BELIEF MAINTENANCE IN DYNAMIC CONSTRAINT NETWORKS*

Rina Dechter

Cognitive Systems Laboratory
Computer Science Department
University of California, Los Angeles, CA 90024

Abstract

This paper presents a constraint network formulation
of belief maintenance in dynamically changing
environments. We focus on the task of computing
the degree of support for each proposition, i.e., the
number of solutions of the constraint network which
,are consistent with the proposition. The paper
develops an efficient distributed scheme for calculat-
ing and revising beliefs in acyclic constraint net-
works. The suggested process consists of two
phases. In the first, called support propagation,
each variable updates the number of extensions con-
sistent with each of its values. The second, called
contradiction resolution, is invoked by a variable
upon detecting a contradiction, and identifies a
minimal set of assumptions that potentially account
for the contradiction.

1. Introduction

Reasoning about dynamic environments is a central issue in
Artificial Intelligence. When dealing with a complex environ-
ment, we normally have only partial description of the world
known explicitly at any given time. A complete picture of the
environment can only be speculated by making simplifying
assumptions which are consistent with the available informa-
tion. When new facts become known, it is important to main-
tain the consistency of our view of the world so that queries of
interest (e.g., is a certain proposition believed to be true?) can
be answered coherently at all times. Various non-monotonic
logics as well as truth-maintenance systems have been devised
to handle such tasks [Reiter 1987, Doyle 1979, de Kleer
1986].

In this paper we show that constraint networks and their
associated constraint satisfaction problems ' provide an
attractive paradigm for modeling dynamically changing
environments. The language of constraint networks was

*This work was supported in part by the National Science
Foundation, Grant #DCR 85-01234, and by the Air Force Office of
Scientific Research, Grant #AFOSR-88-0177.

Avi Dechter

Department of Management Science
California State University, Northridge, CA 91330

originally developed for expressing static problems, i.e., that
require a one-time solution of a system of constraints
representing all the available information (for example, pic-
ture processing [Montanari 1974, Waltz 1975]). A substantial
body of knowledge for solving such problems has been
developed [Montanari 1974, Mackworth 1977, Freuder 1982,
Dechter 1987].

Structuring knowledge by means of constraint networks
leads, as we will show, to efficient algorithms for consistency
maintenance and query processing. Indeed, truth-maintenance
systems often utilize algorithms found in constraint processing
in general, e.g., dependency-directed backtracking, constraint
propagation, etc. [Stallman 1977, McAllester 1980, Doyle
1979]. The use of constraint networks as the framework for
modeling the task of dynamic belief management, allows us to
develop an efficient processing algorithm built upon tech-
niques used in the solution of constraint satisfaction problems.
Two characteristic features of these techniques are that they
are ‘‘sensitive’’ to the structure of the problem so as to take
advantage of special structures, and that their performance can
be analyzed and predicted. Such theoretical treatment is usu-
ally not available in current TMS research.

The paper is organized as follows. Section 2 provides a
brief review of the constraint network model and discusses the
problem of belief maintenance in its context. The suggested
belief revision process consists of two phases, presented first
for singly connected binary constraint networks. The first,
support propagation, is described in Section 3, and the
second, contradiction resolution, is the subject of Section 4.
In Section 5 the algorithm is extended to acyclic networks.
Section 6 discusses the extension of the algorithm to general
networks, and Section 7 contains a summary and some final
remarks.

2. The Model

A constraint network (CN) involves a set of n variables,
Xi,...,X,, their respective domains, R,,...,R,,”and a set
of constraints. A constraint C;(X;,, * - ’Xi;) is a subset of the
Cartesian product R; X - - X Ry, that specifies which values of
the variables are compatible with each other. A binary con-
straint network is one in which all the constraints are binary,
i.e., involve at most two variables. A binary CN may be asso-
ciated with a constraint-graph in which nodes represent vari-
ables and arcs connect those pairs of variables for which

Dechter and Dechter 37

constraints are given. Consider, for instance, the CN
presented in Figure 1 (modified from [Mackworth 19771).
Each node represents a variable whose values are explicitly
indicated, and each link is labeled with the set of value-pairs
permitted by the constraint between the variables it connects
(observe that the constraint between connected variables is a
strict lexicographic order along the arrows).

X1 X2

X4 X5

Figure 1: An example of a binary CN

A solution (also called an extension) of a constraint net-
work is an assignment of values to ali the variables of the net-
work such that all the constraints are satisfied. The (static)
constraint satisfaction problem associated with a given con-
straint network is the task of finding one or alf of the exten-
sions. In this paper we focus on a related problem, that of
finding, for each value in the domain of certain variables, the
number (or relative frequency) of extensions in which it parti-
cipates. We call these figures supports and assume that they
measure the degree of belief in the propositions represented
by those values. (If the set of all solutions was assigned a uni-
form probability distribution, then the degree of support is pre-
cisely the marginal probability of the proposition, namely, its
“belief’* in the corresponding Bayes network [Pearl 1986] .)
In particular, we say that a proposition is believed if it holds in
all extensions (i.e., is entailed by the current set of formulas).
The support figures for the possible values of each variable
constitute a support vector for the variable.

A dynamic Constraint-Network (DCN) is a sequence of
static CNs each resulting from a change in the preceding one,
representing new facts about the environment being modeled.
As a result of such an incremental change, the set of solutions
of the CN may potentially decrease (in which case it is con-
sidered a restriction) or increase (i.e., a relaxation).

Restrictions occur when a new constraint is imposed on a
subset of existing variables (e.g., forcing a variable to assume
a certain value), or when a new variable is added to the system
via some links. Restrictions always expahd the model, i.e.,
they add variables and add constraints so that the associated
constraint graph (representing the knowledge) grows mono-
tonically.

38 Automated Reasoning

Relaxations occur when constraints that were assumed to
hold are found to be invalid and, therefore, may be removed
from the network. However, it is not necessary to actually
remove such constraints in order to cause the effect of relaxa-
tion. This can be achieved by modeling each potentially
relaxable constraint in a special way which involves the inclu-
sion of a bi-valued variable whose values indicate whether the
constraint is ‘‘active’’ or not. Thus, we may assume, as is
common in truth maintenance systems, that constraints that
are added to the system are never removed.

In the next section we present an efficient scheme for pro-
pagating the information necessary for keeping all support
vectors consistent with new external information.

3. Support Propagation in Trees

It is well known that a constraint network whose constraint
graph is a tree can be solved easily [Freuder 1982, Dechter
1987]. Consequently, the number of solutions in which each
value in the domain of each variable participates (namely, the
support of this value), can also be computed very efficiently
on such tree-structured networks. In this section we present a
distributed scheme for calculating the support vectors for all
variables, and for their updating to reflect changes in the net-
work.

Consider a fragment of a tree-network as depicted in Fig-
ure 2.

Figure 2: A fragment of a tree-structured CN

The link (X,Y) partitions the tree into two subtrees: the sub-
tree containing X, Tyy(X), and the subtree containing Y,
Txy(Y). Likewise, the links (X,U), (X,V), and (X.Z), respec-
tively, define the subtrees Ty (U), Txy(V) and Tyz(Z). Denote
by sx(x) the overall support for value x of X, by sx(x/Y) the
support for X = x contributed by subtree Txy(Y) (i.e., the’
number of extensions of this subtree which are consistent with
X =x), and by sy(y/-X) the support for Y =y in Tyy(Y).
(These notations will be shortened to s(x), s(x/Y) and
s (y/-X), respectively, whenever the identity of the variable is
clear.) The support for any value x of X is given by:

sG) = YeX's EigthNS(X/Y) ! M

namely, it is a product of the supports contributed by each
neighboring subtree. The support that ¥ contributes to X =x
can be further decomposed as follows:

sxiYy= Y sOo/-X), 2)
(xy)CX.1)
where C(X,Y) denotes the constraint between X and Y.
Namely, since x can be associated with several matching
values of Y, its support is the sum of the supports of these
values, Equalities (1) and (2) yield:

sx)=

n s(I-X) . 3
YeX's rmghlmr.v(x‘y)E cEY
Equation (3) lends itself to the promised propagation scheme.
Suppose that variable X gets from each neighboring node, Y, a
vector of restricted supports (referred to as the support vec-
tor from Y to X),

O 1/-X), ... 8O 1-X))

where y; is in ¥’s domain, It can then calculate its own sup-
port. vector according to equation (3) and, at the same time,
generate an appropriate message to each of its own neighbors.
The message X sends to Y, s(x/-Y), is the support vector
reflecting the subtree Tyy(X), and can be computed by:

S(XI Y) - ZeX's Mi}}bors N Z*Y(x’z)g(x‘z)S(Z/ X) ' (4)
The message generated by a leaf-variable is a vector consist-
ing of zeros and ones representing, respectively, legal and
illegal values of this variable.

Assume that the network is initially in a stable state,
namely, all support vectors reflect correctly the constraints,
and that the task is to restore stability when a new input causes
a momentary instability. The updating scheme is initiated by
the variable directly exposed to the new input. Any such vari-
able will recalculate and deliver the support vector for each of
its neighbors. When a variable in the network receives an
update-message, it recalculates its outgoing messages, sends
them to the rest of its neighbors, and at the same time updates
its own support vector. The propagation due to a single out-
side change will propagate through the network only once (no
feed-back), since the network has no loops. If the new input is
a restriction, then it may cause a contradictory state, in which
case all the nodes in ‘the network will converge into all zero
support vectors.

To illustrate the mechanics of the propagation scheme
described above, consider again the problem of Figure 1. In
Figure 3(a) the support vectors and the different messages are
presented. The order within a support vector corresponds to
the order of values in the originating variable, €.g., message
(8,1) from X5 to X, represents (sy,(a/-Xy) , sx,(b/=X1).
Suppose now that an assertion stating the value of X, = b has
arrived. In that case X, will originate a new message to X3 of
the form (0,1,0). This, in tum, will cause X 5 to update its sup-
ports and generate updated messages to X;,X4 and X5 respec-
tively. The new supports and the new updated messages are
illustrated in Figure 3(b).

(65

(111 (m.;)/

(a)

Figure 3: Support vectors before and after a change

If one is not interested in calculating numerical supports,
but merely in indicating whether a given value has some sup-
port (ie., participates in at least one solution), then flat
support-vectors, consisting of zeros and ones, can be pro-
pagated in exactly the same manner, except that the summa-
tion operation in (3) should be replaced by the logic operator
OR, and the multiplication can be replaced by AND.

4. Handling Assumptions and Contradictions

When, as a result of new input, the network enters a contradic- .
tory state, it often means that the new input is inconsistent
with the current set of assumptions, and that some of these
assumptions must be modified in order to restore consistency.
We assume that certain variables of the network are desig-
nated as assumption variables which initially are assigned
their default values, but may at any time assigned other values
as needed. The task of restoring consistency by changing the
values assigned to a subset of the assumption variables is
called contradiction resolution.

The subset of assumption variables that are modified in a
Contradiction resolution process should be minimal, namely, it
must not contain any proper subset of variables whose simul-
taneous modification is sufficient for that purpose (i.e., like the
maximal assumption sets in [Doyle 1979]). A sufficient (but
not necessary) condition for this set to be minimal is for it to
be as small as possible. Other criteria for conflict resolution
sets are suggested in [Petrie 1987). In this section we show
how to identify, in a distributed fashion, the minimum number
of assumptions that need to be changed in order to restore con-
sistency. Unlike the support propagation scheme, however,
the contradiction resolution process has to be synchronized.
Assume that a variable which detects a contradiction pro-
pagates this fact to the entire network, creating in the process
a directed tree rooted at itself. Given this tree, the contradic-
tion resolution process proceeds as follows.

With each value v of each variable V we associate a
weight w (v), indicating the minimum number of assumption
variables that must be changed in the directed subtree rooted
at V in order to make v consistent in this subtree. These
weights obey the following recursion:

wv)=% min w(;), (5

T 0yeC .Y

Dechter and Dechter 39

where (Y;]) are the set of V’s children and their domain values
are indicated by y;; i.e. y; is the j* value of variable Y;, (see
Figure 4),

\% \"4
<« D
Ay min(w1, w3)

SEI>

Y, Y, Y, Y;
Figure 4: Weight calculation for node v

The weights associated with the values of each assumption
variable are "0" for the value currently assigned to this vari-
able, and "1" to all other possible values. For leaf nodes
which are not assumption variables, the weights of their legal
values are all "0". The computation of the weights is per-
formed distributedly and synchronously from the leaves of the
directed tree to the root. A variable waits to get the weights of
all its children, computes its own weights according to (5), and
sends them to its parent. During this bottom-up-propagation
a pointer is kept from each-value of V to the values in each of
its child-variables, where a minimum is achieved. When the
root variable X receives all the weights, it computes its own
weights and selects one of its values that has a minimal
weight. It then initiates (with this value) a top-down propaga-
tion down the tree, following the pointers marked in the
bottom-up-propagation, a process which generates a consistent
extension with a minimum number of assumptions changed.
At termination this process marks the assumption variables
that need to be changed and the appropriate changes required.
There is no need, however, to activate the whole network
for contradiction resolution, because the support information
available clearly points to those subtrees where no assumption
change is necessary. Any subtree rooted at V whose support
vector to its parent, P, is strictly positive for all ‘‘relevant’’
values, can be pruned. Relevance can be defined recursively
as follows: the relevant values of V are those values which are
consistent with some relevant value of its parent, and the

x?
X1=C
7
G Jx
[B-X-
TR
282
o
=
[N-T-0 LAl s
X4 Ce)
x8
(a) ()

relevant values of the root, X, are those which are not known
to be excluded by any outside-world-change, independent of
any change to the assumptions.

To illustrate the contradiction resolution process, consider
the network given in Figure 5(a), which is an extension of the
network of Figure 1 (the constraints are strict lexicographic
order along the arrows). Variables X,;, X¢ and X, are
assumption variables, with the current assumptions indicated
by the unary constraints associated with them. The support
messages sent by each variable to each of its neighbors are
explicitly indicated. (The overall support vectors are not
given explicitly.) It can be easily shown that the value a for
X is entailed and that there are 4 extensions altogether. Sup-
pose now that a new variable X4 and its constraint with X4 is
added (this is again a lexicographic constraint), The value a of
Xy is consistent only with value b of X, (see Figure 5(b)).
Since the support for a of X5 associated with this new link is
zero, the new support vector for X5 is zero and it detects a
contradiction. Variable X3 will now activate a subtree for con-
tradiction resolution, considering only its value b as
“relevant’’ (since value a is associated with a "0" support
coming from X which has no underlying assumptions). In the
activation process, X4 and X5 will be pruned since their sup-
port messages to X3 are strictly positive. X; will also be
pruned since it has only one relevant value ¢ and the support
associated with this value is positive. The resulting activated
tree is marked by heavy lines in Figure 5(b). Contradiction
resolution of this subtree will be initiated by both assumption
variables X4 and X,, and it will determine that the two
assumptions X¢ =c and X; =c need to be replaced with
assuming d for both variables (the process itself is not demon-
strated).

Once contradiction resolution has terminated, all assump-
tions can be changed accordingly, and the system can get into
a new stable state by handling those changes using support
propagation. If this last propagation is not synchronized, the
amount of message passing on the network may be propor-
tional to the number of assumptions changed. If, however,
these message updating is synchronized, the network can
reach a stable state with at most two message passing on each
arc. Figure 5(c) gives the new updated messages after the sys-
tem stabilized.

K]

contradiction o - contradiction

— Inlil ation 1] '_.',f‘ > - . ‘lnilmion
o, WL -~ Pl = |
3 i W
= /—\;/14 ¥ —-..__I‘
i1 ahE

Figure 5: The contradiction resolution process

40 Automated Reasoning

5. Support propagation in acyclic networks

The support propagation algorithm presented in Section 3 for
tree-structured binary networks can be adapted for use with
general, non-binary networks, whose dual constraint graphs
are trees. The dual constraint graph can be viewed as the pri-
mal graph of an equivalent binary constraint network, where
éach of the constraints of the original network is a variable
(called a c-variable) and the constraints call for equality of the
values assigned to the variables shared by any two c-variables.

For example, Figure 6(a) depicts the dual constraint-
graphs of a network consisting of the variables A,B8,C,D,E,F,
with constraints on the subsets (ABC),(AEF), (CDE), and
(ACE) (the constraints themselves are not specified).

The graph of Figure 6(a) contains cycles. Observe, how-
ever, that the arc between (AEF) and (ABC) can be eliminated
because the variable A is common along the cycle (AFE)-A-
(ABC)-AC-(ACE)-AE-(AFE), so the consistency of the
variable A is maintained by the remaining arcs. Similar argu-
ments can be used to show that the arcs labeled C and E are
redundant and may be removed as well, thus transforming the
dual graph into a tree (Figure 6(b)).

S ©

(a) (b)

Figure 6: A dual constraint graph of a CSP

A constraint network whose dual constraint graph can be
reduced to a tree is said to be acyclic. Acyclic constraint net-
works are an instance of acyclic databases, and the tree-
structured dual constraint graph is a join-tree of the database
(see, for example [Beeri 1983],).

Now, consider the fragment of a tree-structured dual con-
straint graph, whose nodes represent the constraints C,
U,,U,y,U3, and U, given in Figure 7.

U4 Ua

(S(t(l.‘.nU/‘

U

Figure 7: A fragment of a dual constraint graph

We denote by ¢° an arbitrary tuple of C. With each tuple, ¢°,
we associate a support number s(t°), which is equal to the
number of extensions in which all values of ¢¢ participate. Let
s(t°1U) denote the support of ¢° coming from subtree Tey(U),
and let s(t* 1-C) denote the support for ¢ restricted to subtree
Tcy(U) (we use the same notational conventions as in the
binary case). The support for ¢° is given by:
ey [4

st = Ve C'rrnlcighborss @y, (6)
The support U contributc.. « i can be de-ived from the sup-
port it contributes to the projection of +° ou C U, denoted by
t“c~v» and this, in turn, can be computed by summing all the
supports of tuples in U restricted to subtree Ty (U) that have
the same assignments as ¢ for variables in C~U. Namely:

s IU)=5(tcculIU) = b s@1-C). (D)

fev =t

Equations (6) and (7) yield
s(ty= T T s@1-C). (8)
U & C's neighbors 1'cmu = l'cmu

The propagation scheme emerging from (8) has the same
pattern as the propagation for binary constraints. Each con-
straint calculates the support vector associated with each of its
outgoing arcs using;

sWeru!-O)= Y s(t1-C).)

e =t"crw
The message which U sends to C is the vector
@ cmul=C), (10)

where i indexes the projection of constraint U on C~U.
Using this message, C can calculate its own support (using
(8)) and will also generate updating messages to be sent to its

neighbors.
Having the supports associated with each tuple in a con-

straint, the supports of individual values can easily be derived
by summing the corresponding supports of all tuples in the
constraint having that value.

Contradiction resolution can also be modified for acyclic
networks using the same methodology. Support propagation
and contradiction resolution take, on join-trees, the same
amount of message passing as their binary network counter-
parts. Thus, the algorithm is linear in the number of con-
straints and quadratic in the number of tuples in a constraint
(in fact, due to the special nature of the ‘‘dual constraints’’,
being all equalities, the dépendency of the complexity on the
number of tuples ¢ can be reduced from ¢2 to tlogt, using an
indexing technique). .

An illustration of this process is provided in the full paper
[Dechter 1988a] where an application of this technique to a
circuit diagnosis problem is discussed.

6. Support Propagation in General Networks

When the constraint network is not acyclic, the method of
tree-clustering [Dechter 1988b] can be used prior to applica-

Dechter and Dechter 41

tion of the propagation schemes described above. This
method uses aggregation of constraints into equivalent con-
straints involving larger cluster of variables in such a way that
the resulting network is acyclic. In this, more general case,
the complexity of the procedure depends on the complexity of
solving a constraint satisfaction problem for each cluster and
is exponential in the size of the larger cluster. For more
details see [Dechter 1988b].

7. Summary and conclusions

We presented efficient algorithms for support propagation and
for contradiction-resolution in acyclic dynamic constraint net-
works, and indicated how these algorithms can be extended
for a general network using the tree-clustering method. The
propagation scheme contains two components: support updat-
ing and contradiction resolution. The first handles non-
contradictory inputs and requires one pass through the net-
work. The second finds a minimum set of assumption-
changes which resolve the contradiction. Contradiction reso-
lution may take five passes in the worst case: activating a
diagnosis subtree (one pass), determining a minimum assump-
tion set (two passes) and updating the supports with new
assumptions (two passes).

The belief-maintenance mechanism presented here is par-
ticularly useful for cases involving minor topological changes,
for example, when observations arrive regarding the restric-
tion of an existing constraint rather then the introduction of a
new (non-unary) constraint. In such cases the structure of the
acyclic network, which may be compiled initially via tree-
clustering, does not change.

We do not consider this work to be a proposal for another
TMS, since some basic assumptions currently obeyed by TMS
developers are not followed here. TMSs try to model the rea-
soning process of a general knowledge-based system, where
the knowledge part is purposely separated from the reasoning
part. The TMS, whose input is provided by the reasoner, per-
forms a limited amount of deduction, detects contradictions,
and -performs dependency-directed backtracking, keeping
track of which assertions are assumptions and premises and
which ones were deduced. Having this view, the TMS is nor-
mally not a complete inference procedure whose existence is
justified by maintaining’consistency within the explicated rea-
soning process in an efficient way.

Our view is different in that no separation is made
between the knowledge and the reasoning process based on
this knowledge. We provide a knowledge-base in its declara-
tive form with a given amount of derivation already performed
on it without keeping track of the derivation process. The
dependencies in the knowledge-base are also declerative and
undirectional. Our goal is to- maintain the knowledge con-
sistent and complete under possible changes coming from the
outside world (e.g., observations). The dependency structure
explicates dependencies in the knowledge structure and not in
a particular reasoning path which is based on this knowledge
(although these are related). Explanations are not an integral
task, although they can be given a declerative definition and
can be easily derived from the knowledge.

42 Automated Reasoning

References

[Beeri 1983]Beeri, C., R. Fagin, D. Maier, and N. Yannakakis,
“‘On the desirability of Acyclic database schemes,”’ JACM,
Vol. 30, No. 3, July, 1983, pp. 479-513.

[Dechter 1987]Dechter, R. and J. Pearl, ‘‘Network-based
heuristics for constraint-satisfaction problems,” Artificial
Intelligence, Vol. 34, No. 1, December, 1987, pp. 1-38.

[Dechter 1988a]Dechter, R. and A. Dechter, ‘‘Belief mainte-
nance in dynamic constraint networks,”” UCLA, Los Angeles,
CA, Tech. Rep. R-108, February, 1988.

[Dechter 1988b]Dechter, R. and J. Pearl, ‘A Tree-Clustering
Scheme for Constraint Processing,’’ in Proceedings AAAI-88,
St. Paul, MI: August 1988.

[de Kleer 1986]de Kleer, J., ‘‘An assumption-based TMS,”’
Artificial Intelligence, Vol. 28, No. 2, 1986.

[Doyle 1979]Doyle, J., ‘‘A truth maintenance system,”
Artificial Intelligence, Vol. 12, 1979, pp. 231-272.

[Freuder 19821Freuder, E.C., ‘A sufficient condition of
backtrack-free search.,” Journal of the ACM, Vol. 29, No. 1,
January 1982, pp. 24-32,

{Mackworth 1977]Mackworth, A.XK., ‘‘Consistency in net-
works of relations,”’ Artificial intelligence, Vol. 8, No. 1,
1977, pp. 99-118.

[(McAllester 1980]McAllester, D.A., ‘‘An Qutlook on Truth-
Maintenance,”’ MIT, Boston, Massachusetts, Tech. Rep. Al
Memo No. 551, August, 1980.

[Montanari 1974)Montanari, U., ‘‘Networks of constraints:
fundamental properties and applications to picture process-
ing,”’ Information Science, Vol. 7, 1974, pp. 95-132.

[Pearl 1986]Pearl, J., ‘‘Fusion Propagation and structuring in
belief networks,”” Artificial Intelligence Journal, Vol. 3, Sep-
tember 1986, pp. 241-288.

[Petric 19871Petrie, CJ., *‘Revised Dependency-Directed
Backtracking for Default Reasoning,’’ in Proceedings AAAI-
87, Seattle, Washington: July, 1987, pp. 167-172.

[Reiter 1987]Reiter, R., *‘A Logic for Default Reasoning,” in,
Reading in Nonmonotonic Reasoning, M.L. Ginsberg, Ed. Los
Altos, Cal.: Morgan Kaufman, 1987, pp. 68-93.

[Waltz 1975]Waltz, D., ‘‘Understanding line drawings of
scenes with shadows,”’ in The Psychology of Computer
Vision, P.H. Winston, Ed. New York, NY: McGraw-Hill Book
Company, 1975.

