 and x2.

Therefore, the complexity of VE1 on this network along the ordering b; a; x1; x2 is O(d6),
while ci-elim-bel along the ordering b; a; x1; x2, fucx1; u

c
x2
g; fubx1; u

b
x2
g; fuax1; u

a
x2
g e�ectively

restores the original CPTs and yieldsO(d5) complexity, as discussed in the previous section.
To summarize,

Proposition 7: Given a belief network BN and an ordering o of its variables, there exists
a decomposition graph D and its ordering o0 which coincides with the computation order of
VE1. Therefore, the complexity of VE1 along o coincides with the complexity of ci-elim-bel
along o0. 2

7 Optimization tasks: �nding MPE, MAP, and MEU

Next, we investigate the impact of causal independence on the tasks of �nding MPE,
MAP, and MEU. It is not always possible to take advantage of causal independence in
optimization problems since permuting maximization and summation is not allowed, i.e.,

max
x

X

y

f(x; y) 6=
X

y

max
x

f(x; y):

This restricts the order of computations so that a CPT decomposition may not be exploited.
Consider the task of �nding MPE.

MPE = max
x1;:::;xN

Y

i

P (xijpai) = max
x1

F1 . . .max
xN

FN ;

where Fi =
Q

x P (xjpa(x)) is the product of all probabilistic components such that either
x = xi, or xi 2 pa(x). The bucket elimination algorithm elim-mpe sequentially eliminates
xi from right to left. However, the decomposition introduced by the causally-independent

16

CPTs within each Fj cannot be exploited. Given the causally-independent family in Figure
2a, having 3 parents c1, c2 and c3,

MPE = max
c1;c2 ;c3;e

P (c1)P (c2)P (c3)P (ejc1; c2; c3) =

= max
c1

P (c1)max
c2

P (c2)max
c3

P (c3)max
e

X

fy1;u
e
1
je=y1�u

e
1
g

P (ue1jc1)
X

fue
2
;ue
3
jy1=u

e
2
�ue

3
g

P (ue2jc2)P (u
e
3jc3):

Maximization and summation cannot be interchanged here, so the hidden variables must
be summed out before maximizing over c1, c2, c3. This reconstructs the CPT on the whole
family, i.e., causal independence has no e�ect. We will see later that causal independence
can be exploited for families whose child nodes are observed.

Nevertheless, two other optimization tasks of computing MAP and MEU allow ex-
ploiting causal independence, because they also involve summation over a subset of the
variables. By de�nition,

MAP = max
x1;:::;xm

X

xm+1;:::;xN

Y

i

P (xijpai);

where x1; :::; xk are the hypothesis variables. Given the same network in Figure 2a and
hypothesis e,

MAP = max
e

X

c1;c2;c3

P (c1)P (c2)P (c3)P (ejc1; c2; c3):

Decomposing the causally-independent P (ejc1; c2; c3) and rearranging the summation order
gives:

MPE = max
e

X

c1

P (c1)
X

c2

P (c2)
X

c3

P (c3)

X

fy1;u
e
1
je=y1�ue1g

P (ue1jc1)
X

fue
2
;ue
3
jy1=ue2�u

e
3
g

P (ue2jc2)P (u
e
3jc3) =

= max
e

X

fy1;ue1je=y1�u
e
1
g

X

fue
2
;ue
3
jy1=ue2�u

e
3
g

X

c1

P (c1)P (u
e
1jc1)

X

c2

P (c2)P (u
e
2jc2)

X

c3

P (c3)P (u
e
3jc3):

The summations over the parents ci and the corresponding hidden variables can be re-
arranged in this example. Generally speaking, a decomposition of CPTs due to causal
independence can be exploited when (at least some) parents in the causally-independent
family are not included in the hypothesis.

Algorithm ci-elim-map for computing MAP in causally-independent networks is shown
in Figure 9. It is similar to ci-elim-bel, except that a decomposition network does not

17

Algorithm ci-elim-map

Input: A decomposition network, a hypothesis H 2 X, an evidence e, and
a legal ordering o = (Z1; :::; Zn), where Z1; :::; Zm are hypothesis variables.

Output: An assignment h = arg maxa P (H = aje).
1. For i = n to i = 1, /* make buckets */

For each x 2 Zi, put in bucketi all network's components
whose highest ordered variable is x.

2. /* Elimination */
/* �1; :::; �k are probabilistic components in bucketi. */

2.1.For i = n downto m+ 1 do /* sum-out */
� If x = a is in the bucket, /* observation */

replace x by a in each �i and put
the result in appropriate lower bucket.

� else
if Zi = fxg /* input variable */
�Zi

P
x

Q
j �j.

else /* Zi = fyl; ykg, y = yl � yk. */
�Zi

P
fyl;ykjy=yl�ykg

Q
j �j .

Put �Zi in the highest bucket that mentions �Zi 's variable.
2.2. For i = m downto 1 do

�Zi maxx
Q

j �j .
3. For i = 1 to i = m, /* �nd assignment h */

hi arg maxa
Q

j �j(x = a; :::)
4. Return assignment h.

Figure 9: Algorithm ci-elim-map

18

transform the families of child nodes which are included in the hypothesis. Those families
will be moralized in the decomposition graph. The hypothesis variables are placed �rst in
the ordering and eliminated by maximiziation over

Q
j �j, where �j are the probabilistic

components in the corresponding bucket.
Similarly to MAP, MEU is computed by summing over a subset of the variables and

maximizing over the rest. By de�nition,

MEU = max
x1;:::;xm

X

xm+1;:::;xN

Y

i

P (xijpai)U(x1; :::; xN);

where x1; :::; xm are decision variables (usually denoted d1; :::; dm), xm+1; :::; xN are chance
variables, and U(x1; :::; xN) is a utility function. The utility is often assumed to be decom-
posable: U(x1; :::; xN) =

P
r(xi), where r(xi) are individual utilities, or rewards. A belief

network with decision nodes and a utility function is also called an in
uence diagram.
A bucket elimination algorithm elim-meu for computing the MEU was presented in [7].

It assumes that the decision variables have no parents, and puts them �rst in the ordering.
Assume that c1 in example of Figure 2a is a decision variable, and that the utility is

decomposable, U(d; e; c2; c3) = r(d) + r(e) + r(c2) + r(c3). Then

MEU = max
d

X

e;c2;c3

P (c2)P (c3)P (ejd; c2; c3)U(d; e; c2; c3):

Decomposition of P (ejd; c2; c3) into pairwise sums yields:

max
d

X

e

X

e;c2;c3

P (c2)P (c3)
X

fy1;u
e
1
je=y1�u

e
1
g

P (ue1jd)�

�
X

fue
2
;ue
3
jy1=ue2�u

e
3
g

P (ue2jc2)P (u
e
3jc3)U(d; e; c2; c3):

Pushing the summations over c2 and c3 to the right produces

max
d

X

e

X

fy1;u
e
1
je=y1�ue1g

P (ue1jd)
X

fue
2
;ue
3
jy1=ue2�u

e
3
g

X

c2

P (c2)P (u
e
2jc2)

X

c3

P (c3)P (u
e
3jc3)U(d; e; c2; c3):

Using decomposability of the utility, the last summation (over c3) can be expressed as

X

c3

P (c3)P (u
e
3jc3)[r(d) + r(e) + r(c2) + r(c3)] =

= [
X

c3

P (c3)P (u
e
3jc3)](r(d) + r(e) + r(c2))+

19

Algorithm ci-elim-meu

Input: A decomposition network, a legal ordering o = (Z1; :::; Zn),
Z1 = fd1g,..., Zm = fdmg, an evidence e.

Output: An assignment d1; :::; dm to decision variables that
maximizes the expected utility.
1. Initialization:

For i = n to i = 1 /* make buckets */
For each x 2 Zi, put in bucketi all network's components
whose highest ordered variable is x.

2. /* Elimination */
/* �j and �k denote probabilistic and utility
components, correspondingly, in bucketi. */
2.1. For i = n down to m+ 1 do /* chance nodes */
� If x = a is in the bucket, replace x by a in each �i

and put the result in appropriate lower bucket.
� Else if Zi = fxg,

�i
P

x�j�j .
�i

P
x�j�j

P
k �k.

� Else if Zi = fyl; ykg and y = yl � yk,
�i

P
fyl;yk jy=yl�ykg

�j�j
�i

P
fyl;ykjy=yl�ykg�j�j

P
k �k.

Put �i and �i = �i=�i in the buckets
of their highest-index variables.

2.2. For i = m to 1 do
/* decision nodes Zi = fdg */

�i �j�j
P

k �k

i maxd �i
di = arg maxd �i

Put
i in the bucket of its highest variable.
3. Return an optimal set of functions (d1; :::dm) recorded in the decision buckets,
and the maximum expected utility Ve.

Figure 10: Algorithm ci-elim-meu

20

+
X

c3

P (c3)P (u
e
3jc3)r(c3) =

= [
X

c3

P (c3)P (u
e
3jc3)][r(d) + r(e) + r(c2)+

+

P
c3
P (c3)P (ue3jc3)r(c3)P
c3
P (c3)P (ue3jc3)

] =

= �c3 (ue3)[r(d) + r(e) + r(c2) + �c3(ue3)];

where

�c3(ue3) =
X

c3

P (c3)P (u
e
3jc3);

�c3(ue3) =
�c3(u

e
3)

�c3(ue3)
; and

�c3 =
X

c3

P (c3)P (u
e
3jc3)r(c3):

In each bucket we will have probability components �i and utility components �j . Initially,
the probabilistic components are those speci�ed in the belief network, and the utility
components are the individual rewards. We compute a new pair of � and � in each bucket,
as demonstrated above, and place them in the appropriate lower buckets. For example,
both new components �c3(ue3) and �c3(ue3) will be placed in bucket fue2; u

e
3g.

Algorithm ci-elim-meu is shown in Figure 10. Since causal independence is not de�ned
for decision nodes, the decomposition network transforms only the families of chance nodes.
As with ci-elim-bel and ci-elim-map, ci-elim-meu partitions into buckets all the network
components (including the utility components) into buckets. Then it processes chance
nodes, from last to �rst, computing the new � and � (see step 2.1 of the algorithm). The
only di�erence between ci-elim-meu and elim-meu [7] is that the summation operation
in buckets of hidden variables is di�erent. Finally, the buckets of the decision nodes are
processed by maximization and an optimal assignment to those nodes is generated.

Comparably to ci-elim-bel,

Theorem 2: The complexity of ci-elim-map and ci-elim-meu is O(Nmdw
�

o+1), where w�
o

is the induced width of a decomposition network along its ordering o. 2

The decomposition graph can be inspected to determine the bene�ts of causal inde-
pendence before running the algorithm. As for belief updating, the induced width of the
decomposition network can be as small as the induced width of the original unmoralized
graph, and no larger than the induced width of the network's moral graph.

21

Algorithm hybrid-elim

Input: A Hybrid network CBN = fX;P;Cg, an ordered partition
of X, o = (Z1; :::; Zn), Z1 = fx1g, and evidence e.

Output: P (x1je).
1. Propagate evidence(CBN; e).
2. Buckets = Make buckets(CBN; e; o).
3. For i = n downto 1 do

Eliminate(Zi) .

Figure 11: Algorithm hybrid-elim

Make buckets(N; e; o)

Input: A network N = fX;P;Cg, and
an ordering o = (Z1; :::; Zn) of N .

Input: A list of n buckets.
For i = n to i = 1, /* Partition P , C and e into buckets for each Zi */

For each x 2 Zi, put in bucketi all components in P , C, and e
whose highest ordered variable is x.

Return buckets.

Figure 12: Procedure Make buckets

8 Evidence propagation

Causal independence allows an e�cient way of handling evidence via evidence propagation.
For particular classes of belief networks, such as noisy-OR, this may result in exponential
complexity decrease.

Note that causal independence allows transforming a belief network into one that has
both probabilities and constraints (we will call such networks hybrid). A decomposition
network contains constraints on hidden variables having the form y = yi � yj (in transfor-
mation networks constraints are represented by deterministic CPTs).

Applying constraint propagation techniques such as arc-consistency to hybrid networks
can signi�cantly reduce the complexity of inference.

A general elimination scheme for hybrid networks is shown in Figure 11. An input
hybrid network CBN is a triplet fX;P;Cg, where X is the set of nodes, P is the set of
conditional probability distributions, and C is the set of constraints. First, the procedure
Make buckets creates buckets in a standard way. Then the procedure Propagate evidence

22

Propagate evidence(N; e)

Input: A hybrid network N = fX;P;Cg, and evidence list e = f(xi = ai)g.
/* Assume D is the domain of the variables, jDj > 1 */
1. C = C [e /* add singleton constraints */
2. Perform arc-consistency on (X;C) /* shrink domains*/

/* Dx will denote a new domain of a variable x. */
3. /* Restrict the probabilities to new domains */
For each probabilistic component p(Y) 2 P , Y � X

For each variable x 2 Y
If jDxj < jDj /* the domain of x has shrunk */
restrict p(Y) on x 2 Dx.

Figure 13: Procedure Propagate evidence

(Figure 13) performs arc-consistency on a subset of variables that participate in constrains.
Arc-consistency may reduce the variables' domains so that the CPTs involving such vari-
ables need to be restricted to the new domains. The algorithm will assign zero probabilities
to the tuples involving inconsistent domain values. Note, that arc-consistency in belief net-
works can never produce an empty domain, since an empty domain of a variable implies
no non-zero-probability tuple exists, which contradicts the de�nition of probabilistic dis-
tribution. If all observations are made on regular variables, Propagate evidence simply
replaces observed variables by their values in the corresponding probabilistic components.
However, an observation on a convergent variable may cause domain reduction of other
variables (for example, given that x = y_ z in a noisy-OR network, evidence x = 0 implies
y = 0 and z = 0). Finally, after propagating evidence, an elimination procedure will be
invoked that solves a particular task such as belief update, �nding MPE, MAP, or MEU.

9 Noisy-OR networks

In this section we investigate how speci�c properties of the operator � can be exploited for
particular classes of causally-independent networks, such as noisy-OR.

Consider a commonly used class of noisy-OR networks, called BN2O (Binary Node 2-
layer Noisy-OR) networks. BN2O networks are used in medical database called QMR-DT
[15]. A fully-connected BN2O network with k diseases and n �ndings is a k-n-network. The
nodes di in the top layer represent diseases, while the bottom-layer nodes fj correspond
to �ndings (see Figure 14a). The assignment fi = 0 is called a negative �nding, while the
assignment fi = 1 is called a positive �nding. Assuming that all �nding nodes are observed

23

1 2 3d d d

ff 21

d31d 2d

u1u1 u2
1 u1 2

2 2

y y

u3
1 u3

2

1 2ff

(a) (b)

Figure 14: (a) A BN2O network; (b) its decomposition network.

(evidence is denoted by e), the algorithm Quickscore, proposed by [9], �nds P (dije) in
O(exp(p)) time, where p is the number of positive �ndings. Note that for k < p it is faster
to run a standard inference algorithm, such as elim � bel, which takes O(exp(k)) time.
Therefore, the state-of-the art algorithm for BN2O networks can be written as follows:
1. if k < p, run elim-bel;
2. otherwise, run Quickscore.
Then the complexity of �nding P (dije) in BN2O networks is O(exp(minfk; pg)). Let us
compare it to the complexity of ci-elim-bel. Since fully-connected BN2O network is a
k-n-network, the complexity of ci-elim-bel is O(exp(minfk; 2ng)) (proposition 6). This
complexity can be decreased by evidence propagation.

Theorem 3: Given a BN2O network with k diseases, n �ndings, and evidence e that con-
sists of p positive and n�p negative �ndings, ci-elim-bel takes O(exp(minfk; 2pg) time and
space to compute P (dije), if the network is preprocessed by the procedure Propagate evidence.

Proof: Propagating negative evidence causes instantiation of all hidden variables associ-
ated with negative �ndings in a decomposition network. Eliminating these variables cannot
add induced arcs to the network, so that they can be ignored for the purpose of complexity
analysis. What is left is a k-p-network, which has the complexity of O(exp(minfk; 2pg). 2

Example 7 shows the e�ect of evidence propagation in the case of negative evidence.

Example 7: Consider a BN2O network in Figure 14a. Its decomposition network is
shown in Figure 14b. Let the query be P (d1je), and let e = ff1 = 0; f2 = 0g. This
evidence will be propagated by Propagate evidence procedure in the initialization step of
ci-elim-bel, �rst setting y1, u13, y2, u

2
3 to 0, and next setting u11, u

1
2, u

2
1, and u22 to 0. The

bucket of the query variable d1 has to be �rst in the ordering since it is the query variable.
Assume that all instantiated variables are processed �rst, then the rest of the variables are
processed in the following manner:

24

1. Bucket d3:fP (u31 = 0jd3); P (u32 = 0jd3)g !
hd3 =

P
d3
P (u31 = 0jd3)P (u32 = 0jd3) is a constant.

2. Bucket d2:fP (u21 = 0jd2); P (u22 = 0jd2)g !
hd2 =

P
d2
P (u21 = 0jd2)P (u22 = 0jd3) is a constant.

3. Bucket d1: fP (u
2
1 = 0jd2); P (u

2
2 = 0jd2)g !

P (d1je) = �P (u21 = 0jd2); P (u22 = 0jd2), where � is a normalization constant.

It is easy to show that given a BN2O network with all-negative �ndings, elimination is
linear in the total number of �ndings, n.

As stated by theorem 3, the complexity of ci-elim-bel after evidence propagation is
O(exp(minfk; 2pg)). This is worse than the O(exp(p)) complexity of Quickscore for k >
p. Let us look more closely at how Quickscore works. In general, any (exact) inference
algorithm corresponds to a particular decomposition of the sum 1 into simpler expressions.
Variable elimination decomposes this sum into a product of linear number of (possible
exponential) functions. In contrast, Quickscore uses a decomposition into exponential
number of summands, each computed in linear time. Following [9], we derive the algorithm
Quickscore and analyze its complexity.

Consider the network in Figure 14(a), assuming positive evidence f1 = 1 and f2 = 1.
Since

P (fi = 1jd1; d2; d3) = 1�P (fi = 0jd1; d2; d3) = 1�P (ui1 = 0jd1)P (u
i
2 = 0jd2)P (u

i
3 = 0jd3);

then

P (d1jf1 = 1; f2 = 1) = �
X

d2

X

d3

P (d1)P (d2)P (d3)P (f1 = 1jd1; d2; d3)P (f2 = 1jd1; d2; d3) =

= �
X

d2

X

d3

P (d2)P (d3)(1�
3Y

j=1

P (u1j = 0jdj))(1�
3Y

j=1

P (u2j = 0jdj)) =

= �
X

d2

P (d2)
X

d3

P (d3)[1�
3Y

j=1

P (u1j = 0jdj))�
3Y

j=1

P (u2j = 0jdj)+
3Y

j=1

P (u1j = 0jdj))P (u
2
j = 0jdj)] =

= �[1� P (u11 = 0jd1)
X

d2

P (d2)P (u
1
2 = 0jd2)

X

d3

P (d3)P (u
1
3 = 0jd3)�

�P (u21 = 0jd1)
X

d2

P (d2)P (u
2
2 = 0jd2)

X

d3

P (d3)P (u
2
3 = 0jd3)+

+P (u11 = 0jd1)P (u
2
1 = 0jd1)

X

d2

P (d2)P (u
1
2 = 0jd2)P (u

2
2 = 0jd2)

X

d3

P (d3)P (u
1
3 = 0jd3)P (u

2
3 = 0jd3);

25

where � is a normalizing constant. The number of summands is exponential in the number
of positive evidence p = 2, while each summand is a function of a single variable.

Let us further consider a general network BN2O having k diseases and n �ndings, where
p �ndings are positive and the rest of them are negative. If F+ denotes the set of positive
�ndings and F� denotes the set of negative �ndings, then

P (d1jF
+; F�) = �

X

d2;:::;dk

kY

i=1

P (di)
Y

fj2F�

P (fj = 0jd1; :::; dk)
Y

fl2F+

P (fl = 1jd1; :::; dk) =

= �
X

d2;:::;dk

kY

i=1

P (di)P
�P+;

where

P� =
Y

fj2F�

P (fj = 0jd1; :::; dk) =
Y

fj2F�

kY

i=1

P (uji = 0jdi);

and

P+ =
Y

fl2F+

P (fl = 1jd1; :::; dk) =
Y

fl2F+

(1�
kY

i=1

P (uli = 0jdi)) =

=
X

F 022F+

(�1)jF
0j

kY

i=1

Y

fl2F 0

P (uli = 0jdi):

Therefore,

P� � P+ =
X

F 022F
+

(�1)jF
0j

kY

i=1

Y

fj2F 0[F�

P (uji = 0jdi);

and

P (d1jF
+; F�) = �

X

d2;:::;dk

kY

i=1

P (di)P
�P+ =

�
X

F 022F+

(�1)jF
0j
X

d2;:::;dk

kY

i=1

[P (di)
Y

fj2F 0[F�

P (uji = 0jdi)] =

= �
X

F 022F+

(�1)jF
0j

kY

i=1

X

di

[P (di)
Y

fj2F 0[F�

P (uji = 0jdi)]:

Computing each factor

P (di)
Y

fj2F 0[F�

P (uji = 0jdi)

26

is linear in jF 0 [F�j � n, so that computing each

kY

i=1

X

di

[P (di)
Y

fj2F 0[F�

P (uji = 0jdi)]

is O(kn), and the total complexity of computing P (d1jF+; F�) is O(kn2p), since the outer
sum

P
F 022F+ has 2jF

+ j = 2p summands.
In the next section, we will show how the approach used by Quickscore can improve

the performance of ci-elim-bel.

9.1 NOR-elim-bel algorithm for noisy-OR networks

AlgorithmNOR-elim-bel, presented below, combines both variable elimination andQuickscore
approaches and applies them to arbitrary noisy-OR networks.

Assume a noisy-OR network de�ned on n nodes x1,...,xn, where the �rst k nodes are
not observed. The next p nodes are observed positive �ndings F+ = fxk+1; :::; xk+pg, and
the rest of the nodes are observed negative �ndings F� = fxk+p+1; :::; xng. Then P (x1je)
can be computed as

P (x1je) = �
X

x2:::xk

kY

i=1

P (xijpa(xi))
Y

xj2F�

P (xj = 0jpa(xj))
Y

xl2F+

P (xl = 1jpa(xl)) =

= �
X

x2:::xk

kY

i=1

P (xijpa(xi))
Y

xj2F�

Y

xm2pa(xj)

P (ujm = 0jxm)
Y

xl2F+

(1 �
Y

xq2pa(xl)

P (ulq = 0jxq)) =

= �
X

x2:::xk

kY

i=1

P (xijpa(xi))
Y

xj2F�

Y

xm2pa(xj)

P (ujm = 0jxm)
X

F 022F+

(�1)jF
0j
Y

xl2F 0

Y

xq2pa(xl)

P (ulq = 0jxq) =

= �
X

F 022F+

(�1)jF
0j[
X

x2

P (x2jpa(x2)
Y

fxj:xj2F 0[F�;x22pa(xj)g

P (uj2 = 0jx2)� :::�

�
X

xk

P (xkjpa(xk)
Y

fxj:xj2F 0[F�;xk2pa(xj)g

P (ujk = 0jxk)]:

This summation contains 2p summands. However, each summand is more complex than in
the case of BN2O networks. It can be computed by variable elimination over the variables
x2,...,xk. The total complexity can be computed as follows. Let us moralize a network
and delete all evidence nodes. The resulting network is denoted BNe, and has induced
width w�(BNe). The complexity of computing each summand is O(N2w

�(BNe)). The total
complexity is O(N2w

�(BNe) � 2p) = O(N2w
�(BNe)+p). Should we decide not to exploit the

positive evidence decomposition, the summation would be expressed as:

�[
X

x2

P (x2jpa(x2)
Y

fxj:xj2[F�;x22pa(xj)g

P (uj2 = 0jx2)� :::�

27

Algorithm NOR-elim-bel

Input: A noisy-OR network BN = fX;Pg, an ordering
o = (x1; :::; xN) of input variables, and evidence e, where
F� is the set of 0-valued nodes and F+ is the set of 1-valued nodes.

Output: P (x1je).
1. Initialization:

1.1. Restrict BN to BNe = fX 0; P 0g: replace observed variables
by their values in P , and delete them from X.

1.2. Compute D(BNe) = fX 0; P 0; C;Gg.
1.3. Find a legal ordering o0 = (Z1; :::; Zn) of D(BNe), Z1 = fx1g,

that agrees with o.
1.4. Buckets = Make buckets(D; e; o).
/* Put the negative-evidence components in buckets */
1.5. For each xi 2 X

0

For each xj 2 F
�, s.t. xi 2 pa(xj)

put P (uji = 0jxi) in the bucketi 2 Buckets.
1.6. Bel(x1) 0.

2. For each F 0 2 2F
+

2.1. Buckets0 = Buckets /* make a copy of Buckets */
2.2. /* Put the positive-evidence components in buckets */
For each xi 2 X

0

For each xj 2 F
+, s.t. xi 2 pa(xj)

put P (uji = 0jxi) in the bucketi 2 Buckets0.
Compute Bel0(x1) = ci� elim� bel(Buckets0; o0).

2.4. Bel(x1) Bel(x1) + (�1)jF
0jBel0(x1):

/* End for */
3. Return Bel(x1).

Figure 15: Algorithm NOR-elim-bel

28

�
X

xk

P (xkjpa(xk)
Y

fxj:xj2[F�;xk2pa(xj)g

P (ujk = 0jxk)
Y

xl2F+

P (xl = 0jpa(xl))];

and can be computed in O(N2w
�(BNe�)) time and space, where BNe� is the moralized input

network without the negative evidence nodes. Therefore, we can decide upfront, comparing
w�(BNe�) versus (w

�(BNe) + p), whether the decomposition due positive evidence helps
or hurts.

We did not exploit the causal independence in families with unknown variables x2,...,xk,
assuming that each summand is computed using elim-bel. Instead, using ci-elim-bel gives
the complexityO(N2w

�(De)+p), where De is a network obtained by deleting all instantiated
(singleton-domain) nodes from a decomposition network.

AlgorithmNOR-elim-bel, shown in Figure 15, follows the computations presented above.
Given a noisy-OR network, we choose NOR-elim-bel if w�(BNe) + p < w�(De), otherwise,
ci-elim-bel is preferred. For each summand we eliminate x2,...,xk by ci-elim-bel. The only
di�erence is that additional factors P (uji jxi) are added to the bucket of each xi, where xj
are observed children of xi.

10 Conclusion

In this paper we augmented bucket-elimination algorithms for probabilistic inference with
features that exploit causal independence. The complexity of the modi�ed algorithms for
tasks such as belief updating, �nding the maximum aposteriori hypothesis and �nding the
maximum expected utility is exponential in the induced width of the network's decom-
position graph. This induced width does not exceed the induced width of the network's
moral graph (if a proper ordering is used) and may be as small as the induced width of
the unmoralized network's graph. Consequently, exploiting causal independence reduces
complexity, sometimes by an exponential factor (e.g., poly-trees).

We investigated the degree to which causal independence can be exploited in belief
updating, �nding MPE, MAP, and MEU. We conclude that causal independence may not
help �nding MPE, while it helps (sometimes considerably) the other tasks.

We discussed how evidence can be exploited to speed up inference in causally-independent
networks. Decomposed causally-independent networks include both probabilities and con-
straints. Constraints allow more e�cient handling of observations known as constraint
propagation (e.g., arc-consistency). We outlined a general evidence propagation technique
for causally-independence networks and proposed an algorithm NOR-elim-bel that applies
arc-consistency to noisy-OR networks.

Experimental evaluation of the proposed algorithms is a direction for future work.

29

References

[1] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of �nding embedding in
a k-tree. Journal of SIAM, Algebraic Discrete Methods, 8(2):177{184, 1987.

[2] A. Becker and D. Geiger. A su�ciently fast algorithm for �nding close to optimal
junction trees. In Proc. Twelfth Conf. on Uncertainty in Arti�cial Intelligence, pages
81{89, 1996.

[3] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, New
York, 1972.

[4] G.F. Cooper. The computational complexity of probabilistic inference using Bayesian
belief networks. Arti�cial Intelligence, 42(2{3):393{405, 1990.

[5] B. D'Ambrosio. Symbolic probabilistic inference in large BN2O networks. In Proc.
Tenth Conf. on Uncertainty in Arti�cial Intelligence, pages 128{135, 1994.

[6] R. Dechter. Constraint networks. In Encyclopedia of Arti�cial Intelligence. John Wiley
& Sons, 2nd edition, 1992.

[7] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference. In
Proc. Twelfth Conf. on Uncertainty in Arti�cial Intelligence, pages 211{219, 1996.

[8] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems.
Arti�cial Intelligence, 34:1{38, 1987.

[9] D. Heckerman. A tractable inference algorithm for diagnosing multiple diseases. In
Proc. Fifth Conf. on Uncertainty in Arti�cial Intelligence, pages 174{181, 1989.

[10] D. Heckerman and J. Breese. A new look at causal independence. In Proc. Tenth
Conf. on Uncertainty in Arti�cial Intelligence, pages 286{292, 1994.

[11] F. Jensen, S. Lauritzen, and K. Olesen. Bayesian updating in recursive graphical
models by local computations. Computational Statistics Quarterly, 4:269{282, 1990.

[12] S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical
structures and their applications to expert systems. Journal of the Royal Statistical
Society, Series B, 50(2):157{224, 1988.

[13] K.G. Olesen, U. Kjaerul�, F. Jensen, B. Falck, S. Andreassen, and S.K. Andersen.
A Munin network for the median nerve - a case study on loops. Applied Arti�cial
Intelligence, 3:384{403, 1989.

30

Orderings:

uy

uy

uy

uz

uz

x x

y y

z z

O O’

z

1

2

3

u1

2

3

Figure 16: An extension of an ordering o of BN to an ordering o0 of T such that all uyi
immediately follow y.

[14] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers, San Mateo, California, 1988.

[15] M. Pradhan, G. Provan, B. Middleton, and M. Henrion. Knowledge engineering for
large belief networks. In Proc. Tenth Conf. on Uncertainty in Arti�cial Intelligence,
1994.

[16] G. Shafer and P. Shenoy. Probability propagation. Annals of Mathematics and Arti-
�cial Intelligence, 2:327{352, 1990.

[17] S. Srinivas. A generalization of noisy-OR model. In Proc. Ninth Conf. on Uncertainty
in Arti�cial Intelligence, pages 208{215, 1993.

[18] N.L. Zhang and D. Poole. Exploiting causal independence in Bayesian network infer-
ence. Journal of Arti�cial Intelligence Research, 5:301{328, 1996.

Appendix

Proofs

Proposition 4: Given an (unmoralized) network BN having induced width w� along an
ordering o, and given a transformation T , there exists an extension of o to o0 such that the
induced width of moralized T along o0, computed only with regard to the variables of BN,
is not larger than w�.

31

Proof: Assume that G is the induced graph of BN along o, and that GT is the induced
graph of the moralized T along o0. Let x and y denote input variables, let uxi denote hidden
variables of a convergent variable x, and let z denote both input and hidden variables in
GT . There are three types of edges in GT : 1. an edge between two input variables (x; y);
2. an edge between two hidden variables (uxi ; u

y
j), and 3. an edge between an input and a

hidden variables, (uxi ; y). In the last two cases, x may coincide with y.
We construct the ordering o0 by placing hidden variables uxi immediately after x. Figure

16 demonstrates a sample ordering o0 obtained from the input ordering o = (z; y; x). The
edges of each type are also shown. We will prove now the following statement S: for every
edge (x; y), (uxi ; u

y
j), or (u

x
i ; y) in GT , where x 6= y, there is an edge (x; y) in G. Obviously,

it implies that w�
I < w�.

Initially, all edges in T satisfy S. Indeed, by de�nition of T , a hidden variable uxi can
be connected either to its convergent variable x, or to another x's hidden variable uxj , or
to the parents of x. Therefore, there are no edges (uxi ; u

y
j) between hidden variables of two

di�erent convergent variables x and y, and every edge (uxi ; y) in T corresponds to an edge
(x; y) in BN . Thus, the statement S needs to be proven only for the induced edges in GT .
We do it by induction on the variables in GT along the ordering o0 = (z1, :::; zm).
Induction basis:
The last variable in o0, zm, is either a) an input variable x or b) a hidden variable uxi .
a) zm = x. Then x must be regular; otherwise hidden variables uxi would appear on top
of x according to our construction of o0. Consider all possible edges that can be induced
by eliminating x. Type-1 edge: an edge (y1; y2) between two input variables is created
if there are edges (x; y1) and (x; y2) in T (and therefore, in BN), and y1, y2 precede x in
the ordering o0, and, therefore, in o. But then the edge (y1; y2) will be also induced in G
along o. Type-2 edge: creating an edge (uy1i ; u

y2
j) means that x is connected to uy1i and uy2i

preceding x in o0, and, therefore, x is connected to y1 and y2 which precede x in o, so that
the edge (y1; y2) is induced in G. Type-3 edge: similarly, inducing an edge (uy1i ; y2) in GT

along o0 corresponds to inducing an edge (y1; y2) in G along o.

b). zm = uxi . As shown above, uxi can be connected either to other hidden variables of
x, or to x, or to x's parents. Therefore, a type-1 edge (uy1i ; u

y2
j), where y1 6= y2, cannot be

created. A type-2 edge (uxi ; y) corresponds to the edge between x and its parent y in G.
Finally, a new type-3 edge (y1; y2) can be created only if nodes y1 and y2 are both parents
of x, and precede x in the orderings o0. But then y1 and y2 precede x in o as well, thus
inducing the edge (y1; y2) in G.

Induction step:
Assume that statement S is correct for all edges induced by the last k variables in o0.
Namely, for every edge (x; y), (uxi ; u

y
j), or (u

x
i ; y) in GT , induced by some zi, i = n; :::; n�k,

there is an edge (x; y) in G. Then we can show that the same property holds for every

32

edge induced by zn�k�1.
Type-1 edge: indeed, creating an edge of type-1 between two input variables y1 and y2

means that those variables are already connected to zn�k�1 in GT and precede it in the
ordering o0. If zn�k�1 = x, where x is an input variable, then both y1 and y2 are connected
to x in G and precede it in the ordering o, by de�nition of o0. Therefore, the edge (y1; y2)
is induced in G. If zn�k�1 = uxi , then, by induction, the edges (uxi ; y1) and (uxi ; y2) must
correspond to the edges (x; y1) and (x; y2) in G. Also, y1 and y1 must precede x in o, since
they precede uxi in o0, by de�nition of the ordering o0. Then the edge (y1; y2) is created in
G.
Type-2 edge: creating a new edge (uy1i ; u

y2
j) implies that zn�k�1 is already connected to

both uy1i and uy2j preceding zn�k�1 in o0. Either zn�k�1 = x or zn�k�1 = uxi ; in both cases,
by induction, the edges (x; y1) and (x; y2) have been also induced in G, and, by de�nition
of o0, both y1 and y1 must precede x in o, thus resulting into a new induced edge (y1; y2)
in G. Similar argument holds for a new type-3 edge (uy1i ; y2), thus proving that, in all
three cases a corresponding edge (y1; y2) is created in G along o. Therefore, we proved by
induction that for every edge (x; y), (uxi ; u

y
j), or (u

x
i ; y) in GT , where x 6= y, there is an edge

(x; y) in G. This implies that the induced width of GT restricted to the input variables is
not larger than the induced width of G.

2

Proposition 5: If no two convergent variables in a network BN have more than one
common parent (e.g., Figure 4a), then the induced width of a transformation T equals the
induced width of the unmoralized BN.
Proof: We will show that, for every ordering o of BN, there exists an ordering o0 of T
such that w�

o(BN) = w�
o0(T). Let us extend the ordering o of BN to the ordering o0 of T

so that the hidden variables associated with a convergent variable x are always eliminated
immediately before x (namely, we always place them right on top of x in the ordering o0).
Similarly to proposition 4, we can show that in such a case elimination along the ordering
o0 does not induce new edges between the input nodes which are not already induced in the
unmoralized BN along the ordering o. Also, the hidden variables of x should follow a width-
1 ordering of the corresponding binary decomposition tree. Since convergent variables xi
and xj do not share parents, their hidden variables will never become connected to each
other. Therefore, the induced width of T along o0 coincides with the induced width of BN
along o. 2

33

