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Abstract

Bucket elimination is an algorithmic framework that generalizes dy-

namic programming to accommodate many problem-solving and reason-

ing tasks. Algorithms such as directional-resolution for propositional sat-

is�ability, adaptive-consistency for constraint satisfaction, Fourier and

Gaussian elimination for solving linear equalities and inequalities, and

dynamic programming for combinatorial optimization, can all be accom-

modated within the bucket elimination framework. Many probabilistic in-

ference tasks can likewise be expressed as bucket-elimination algorithms.
These include: belief updating, �nding the most probable explanation,

and expected utility maximization. These algorithms share the same per-

formance guarantees; all are time and space exponential in the induced-
width of the problem's interaction graph.

While elimination strategies have extensive demands on memory, a

contrasting class of algorithms called \conditioning search" require only
linear space. Algorithms in this class split a problem into subproblems by

instantiating a subset of variables, called a conditioning set, or a cutset.

Typical examples of conditioning search algorithms are: backtracking (in
constraint satisfaction), and branch and bound (for combinatorial opti-

mization).

The paper presents the bucket-elimination framework as a unifying
theme across probabilistic and deterministic reasoning tasks and show

how conditioning search can be augmented to systematically trade space

for time.

1 Introduction

Bucket elimination is a unifying algorithmic framework that generalizes dynamic
programming to accommodate algorithms for many complex problem-solving
and reasoning activities, including directional resolution for propositional sat-
is�ability [11], adaptive consistency for constraint satisfaction [19], Fourier and
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Gaussian elimination for linear equalities and inequalities, and dynamic pro-
gramming for combinatorial optimization [5]. The bucket elimination frame-
work will be demonstrated by presenting reasoning algorithms for processing
both deterministic knowledge-bases such as constraint networks and cost net-
works as well as probabilistic databases such as belief networks and in
uence
diagrams.

The main virtues of the bucket-elimination framework are simplicity and
generality. By simplicity, we mean that a complete speci�cation of bucket-
elimination algorithms is possible without introducing extensive terminology,
making the algorithms accessible to researchers in diverse areas. The primary
importance of these algorithms is that their uniformity facilitates understand-
ing which encourages cross-fertilization and technology transfer between disci-
plines. Indeed, all bucket-elimination algorithms are similar enough, allowing

improvement to a single algorithm to be applicable to all others expressed in
this framework. For example, expressing probabilistic inference algorithms as
bucket-elimination methods clari�es the former's relationship to dynamic pro-
gramming and to constraint satisfaction allowing the knowledge accumulated in
those areas to be utilized in the probabilistic framework.

Normally, an input to a bucket elimination algorithm is a knowledge-base
theory and a query speci�ed by a collection of functions or relations over subsets
of variables (e.g., clauses for propositional satis�ability, constraints, or condi-
tional probability matrices for belief networks). The algorithm initially parti-
tions these functions into buckets, and each is associated with a single variable.
Given a variable ordering, the bucket of a particular variable contains the func-
tions de�ned on that variable, provided the function is not de�ned on variables
higher in the order. Subsequently, buckets are processed from last to �rst. When
the bucket of variable X is processed, an \elimination procedure" is performed
over the functions in its bucket yielding a new function that does not \mention"
X. This function summarizes the \e�ect" ofX on the remainder of the problem.
The new function is placed in a lower bucket. Bucket-elimination algorithms
are knowledge-compilation methods, since they generate not only an answer to
a query, but also an equivalent representation of the input problem from which
various queries are answerable in polynomial time.

An important property of variable elimination algorithms is that their per-

formance can be predicted using a graph parameter called induced width, w�.
In general the structure of a given theory will be associated with an interaction

graph describing dependencies between variables. The induced-width describes
the largest cluster in a tree-embedding of that graph (also known as tree-width).
The complexity of bucket-elimination is time and space exponential in the in-
duced width of the problem's interaction graph. The size of the induced width
varies with various variable orderings, leading to di�erent performance guaran-
tees.

Since all variable elimination algorithms have space complexity exponential
in the problem's induced width, bucket-elimination is unsuitable when a problem
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having a high induced-width is encountered. To alleviate space complexity,
another universal method for problem solving, called conditioning, can be used.

Conditioning is a generic term for algorithms that search the space of par-
tial value assignments or partial conditionings. Conditioning means splitting a
problem into subproblems based on a certain condition. A subset of variables
known as conditioning variables will generally be instantiated. This generates
a subproblem that can be solved in di�erent ways. If the resulting simpli�ed
subproblem has no solution or if more solutions are needed, the algorithm can
try di�erent assignments to the conditioning set. Algorithms such as backtrack-
ing search and branch and bound may be viewed as conditioning algorithms.
Cutset-conditioning [12, 34] applies conditioning to a subset of variables that
cut all cycles of the interaction graph and solve the resulting subproblem by
bucket-elimination.

The complexity of conditioning algorithms is exponential in the conditioning
set, however, their space complexity is only linear. Also, empirical studies show
that their average performance is often far superior to their worst-case bound.
This suggests that combining elimination with conditioning may be essential
for improving reasoning processes. Tailoring the balance of elimination and
conditioning to the problem instance may improve the bene�ts in each scheme
on a case by case basis; we may have better performance guarantees, improved
space complexity, and better overall average performance.

We begin (Section 2) with an overview of known algorithms for deterministic
networks, rephrased as bucket elimination algorithms. These include adaptive-
consistency for constraint satisfaction, directional resolution for propositional
satis�ability and the Fourier elimination algorithm for solving a set of linear
inequalities over real numbers. We summarize their performance as a function
of the induced-width, and �nally, contrast those algorithms with conditioning
search methods.

Subsequent sections will provide a detailed derivation of bucket elimination
algorithms for probabilistic tasks. Following additional preliminaries (Section
3), we develop the bucket-elimination algorithm for belief updating and ana-
lyze its performance in Section 4. The algorithm is extended to �nd the most
probable explanation (Section 5), the maximum aposteriori hypothesis (Section
6) and the maximum expected utility (Section 7). Its relationship to dynamic

programming is given in Section 8. Section 9 relates the algorithms to Pearl's
poly-tree algorithm and to join-tree clustering. Schemes for combining the con-
ditioning method with elimination are described in Section 10. We conclude
with related work (Section 11) and concluding remarks (Section 12).

2 Bucket elimination for deterministic networks

This section provides an overview of known algorithms for reasoning with deter-
ministic relationships, emphasizing their syntactic description as bucket elimi-
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Figure 1: A graph coloring example

nation algorithms.

2.1 Bucket elimination for constraints

Constraint networks have been shown to be useful in formulating diverse prob-
lems such as scene labeling, scheduling, natural language parsing and temporal

reasoning [13].
Consider the following graph coloring problem in Figure 1. The task is to

assign a color to each node in the graph so that adjacent nodes will have di�erent
colors. Here is one way to solve this problem. Consider node E �rst. It can
be colored either green or red. Since only two colors are available it follows
that D and C must have identical colors, thus, C = D can be added to the
constraints of the problem. We focus on variable C next. >From the inferred

C = D and from the input constraint C 6= B we can infer that D 6= B and add
this constraint to the problem, disregarding C and E from now on. Continuing
in this fashion with node D, we will infer A = B. However, since there is an
input constraint A 6= B we can conclude that the original set of constraints is
inconsistent.

The algorithmwhich we just executed is the well known algorithm for solving
constraint satisfaction problems called adaptive consistency [19]. It works by
eliminating variables one by one, while deducing the e�ect of the eliminated
variable on the rest of the problem. Adaptive-consistency can be described using
the bucket data-structure. Given a variable ordering such as d = A;B;D;C;E

in our example, we process the variables from last to �rst, namely, from E

to A. Step one is to partition the constraints into ordered buckets. All the
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Bucket(E): E 6= D, E 6= C

Bucket(C): C 6= B

Bucket(D): D 6= A,
Bucket(B): B 6= A,
Bucket(A):

(a)
Bucket(E): E 6= D, E 6= C

Bucket(C): C 6= B jj D = C

Bucket(D): D 6= A, jj , D 6= B

Bucket(B): B 6= A, jj B = A

Bucket(A): jj
(b)

Figure 2: A schematic execution of adaptive-consistency

constraints mentioning the last variable E are put in a bucket designated as
bucketE. Subsequently, all the remaining constraints mentioning D are placed
in D's bucket, and so on. The initial partitioning of the constraints is depicted
in Figure 2a. In general, each constraint is placed in the bucket of its latest
variable.

After this initialization step, the buckets are processed from last to �rst.
Processing bucket E produces the constraint D = C, which is placed in bucket
C. By processing bucket C, the constraint D 6= B is generated and placed in
bucket D. While processing bucket D, we generate the constraint A = B and
put it in bucket B. When processing bucket B inconsistency is discovered. The
buckets' �nal contents are shown in Figure 2b. The new inferred constraints are
displayed to the right of the bar in each bucket.

At each step the algorithm generates a reduced but equivalent problem with
one less variable expressed by the union of unprocessed buckets. Once the
reduced problem is solved its solution is guaranteed to be extendible to a full
solution since it accounted for the deduced constraints generated by the rest
of the problem. Therefore, once all the buckets are processed, and if there
are no inconsistencies, a solution can be generated in a backtrack-free manner.
Namely, a solution is assembled progressively assigning values to variables from
the �rst variable to the last. A value of the �rst variable is selected satisfying
all the current constraints in its bucket. A value for the second variable is
then selected which satis�es all the constraints in the second bucket, and so on.
Processing a bucket amounts to solving a subproblem de�ned by the constraints
appearing in the bucket, and then restricting the solutions to all but the current
bucket's variable. A more formal description requires additional de�nitions and
notations.

A Constraint Network consists of a set of Variables X = fX1; :::; Xng, Do-
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Algorithm Adaptive consistency

1. Input: A constraint problem R1; :::Rt, ordering d = X1; :::; Xn.
2. Output: An equivalent backtrack-free set of constraints and a solution.
3. Initialize: Partition constraints into bucket1; :::bucketn. bucketi contains
all relations whose scope include Xi but no higher indexed variable.
4. For p = n downto 1, process bucketp as follows

for all relations R1; :::Rm de�ned over S1; :::Sm 2 bucketp do
(Find solutions to bucketp and project out Xp:)
A 

Sm
j=1 Sj � fXig

RA  RA \ �A(1
m
j=1 Rj)

5. If RA is not empty, add it to the bucket of its latest variable.
Else, the problem is inconsistent.

6. Return [jbucketj and generate a solution: for p = 1 to n do
assign a value to Xp that is consistent with previous assignments and satis�es
all the constraints in bucketp.

Figure 3: Algorithm Adaptive consistency

mains D = fD1; :::; Dng, Di = fv1; :::; vkg and Constraints RS1 , . . . , RSt , where
Si � X, 1 � i � n. A constraint is a pair (R;S) where S is a subset of the
variables S = fX1; : : : ; Xrg, also called its scope and R is a relation de�ned over
S, namely, R � D1�D2; :::;�Dr, whose tuples denote the legal combination of
values. The pair (R;S) is also denoted RS . A constraint graph associates each
variable with a node and connects any two nodes whose variables appear in the
same scope. A solution is an assignment of a value to each variable that does
not violate any constraint. Constraints can be expressed extensionally using
relations or intentionally by a mathematical formula or a procedure.

For instance, in the graph-coloring example, the nodes are the variables, the
colors are the domains of the variables and the constraints are the in-equation
constraints for adjacent variables. The constraint graph is identical to the graph
to be colored.

The computation in a bucket can be described in terms of the relational
operators of join followed by projection. The join of two relations RAB and
RBC denoted RAB 1 RBC is the largest set of solutions over A;B;C satisfying
the two constraints RAB and RBC . Projecting out a variable A from a relation
RABC, written as �BC(RABC ) removes the assignment to A from each tuple
in RABC and eliminates duplicate rows from the resulting relation. Algorithm
Adaptive-consistency is described in Figure 3. For instance, the computation in
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the bucket of E of our example of Figure 1 is RECD  RED 1 REC followed
by RCD  �CD(RECD), where RED denotes the relation E 6= D, namely
RED = f(green; red)(red; green)g and REC stands for the relation E 6= C.

The complexity of adaptive-consistency is linear in the number of buckets
and in the time to process each bucket. However, since processing a bucket
amounts to solving a constraint-satisfaction subproblem its complexity is expo-
nential in the number of variables mentioned in a bucket. If the constraint graph
is ordered along the bucket processing, then the number of variables appearing
in a bucket is bounded by the induced-width of the constraint graph along that
ordering [19]. We will demonstrate and analyze this relationship more in Sec-
tion 4, when discussing belief networks. In this section, we only provide a quick
exposure to the concepts and refer the reader to the relevant literature.

Given an undirected graph G and an ordering d = X1; :::; Xn of its nodes,

the induced graph of G relative to ordering d is obtained by processing the nodes
in reverse order from last to �rst. For each node all its earlier neighbors are con-
nected, while taking into account old and new edges created during processing.
The induced width of an ordered graph, denoted w�(d), is the maximumnumber
of earlier neighbors over all nodes, in the induced graph. The induced width of

a graph, w�, is the minimal induced width over all its ordered graphs. Another
known related concept is tree-width. The tree-width of a graph is identical to
its induced-width plus one.

Consider for example, a slightly di�erent graph coloring problem as depicted
in Figure 4. Generating the induced-graph along the ordering d1 = A;B;C;D;E

or d2 = E;B;C;D;A leads to the two graphs in Figure 5. Note that in all
drawings from now on, later nodes in the ordering appear on top of earlier ones.
The broken arcs are the new added arcs. The induced-width along d1 and d2
are 2 and 3 respectively, suggesting di�erent complexity bounds for adaptive-
consistency. It was proven that [19],

Theorem 1 Adaptive-consistency decides if a set of constraints are consistent,

and if they are, generates an equivalent representation that is backtrack-free. 2

Theorem 2 The time and space complexity of Adaptive-consistency along d is

O(n � exp(w�(d))). 2

As a result, problems having bounded induced-width (w�
� b) for some con-

stant b, can be solved in polynomial time. In particular, Adaptive-consistency
is linear for trees as demonstrated in Figure 6. The Figure depicts a constraint
graph that has no cycles. When the graph is ordered along d = A;B;C;D;E; F;G

its width and induced width, equal 1. Indeed as is demonstrated by the schematic
execution of adaptive-consistency along d, the algorithm generates only unary
relationships and is therefore very e�cient.

It is known that �nding w* (and the minimizing ordering) is NP-complete
[2]. However greedy heuristic ordering algorithms [5, 25] and approximation
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denotes unary constraints over X
.

orderings exist [4, 49]. Also, the induced width of a given ordering is easy to
compute. Algorithm Adaptive-consistency and its properties are discussed at
length in [19, 20].

2.2 Bucket elimination for Propositional CNFs

Bucket elimination generality can be further illustrated with an algorithm in
deterministic reasoning for solving satis�ability [26].

Propositional variables take only two values ftrue; falseg or \1" and \0."
We denote propositional variables by uppercase letters P;Q;R; : : :, propositional
literals (i.e., P;:P ) stand for P = \true00 or P = \false;00 and disjunctions of
literals, or clauses, are denoted by �; �; : : :. A unit clause is a clause of size 1.
The notation (� _ T ), when � = (P _ Q _R) is shorthand for the disjunction

(P _Q _R _ T ). � _ � denotes the clause whose literal appears in either � or
�. The resolution operation over two clauses (� _ Q) and (� _ :Q) results in
a clause (� _ �), thus eliminating Q. A formula ' in conjunctive normal form
(CNF) is a set of clauses ' = f�1; : : : ; �tg that denotes their conjunction. The
set of models or solutions of a formula ' is the set of all truth assignments to
all its symbols that do not violate any clause. Deciding if a theory is satis�able
is known to be NP-complete [26].

It can be shown that the join-project operation used to process and eliminate
a variable by adaptive-consistency over relational constraints translates to pair-
wise resolution when applied to clauses [23]. This yields a bucket-elimination
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Figure 7: A schematic execution of directional resolution using ordering d =
E;D;C;B;A

algorithm for propositional satis�ability which we call directional resolution.
Algorithm directional resolution, (DR), is the core of the well-known Davis-
Putnam algorithm for satis�ability [11, 21].

Algorithm DR (see Figure 8) is described using buckets partitioning the set
of clauses in the theory '. We call its output theory Ed('), the directional

extension of '. Given an ordering d = Q1; :::; Qn, all the clauses containing Qi

that do not contain any symbol higher in the ordering are placed in the bucket of
Qi, denoted bucketi. As previously noted, the algorithm processes the buckets
in the reverse order of d. The processing bucketi resolves over Qi all possible
pairs of clauses in the bucket and inserts the resolvents into appropriate lower
buckets.

Consider for example the following propositional theory:

' = (A _B _C)(:A _B _E)(:B _C _D)

The initial partitioning into buckets along the ordering d = E;D;C;B;A

as well as the bucket's content generated by the algorithm following resolution
over each bucket is depicted in Figure 7. As demonstrated [21], once all the
buckets are processed, and if inconsistency was not encountered (namely the
empty clause was not generated), a model can be assembled in a backtrack-free
manner by consulting Ed(') using the order d as follows: assign to Q1 a truth
value that is consistent with the clauses in bucket1 (if the bucket is empty, assign
Q1 an arbitrary value); after assigning values to Q1; :::; Qi�1, assign a value to
Qi such that, together with the previous assignments, Qi will satisfy all the
clauses in bucketi.
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Algorithm directional resolution

Input: A CNF theory ', an ordering d = Q1; :::; Qn.
Output: A decision of whether ' is satis�able. If it is, a theory Ed('),
equivalent to '; else, a statement \The problem is inconsistent".
1. Initialize: Generate an ordered partition of the clauses,
bucket1; :::; bucketn, where bucketi contains all the clauses whose highest literal
is Qi.
2. For p = n to 1, do

� if bucketp contains a unit clause, perform only unit resolution. Put each
resolvent in the appropriate bucket.

� else, resolve each pair f(� _Qp); (� _ :Qp)g � bucketp. If 
 = � _ � is
empty, return \the theory is not satis�able"; else, determine the index
of 
 and add 
 to the appropriate bucket.

3. Return: Ed(') (=
S
i bucketi and generate a model in a backtrack-free

manner.

Figure 8: Algorithm directional resolution

The complexity of DR is exponentially bounded (time and space) in the

induced width of the theory's interaction graph in which a node is associated
with a proposition and an arc connects any two nodes appearing in the same
clause [21]. This is similar to adaptive-consistency. For example, the interaction
graph of theory ' along the ordering d is depicted in Figure 7 by the solid arcs.
The broken arcs re
ect induced connection of the induced graph. Those are
associated with the new clauses generated by resolution. The induced width of
this ordering is 3 and, as shown, the maximumnumber of variables in a bucket,
excluding the bucket's variable, is 3.

2.3 Bucket elimination for linear inequalities

A special type of constraint is one that can be expressed by linear inequalities.
The domainsmay be the real numbers, the rationals or �nite subsets. In general,
a linear constraint between r variables or less is of the form

Pr

i=1 aixi � c, where
ai and c are rational constants. For example, (3xi + 2xj � 3) ^ (�4xi + 5xj �
1) are allowed constraints between variables xi and xj. In this special case,
variable elimination amounts to the standard Gaussian elimination. >From the
inequalities x � y � 5 and x > 3 we can deduce by eliminating x that y > 2.
The elimination operation is de�ned by:

De�nition 1 Let � =
P(r�1)

i=1 aixi+arxr � c, and � =
P(r�1)

i=1 bixi+brxr � d.

Then elimr (�; �) is applicable only if ar and br have opposite signs, in which
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Fourier algorithm

Input: A set of linear inequalities, an ordering o.
Output: An equivalent set of linear inequalities that is backtrack-free along o.
Initialize: Partition inequalities into bucket1, . . . , bucketn, by the ordered
partitioning rule.

For p n downto 1

for each pair f�; �g � bucketp, compute 
 = elimp(�; �).
If 
 has no solutions, return inconsistency.
else add 
 to the appropriate lower bucket.

return Eo(') 
S
i bucketi.

Figure 9: Fourier elimination algorithm

bucketx : x� y � 5; x > 3; t � x � 10
buckety : y � 10 jj � y � 2; t� y � 15
bucketz :
buckett : jj t � 25

Figure 10: Bucket elimination for the set of linear inequalities: x � y �

5; x > 3; t� x � 10, y � 10 along the ordering d = t; z; y; x

case elimr (�; �) =
Pr�1

i=1 (�ai
br
ar
+ bi)xi � �

br
ar
c+d. If ar and br have the same

sign the elimination implicitly generates the universal constraint.

Applying adaptive-consistency to linear constraints and processing each pair
of relevant inequalities in a bucket by linear elimination yields a bucket elim-
ination algorithm which coincides with the well known Fourier elimination al-
gorithm (see [30]). From the general principle of variable elimination, and as
is already known, the algorithm decides the solvability of any set of linear in-
equalities over the rationals and generates a problem representation which is
backtrack-free. The algorithm expressed as a bucket elimination algorithm is
summarized in Figure 9. The complexity of Fourier elimination is not bounded
exponentially by the induced-width, however. The reason is that the number of
feasible linear inequalities that can be speci�ed over a subset of i variables can-
not be bounded exponentially by i. For a schematic execution of the algorithm
see Figure 10, and for more details see [23].
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Figure 11: The search tree of the graph coloring problem

2.4 Conditioning

When a problem has a high induced-width the bucket-elimination algorithms
such as adaptive-consistency and directional resolution are not applicable due to
the algorithm's exponential space complexity. Instead, the respective problems
can be solved by a simple conditioning search. The basic operation of the
conditioning algorithm is assigning or guessing a value to a single variable, thus
creating a smaller and simpler subproblem. If a solution to the subproblem is not
found then a di�erent value should be tried, leading to a branching search space
of partial value assignments that can be traversed by a backtracking algorithm.

Figure 11 shows the two subproblems generated by assigning E = 1 and E = 0
to the graph coloring of Figure 1, and the resulting search space. Although
a backtracking algorithm is worst-case exponential in the number of variables,
it has the important virtue of requiring only linear space. Only the currently
pursued partial assignment needs to be maintained.

Intensive research in the last two decades has been done on improving the
basic backtracking search for solving constraint satisfaction problems. For a
recent survey see [18]. The most well known version of backtracking for propo-
sitional satis�ability is the Davis-Logemann-Loveland (DPLL) algorithm [10],
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Figure 12: Comparing elimination and conditioning

frequently called just (DP).

2.5 Summary

We observe that elimination algorithms are e�cient for problems having small
induced width, otherwise their space requirements render them infeasible. Con-
ditioning search algorithms, while they do not have nice worst-case guarantees,
require only linear space. In addition, their average behavior is frequently much
better than their worst-case bounds. Figure 12 summarizes the properties of
elimination vs. conditioning search. This complementary behavior calls for algo-

rithms that combine the two approaches. Indeed, such algorithms are being de-
veloped for constraint-satisfaction and propositional satis�ability [12, 40, 9, 15].

In the following sections we will focus in more detail on deriving bucket
elimination algorithms for processing probabilistic networks. We are presenting
a syntactic and uniform exposition emphasizing these algorithms' form as a
straightforward elimination algorithm.

3 Preliminaries for probabilistic reasoning

The belief-network algorithmswe present next have much in commonwith direc-
tional resolution and adaptive-consistency. They all possess the property of com-
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piling a theory into a backtrack-free (i.e., greedy) theory, and their complexity is
dependent on the induced width graph parameter. The algorithms are variations
on known algorithms, and, for the most part, are not new in the sense that the
basic ideas have existed for some time [8, 34, 31, 50, 28, 39, 32, 3, 45, 46, 48, 47].

De�nition 2 (graph concepts) A directed graph is a pair, G = fV;Eg,
where V = fX1; :::; Xng is a set of elements and E = f(Xi; Xj)jXi; Xj 2 V; i 6=
jg is the set of edges. If (Xi; Xj) 2 E, we say that Xi points to Xj . For each

variable Xi, the set of parent nodes of Xi, denoted pa(Xi), comprises the vari-

ables pointing to Xi in G, while the set of child nodes of Xi, denoted ch(Xi),
comprises the variables that Xi points to. We abbreviate pa(Xi) by pai and

ch(Xi) by chi, when no possibility of confusion exists. The family of Xi, Fi,

includes Xi and its parent variables. A directed graph is acyclic if it has no

directed cycles. In an undirected graph, the directions of the arcs are ignored:

(Xi; Xj) and (Xj ; Xi) are identical.

De�nition 3 (belief network) Let X = fX1; :::; Xng be a set of random vari-

ables over multivalued domains, D1; :::; Dn, respectively. A belief network is a

pair (G;P ) where G = (X;E) is a directed acyclic graph over the variables, and

P = fPig, where Pi denotes conditional probability matrices Pi = fP (Xijpai)g.
The belief network represents a probability distribution over X having the prod-

uct form

P (x1; ::::; xn) = �n
i=1P (xijxpai)

where an assignment (X1 = x1; :::; Xn = xn) is abbreviated to x = (x1; :::; xn)
and where xS denotes the restriction of a tuple x over a subset of variables S.

An evidence set e is an instantiated subset of variables. A = a denotes a partial

assignment to a subset of variables A from their respective domains. We use

upper case letters for variables and nodes in a graph and lower case letters for

values in a variable's domain. We also call Xi [ pai the scope of Pi.

Belief networks provide a formalism for reasoning about partial beliefs under
conditions of uncertainty. As we see, it is de�ned by a directed acyclic graph
over nodes representing random variables of interest (e.g., the temperature of
a device, the gender of a patient, a feature of an object, the occurrence of an
event). The arcs signify the existence of direct causal in
uences between the
linked variables. The strength of these in
uences are quanti�ed by conditional
probabilities that are attached to each cluster of parents-child nodes in the
network.

Example 1 The network in Figure 13a can express causal relationship between

`Season' (A), `The con�guration of an automatic sprinkler system,' (B), `The

amount of rain expected' (C), `The wetness of the pavement' (F ) whether or

not the pavement is slippery (G) and `the amount of manual watering necessary'

(D). The belief-network is de�ned by
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Figure 13: belief network P (g; f; d; c; b; a)
= P (gjf)P (f jc; b)P (djb; a)P (bja)P (cja)P (a)

8a; b; v; d; f; g; P (g; f; d; c; b; a) = P (gjf)P (f jc; b)P (djb; a)P (bja)P (cja)P (a):

In this case, pa(F ) = fB;Cg.

The following queries are de�ned over belief networks:

1. belief updating, given a set of observations, computing the posterior prob-
ability of each proposition,

2. �nding the most probable explanation (mpe), given some observed vari-
ables, �nding a maximum probability assignment to all unobserved vari-
ables,

3. �nding the maximum aposteriori hypothesis (map), given some evidence,
�nding an assignment to a subset of the unobserved variables, called hy-
pothesis variables, that maximizes their probability,

4. given also a utility function, �nding an assignment to a subset of decision
variables that maximizes the expected utility (meu) of the problem.

These queries are applicable to tasks such as situation assessment, diagnosis and
probabilistic decoding, as well as planning and decision making. They are known
to be NP-hard, nevertheless, they all permit a polynomial propagation algorithm
for singly-connected networks [34]. The two main approaches for extending
this propagation algorithm to multiply-connected networks are the cycle-cutset
approach, (cutset-conditioning), and tree-clustering [34, 31, 45]. These methods
work well for sparse networks with small cycle-cutsets or clusters. In subsequent
sections bucket-elimination algorithms for each of these tasks will be presented
and their relationship with existing methods will be discussed.
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We conclude this section with some notational conventions. Let u be a
partial tuple, S a subset of variables, and Xp a variable not in S. We use
(uS; xp) to denote the tuple uS appended by a value xp of Xp.

Notation 1 (elimination functions) Given a function h de�ned over a sub-

set of variables S, called its scope and an X 2 S, the functions (minXh),
(maxXh), (meanXh), and (

P
X h) are de�ned over U = S � fXg as follows.

For every U = u, (minXh)(u) = minx h(u; x), (maxXh)(u) = maxx h(u; x),
(
P

X h)(u) =
P

x h(u; x). Given a set of functions h1; :::; hj de�ned over the

subsets S1; :::; Sj, the product function (�jhj) and
P

j hj are de�ned over the

scope U = [jSj as follows. For every U = u, (�jhj)(u) = �jhj(uSj ), and
(
P

j hj)(u) =
P

j hj(uSj ).

4 Bucket Elimination for Belief Assessment

Belief updating is the primary inference task over belief networks. The task is
to maintain the probability of singleton propositions once new evidence arrives.
For instance, if we observe that the pavement is slippery, we want to assess the
likelihood that the sprinkler was on in our example.

4.1 Deriving elim-bel

Following Pearl's propagation algorithm for singly-connected networks [34], re-
searchers have investigated various approaches to belief updating. We will now
present a step by step derivation of a general variable-elimination algorithm
for belief updating. This process is typical for any derivation of elimination
algorithms.

Let X = x be an atomic proposition. The problem is to assess and update
the belief in x1 given evidence e. We wish to compute P (X = xje) = � �P (X =
x; e), where � is a normalization constant. We will develop the algorithm using
example 1 (Figure 13). Assume we have the evidence g = 1. Consider the
variables in the order d1 = A;C;B; F;D;G. By de�nition we need to compute

P (a; g = 1) =
X

c;b;f;d;g=1

P (gjf)P (f jb; c)P (dja; b)P (cja)P (bja)P (a)

We can now apply some simple symbolic manipulation, migrating each condi-
tional probability table to the left of the summation variables which it does not
reference. We get

= P (a)
X

c

P (cja)
X

b

P (bja)
X

f

P (f jb; c)
X

d

P (djb; a)
X

g=1

P (gjf) (1)

Carrying the computation from right to left (from G to A), we �rst compute
the rightmost summation, which generates a function over f , �G(f) de�ned by:
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�G(f) =
P

g=1 P (gjf) and place it as far to the left as possible, yielding

= P (a)
X

c

P (cja)
X

b

P (bja)
X

f

P (f jb; c)�G(f)
X

d

P (djb; a) (2)

Summingnext over d (generating a function denoted �D(a; b), de�ned by �D(a; b) =P
d P (dja; b)), we get

= P (a)
X

c

P (cja)
X

b

P (bja)�D(a; b)
X

f

P (f jb; c)�G(f) (3)

Next, summing over f ( generating �F (b; c) =
P

f P (f jb; c)�G(f)), we get,

= P (a)
X

c

P (cja)
X

b

P (bja)�D(a; b)�F (b; c) (4)

Summing over b (generating �B(a; c)), we get

= P (a)
X

c

P (cja)�B(a; c) (5)

Finally, summing over c (generating �C(a)), we get

P (a)�C(a) (6)

The answer to the query P (ajg = 1) can be computed by normalizing the last
product.

The bucket-elimination algorithm mimics the above algebraic manipulation
by the familiar organizational device of buckets, as follows. First, the conditional
probability tables (CPTs, for short) are partitioned into buckets relative to the
order used, d1 = A;C;B; F;D;G. In bucket G we place all functions mentioning
G. >From the remaining CPTs we place all those mentioning D in bucket D,
and so on. The partitioning rule shown earlier for constraint processing and
cnf theories can be alternatively stated as follows. In Xi's bucket we put all
functions that mention Xi but do not mention any variable having a higher
index. The resulting initial partitioning for our example is given in Figure 14.

Note that the observed variables are also placed in their corresponding bucket.
This initialization step corresponds to deriving the expression in Eq. (1).

Now we process the buckets from last to �rst (or top to bottom in the �gures),
implementing the right to left computation of Eq. (1). Processing a bucket
amounts to eliminating the variable in the bucket from subsequent computation.
BucketG is processed �rst. To eliminate G we sum over all values of g. Since
in this case we have an observed value g = 1, the summation is over a singleton
value. The function �G(f) =

P
g=1 P (gjf), is computed and placed in bucketF

(this corresponds to deriving Eq. (2) from Eq. (1)). New functions are placed
in lower buckets using the same placement rule.
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bucketG = P (gjf); g = 1
bucketD = P (djb; a)
bucketF = P (f jb; c)
bucketB = P (bja)
bucketC = P (cja)
bucketA = P (a)

Figure 14: Initial partitioning into buckets using d1 = A;C;B; F;D;G

sum B

Bucket G

Bucket D

Bucket F

Bucket B

Bucket C

Bucket A

P(b | a)

P(c | a )

P(a )

P( d | b, a )

P( f | b, c)
G

( f )

D 
(b,a) F

( b, c)

B 
( a, c )

C 
(a)

P(g | f)   g = 1

Figure 15: Bucket elimination along ordering d1 = A;C;B; F;D;G.

BucketD is processed next. We sum-out D getting �D(b; a) =
P

d P (djb; a),
which is placed in bucketB, (which corresponds to deriving Eq. (3) from Eq.
(2)). The next variable is F . BucketF contains two functions P (f jb; c) and
�G(f), and follows Eq. (4) we generate the function �F (b; c) =

P
f P (f jb; c) �

�G(f), which is placed in bucketB (this corresponds to deriving Eq. (4) from
Eq. (3)). In processing the next bucketB, the function �B(a; c) =

P
b P (bja) �

�D(b; a) � �F (b; c) is computed and placed in bucketC (deriving Eq. (5) from
Eq. (4)). In processing the next bucketC , �C(a) =

P
c2C P (cja) � �B(a; c) is

computed (which corresponds to deriving Eq. (6) from Eq. (5)). Finally, the
belief in a can be computed in bucketA, P (ajg = 1) = � � P (a) � �C(a). Figure
15 summarizes the 
ow of computation. Throughout this process we recorded
two-dimensional functions at the most; the complexity of the algorithm using
ordering d1 is (roughly) time and space quadratic in the domain sizes.

What will occur if we use a di�erent variable ordering? For example, let's ap-
ply the algorithm using d2 = A;F;D;C;B;G. Applying algebraic manipulation
from right to left along d2 yields the following sequence of derivations:
P (a; g = 1) = P (a)

P
f

P
d

P
c P (cja)

P
bP (bja) P (dja; b)P (f jb; c)

P
g=1 P (gjf)=

P (a)
P

f �G(f)
P

d

P
c P (cja)

P
b P (bja) P (dja; b)P (f jb; c)=
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=

=

=
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Figure 16: The bucket's output when processing along d2 = A;F;D;C;B;G

P (a)
P

f �G(f)
P

d

P
c P (cja)�B(a; d; c; f) =

P (a)
P

f �g(f)
P

d �C(a; d; f) =
P (a)

P
f �G(f)�D (a; f) =

P (a)�F (a)
The bucket elimination process for ordering d2 is summarized in Figure 16a.

Each bucket contains the initial CPTs denoted by P s, and the functions gen-
erated throughout the process, denoted by �s.

We conclude with a general derivation of the bucket elimination algorithm,
called elim-bel. Consider an ordering of the variables X = (X1; :::; Xn) and as-
sume we seek P (x1je). Using the notation �xi = (x1; :::; xi) and �x

j
i = (xi; xi+1; :::; xj),

where Fi is the family of variable Xi, we want to compute:

P (x1; e) =
X

x=�xn
2

P (�xn; e) =
X

�x
(n�1)

2

X

xn

�iP (xi; ejxpai)

Separating Xn from the rest of the variables results in:

=
X

x=�x
(n�1)

2

�Xi2X�FnP (xi; ejxpai) �
X

xn

P (xn; ejxpan)�Xi2chnP (xi; ejxpai)

=
X

x=�x
(n�1)

2

�Xi2X�FnP (xi; ejxpai) � �n(xUn)

where
�n(xUn) =

X

xn

P (xn; ejxpan)�Xi2chnP (xi; ejxpai) (7)
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Algorithm elim-bel

Input: A belief network BN = fP1; :::; Png; an ordering of the variables,
d = X1; :::; Xn; evidence e.
Output: The belief P (x1je).
1. Initialize: Generate an ordered partition of the conditional probability
matrices, bucket1; :::; bucketn, where bucketi contains all matrices whose high-
est variable is Xi. Put each observed variable in its bucket. Let S1; :::; Sj be
the subset of variables in the processed bucket on which matrices (new or old)
are de�ned.
2. Backward: For p n downto 1, do
for all the matrices �1; �2; :::; �j in bucketp, do

� If (observed variable) Xp = xp appears in bucketp, assign Xp = xp to
each �i and then put each resulting function in appropriate bucket.

� else, Up  
Sj
i=1 Si � fXpg. Generate �p =

P
Xp

�j
i=1�i and add �p to

the largest-index variable in Up.

3. Return: Bel(x1) = ��i�i(x1)(where the �i are in bucket1, � is a normal-
izing constant).

Figure 17: Algorithm elim-bel

and Un denotes the variables appearing with Xn in a probability component,
(excluding Xn). The process continues recursively with Xn�1.

Thus, the computation performed in bucket Xn is captured by Eq. (7).
Given ordering d = X1; :::; Xn, where the queried variable appears �rst, the
CPT s are partitioned using the rule described earlier. Then buckets are pro-
cessed from last to �rst. To process each bucket, all the bucket's functions,
denoted �1; :::; �j and de�ned over subsets S1; :::; Sj are multiplied. Then the
bucket's variable is eliminated by summation. The computed function is �p :

Up ! R, �p =
P

Xp
�
j
i=1�i, where Up = [iSi �Xp. This function is placed in

the bucket of its largest-index variable in Up. Once all the buckets are processed,
the answer is available in the �rst bucket. Algorithm elim-bel is described in

Figure 17. We conclude:

Theorem 3 Algorithm elim-bel computes the posterior belief P (x1je) for any

given ordering of the variables which is initiated by X1. 2

The peeling algorithm for genetic trees [8], Zhang and Poole's algorithm [51],
as well as the SPI algorithm by D'Ambrosio et. al., [39] are all variations of
elim-bel. Decimation algorithms in statistical physics are also related and were
applied to Boltzmann trees [43].
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Figure 18: Two orderings of the moral graph of our example problem

4.2 Complexity

We see that although elim-bel can be applied using any ordering, its complexity
varies considerably. Using ordering d1 we recorded functions on pairs of variables
only, while using d2 we had to record functions on four variables (see BucketC
in Figure 16a). The arity of the function recorded in a bucket equals the number
of variables appearing in that processed bucket, excluding the bucket's variable.
Since computing and recording a function of arity r is time and space exponential
in r we conclude that the complexity of the algorithm is exponential in the size
(number of variables) of the largest bucket.

Fortunately, as was observed earlier for adaptive-consistency and directional-
resolution, the bucket sizes can be easily predicted from an order associated with
the elimination process. Consider themoral graph of a given belief network. This
graph has a node for each variable and any two variables appearing in the same
CPT are connected. The moral graph of the network in Figure 13a is given in
Figure 13b. Let us take this moral graph and impose an ordering on its nodes.
Figures 18a and 18b depict the ordered moral graph using the two orderings
d1 = A;C;B; F;D;G and d2 = A;F;D;C;B;G. The ordering is pictured with
the �rst variable at the bottom and the last variable at the top.

The width of each variable in the ordered graph is the number of its earlier
neighbors in the ordering. Thus, the width of G in the ordered graph along d1 is
1 and the width of F is 2. Notice now that when using ordering d1, the number of
variables in the initial buckets of G and F , are 1 and 2, respectively. Indeed, the
number of variables mentioned in a bucket in their initial partitioning (excluding
the bucket's variable) is always identical to the width of that node in the ordered
moral graph.

During processing we wish to maintain the correspondence that any two
nodes in the graph are connected if there is a function (new or old) de�ned

22



on both. Since, during processing, a function is recorded on all the variables
appearing in a bucket of a variable (which is the set of earlier neighbors of the
variable in the ordered graph) these nodes should be connected. If we perform
this graph operation recursively from last node to �rst, (for each node connecting
its earliest neighbors) we get the the induced graph. The width of each node
in this induced graph is identical to the bucket's sizes generated during the
elimination process (Figure 16b).

Example 2 The induced moral graph of Figure 13b, relative to ordering d1 =
A;C;B; F;D;G is depicted in Figure 18a. In this case, the ordered graph and

its induced ordered graph are identical, since all the earlier neighbors of each

node are already connected. The maximum induced width is 2. In this case, the

maximum arity of functions recorded by the elimination algorithms is 2. For

d2 = A;F;D;C;B;G the induced graph is depicted in Figure 18c. The width

of C is initially 2 (see Figure 18b) while its induced width is 3. The maximum

induced width over all variables for d2 is 4, and so is the recorded function's

dimensionality.

A formal de�nition of all these graph concepts is given next, partially reit-
erating concepts de�ned in Section 2.

De�nition 4 An ordered graph is a pair (G; d) where G is an undirected graph

and d = X1; :::; Xn is an ordering of the nodes. The width of a node in an

ordered graph is the number of the node's neighbors that precede it in the or-

dering. The width of an ordering d, denoted w(d), is the maximum width over

all nodes. The induced width of an ordered graph, w�(d), is the width of the

ordered graph obtained by processing the nodes from last to �rst. When node

X is processed, all its preceding neighbors are connected. The resulting graph

is called Induced-graph or triangulated graph. The induced width of a graph,
w�, is the minimal induced width over all its orderings. The induced graph sug-

gests a hyper-tree embedding of the original graph whose tree-width equals the

induced-width. Thus, the tree-width of a graph is the minimal induced width

plus one [2].

As noted before, the established connection between buckets' sizes and in-
duced width motivates �nding an ordering with a smallest induced width, a task
known to be hard [2]. However, useful greedy heuristics as well as approximation
algorithms are available [13, 4, 49].

In summary, the complexity of algorithm elim-bel is dominated by the time
and space needed to process a bucket. Recording a function on all the bucket's
variables is time and space exponential in the number of variables mentioned
in the bucket. The induced width bounds the arity of the functions recorded:
variables appearing in a bucket coincide with the earlier neighbors of the corre-
sponding node in the ordered induced moral graph. In conclusion,
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Theorem 4 Given an ordering d the complexity of elim-bel is (time and space)

exponential in the induced width w�(d) of the network's ordered moral graph.

4.3 Handling observations

Evidence should be handled in a special way during the processing of buckets.
Continuing with our example using elimination order d1, suppose we wish to
compute the belief in a, having observed b = 1. This observation is relevant
only when processing bucketB. When the algorithm arrives at that bucket, the
bucket contains the three functions P (bja), �D(b; a), and �F (b; c), as well as the
observation b = 1 (see Figure 15).

The processing rule dictates computing�B(a; c) = P (b = 1ja)�D(b = 1; a)�F (b =

1; c). Namely, generating and recording a two-dimensioned function. It would
be more e�ective, however, to apply the assignment b = 1 to each function in the
bucket separately then put the individual resulting functions into lower buckets.
In other words, we can generate P (b = 1ja) and �D(b = 1; a), each of which will
be placed in bucket A, and �F (b = 1; c), which will be placed in bucket C. By
doing so, we avoid increasing the dimensionality of the recorded functions. Pro-
cessing buckets containing observations in this manner automatically exploits
the cutset conditioning e�ect [34]. Therefore, the algorithm has a special rule
for processing buckets with observations. The observed value is assigned to each
function in the bucket, and each resulting function is individually moved to a
lower bucket.

Note that if bucket B had been last in ordering, as in d2, the virtue of
conditioning on B could have been exploited earlier. During its processing,
bucketB contains P (bja); P (djb; a); P (f jc; b); and b = 1 (see Figure 16a). The
special rule for processing buckets holding observations will place P (b = 1ja) in
bucketA, P (djb = 1; a) in bucketD, and P (f jc; b = 1) in bucketF . In subsequent
processing only one-dimensional functions will be recorded. Thus, the presence
of observations reduces complexity: Buckets of observed variables are processed
in linear time, their recorded functions do not create functions on new subsets

of variables, and therefore for observed variables no new arcs should be added
when computing the induced graph.

To capture this re�nement we use the notion of adjusted induced graph which
is de�ned recursively. Given an ordering and given a set of observed nodes, the
adjusted induced graph is generated (processing the ordered graph from last
to �rst) by connecting only the earlier neighbors of unobserved nodes. The
adjusted induced width is the width of the adjusted induced graph, disregarding
observed nodes. For example, in Figure 19(a,b) we show the ordered moral
graph and the induced ordered moral graph of Figure 13. In 19(c) the arcs
connected to the observed nodes are marked by broken lines, resulting in the
adjusted induced-graph given in (d). In summary,

Theorem 5 Given a belief network having n variables, algorithm elim-bel when
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Figure 19: Adjusted induced graph relative to observing B

using ordering d and evidence e, is (time and space) exponential in the adjusted

induced width w�(d; e) of the network's ordered moral graph. 2

4.4 Relevant subnetworks

Here we will deviate from our emphasis on uniformity and focus instead on
an improvement of the algorithm suitable for belief-updating only. The belief-
updating task has special semantics which allows restricting the computation to
relevant portions of the belief network. These restrictions are already available
in the literature in the context of the existing algorithms [27, 44].

Since summation over all values of a probability function is 1, the recorded
functions of some buckets will degenerate to the constant 1. If we can predict
these cases in advance, we can avoid needless computation by skipping some
buckets. If we use a topological ordering of the belief network's acyclic graph
(where parents precede their child nodes), and assume that the queried variable
initiates the ordering, we can identify skippable buckets dynamically during the
elimination process.

Proposition 6 Given a belief network and a topological ordering X1; :::; Xn,

that is initiated by a query variable X1, algorithm elim-bel, computing P (x1je),
can skip a bucket if during processing the bucket contains no evidence variable

and no newly computed function.

Proof: If topological ordering is used, each bucket of a variable X contains
initially at most one function, P (Xjpa(X)). Clearly, if there is no evidence nor
new functions in the bucket summation,

P
x P (xjpa(X)) will yield the constant

1. 2

Example 3 Consider again the belief network whose acyclic graph is given in

Figure 13a and the ordering d1 = A;C;B; F;D;G. Assume we want to update
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the belief in variable A given evidence on F . Obviously the buckets of G and

D can be skipped and processing should start with bucketF . Once bucketF is

processed, the remaining buckets are not skippable.

Alternatively, the relevant portion of the network can be precomputed by
using a recursive marking procedure applied to the ordered moral graph. (see
also [51]). Since topological ordering initiated by the query variables are not
always feasible (when query nodes are not root nodes) we will de�ne a marking
scheme applicable to an arbitrary ordering.

De�nition 5 Given an acyclic graph and an ordering o that starts with the

queried variable, and given evidence e, the marking process proceeds as follows.

� Initial marking: an evidence node is marked and any node having a child

appearing earlier in o (namely violate the "parent preceding child rule"),

is marked.

� Secondary marking: Processing the nodes from last to �rst in o, if a node

X is marked, mark all its earlier neighbors.

The marked belief subnetwork obtained by deleting all unmarked nodes can
now be processed by elim-bel to answer the belief-updating query.

Theorem 7 Let R = (G;P ) be a belief network, o = X1; :::; Xn and e set of

evidence. Then P (x1je) can be obtained by applying elim-bel over the marked

network relative to evidence e and ordering o, denoted M (Rje; o).

Proof: We will show that if elim-bel was applied to the original network along
ordering o, then any unmarked node is irrelevant, namely processing its bucket
yields the constant 1. Let R = (G;P ) be a belief network processed along o

by elim-bel, assuming evidence e. Assume the claim is incorrect and let X be
the �rst unmarked node (going from last to �rst along o) such that when elim-
bel process R the bucket of X does not yield the constant 1, and is therefore
relevant. Since X is unmarked, it means that it is: 1) not an evidence, and 2)
X does not have an earlier child relative to o, and 3) X does not have a later
neighbor which is marked. Since X is not evidence, and since all its child nodes
appear later in o, then, in the initial marking it cannot be marked and in the
initial bucket partitioning its bucket includes its family P (Xjpa) only. Since
the bucket is relevant, it must be the case that during the processing of prior
buckets (of variables appearing later in o), a computed function is inserted to
bucket X. Let Y be the variable during whose processing a function was placed
in the bucket of X. This implies that X is connected to Y . Since Y is clearly
relevant and is therefore marked (we assumed X was the �rst variable violating
the claim, and Y appears later than X), X must also be marked, yielding a
contradiction. 2.
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Corollary 1 The complexity of algorithm elim-bel along ordering o given evi-

dence e is exponential in the adjusted induced width of the marked ordered moral

subgraph. 2

5 An Elimination Algorithm for mpe

In this section we focus on �nding the most probable explanation. This task
appears in applications such as diagnosis and design as well as in probabilistic
decoding. For example, given data on clinical �ndings, it may suggest the most
likely disease a patient is su�ering from. In decoding, the task is to identify the
most likely input message which was transmitted over a noisy channel, given
the observed output. Although the relevant task here is �nding the most likely
assignment over a subset of hypothesis variables (known as map and analyzed
in the next section), the mpe is close enough and is often used in applications.
Researchers have investigated various approaches to �nding the mpe in a belief
network [34, ?, 35, 36]. Recent proposals include best �rst-search algorithms
[48] and algorithms based on linear programming [41].

The problem is to �nd x0 such that P (x0) = maxxP (x; e) = maxx�iP (xi; ejxpai)
where x = (x1; :::; xn) and e is a set of observations, on subsets of the variables.
Computing for a given ordering X1; :::; Xn, can be accomplished as previously
shown by performing the maximization operation along the ordering from right
to left, while migrating to the left all components that do not mention the
maximizing variable. We get,

M = max
�xn

P (�xn; e) = max
�x(n�1)

max
xn

�iP (xi; ejxpai)

= max
�xn�1

�Xi2X�FnP (xi; ejxpai) �max
xn

P (xn; ejxpan)�Xi2chnP (xi; ejxpai)

= max
x=�xn�1

�Xi2X�FnP (xi; ejxpai) � hn(xUn)

where
hn(xUn) = max

xn
P (xn; ejxpan)�Xi2chnP (xi; ejxpai)

and Un are the variables appearing in components de�ned over Xn. Clearly,
the algebraic manipulation of the above expressions is the same as the algebraic
manipulation for belief assessment where summation is replaced by maximiza-
tion. Consequently, the bucket-elimination procedure elim-mpe is identical to
elim-bel except for this change. Given orderingX1; :::; Xn, the conditional prob-
ability tables are partitioned as before. To process each bucket, we multiply all
the bucket's matrices, which in this case are denoted h1; :::; hj and de�ned over
subsets S1; :::; Sj, and then eliminate the bucket's variable by maximization as
dictated by the algebraic derivation previously noted. The computed function
in this case is hp : Up ! R, hp = maxXp

�j
i=1hi, where Up = [iSi �Xp. The
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function obtained by processing a bucket is placed in an earlier bucket of its
largest-index variable in Up. In addition, a function xop(u) = argmaxXp

hp(u),
which relates an optimizing value of Xp with each tuple of Up, may be recorded
and placed in the bucket of Xp.

1 Constant functions can be placed either in the
preceding bucket or directly in the �rst bucket2.

This procedure continues recursively, processing the bucket of the next vari-
able, proceeding from the last to the �rst variable. Once all buckets are pro-
cessed, the mpe value can be extracted as the maximizing product of functions
in the �rst bucket. When this backwards phase terminates, the algorithm initi-
ates a forwards phase to compute an mpe tuple by assigning values along the
ordering from X1 to Xn, consulting the information recorded in each bucket.
Speci�cally, once the partial assignment x = (x1; :::; xi�1) is selected, the value
of Xi appended to this tuple is xoi (x), where x

o is the function recorded in the

backward phase. Alternatively, if the functions xo were not recorded in the
backwards phase, the value xi of Xi is selected to maximize the product in
bucketi given the partial assignment x. This algorithm is presented in Figure
20. Observed variables are handled as in elim-bel. The notion of irrelevant
buckets is not applicable here.

Example 4 Consider again the belief network in Figure 13. Given the order-

ing d = A;C;B; F;D;G and the evidence g = 1, process variables from last

to �rst after partitioning the conditional probability matrices into buckets, such

that bucketG = fP (gjf); g = 1g, bucketD = fP (djb; a)g, bucketF = fP (f jb; c)g,
bucketB = fP (bja)g, bucketC = fP (cja)g, and bucketA = fP (a)g. To process

G, assign g = 1, get hG(f) = P (g = 1jf), and place the result in bucketF .

The function Go(f) = argmaxhG(f) may be computed and placed in bucketG
as well. Process bucketD by computing hD(b; a) = maxd P (djb; a) and put the

result in bucketB. Bucket F , next to be processed, now contains two matri-

ces: P (f jb; c) and hG(f). Compute hF (b; c) = maxf p(f jb; c) � hG(f), and

place the resulting function in bucketB. To eliminate B, we record the function

hB(a; c) = maxb P (bja) � hD(b; a) � hF (b; c) and place it in bucketC . To elim-

inate C, we compute hC(a) = maxc P (cja) � hB(a; c) and place it in bucketA.

Finally, the mpe value given in bucketA, M = maxa P (a) � hC(a), is deter-

mined. Next the mpe tuple is generated by going forward through the buck-

ets. First, the value a0 satisfying a0 = argmaxaP (a)hC(a) is selected. Sub-

sequently the value of C, c0 = argmaxcP (cja
0)hB(a

0; c) is determined. Next

b0 = argmaxbP (bja
0)hD(b; a

0)hF (b; c
0) is selected, and so on. The schematics

computation is summarized by Figure 15 where � is replaced by h.

The backward process can be viewed as a compilation phase in which we
compile information regarding the most probable extension of partial tuples to

variables higher in the ordering (see also section 7.2).

1This step is optional; the maximizing values can be recomputed from the information in

each bucket.
2Those are necessary to determine the exact mpe value.
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Algorithm elim-mpe

Input: A belief network BN = fP1; :::; Png; an ordering of the variables, d;

observations e.
Output: The most probable assignment.
1. Initialize: Generate an ordered partition of the conditional probability ma-
trices, bucket1, : : :, bucketn, where bucketi contains all matrices whose highest
variable is Xi. Put each observed variable in its bucket. Let S1; :::; Sj be the
subset of variables in the processed bucket on which matrices (new or old) are
de�ned.
2. Backward: For p n downto 1, do
for all the matrices h1; h2; :::; hj in bucketp, do

� If (observed variable) bucketp contains Xp = xp, assign Xp = xp to each
hi and put each in appropriate bucket.

� else, Up  
Sj
i=1 Si�fXpg. Generate functions hp = maxXp

�
j
i=1hi and

xop = argmaxXp
hp. Add hp to bucket of largest-index variable in Up.

3. Forward: The mpe value is obtained by the product in bucket1.
An mpe tuple is obtained by assigning values in the ordering d
consulting recorded functions in each bucket as follows.
Given the assignment x = (x1; :::; xi�1) choose xi = xoi (x) (x

o
i is in bucketi),

or Choose xi = argmaxXi
�fhj2 bucketij x=(x1;:::;xi�1)ghj

Figure 20: Algorithm elim-mpe
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As in the case of belief updating, the complexity of elim-mpe is bounded
exponentially in the dimension of the recorded functions, and those functions
are bounded by the induced width w�(d; e) of the ordered moral graph. In
summary,

Theorem 8 Algorithm elim-mpe is complete for the mpe task. Its complexity

(time and space) is O(n � exp(w�(d; e))), where n is the number of variables and

w�(d; e) is the adjusted induced width of the ordered moral graph.

6 An Elimination Algorithm for MAP

The map task is a generalization of both mpe and belief assessment. It asks for
the maximal belief associated with a subset of unobserved hypothesis variables

and is likewise widely applicable to diagnosis tasks. Since the map task by its
de�nition is a mixture of the previous two tasks, in its corresponding algorithm
some of the variables are eliminated by summation, others by maximization.

Given a belief network, a subset of hypothesized variables A = fA1; :::; Akg,
and some evidence e, the problem is to �nd an assignment to the hypothesized
variables that maximizes their probability given the evidence, namely to �nd
ao = argmaxa1 ;:::;akP (a1; :::; ak; e). We wish to computemax�ak P (a1; :::; ak; e) =
max�ak

P
�xn
k+1

�n
i=1P (xi; ejxpai) where x = (a1; :::; ak; xk+1; :::; xn). Algorithm

elim-map in Figure 21 considers only orderings in which the hypothesized vari-
ables start the ordering. The algorithm has a backward phase and a forward
phase, but the forward phase is relative to the hypothesized variables only. Max-
imization and summation may be somewhat interleaved to allow more e�ective
orderings, however for simplicity of exposition we do not incorporate this option
here. Note that the \relevant" graph for this task can be restricted by marking
the summation variables as was done for belief updating.

Theorem 9 Algorithm elim-map is complete for the map task. Its complexity

is O(n � exp(w�(d; e)), where n is the number of variables in the relevant marked

graph and w�(d; e) is the adjusted induced width of its marked moral graph.

7 An Elimination Algorithm for MEU

The last and somewhat more complicated task is �nding the maximum ex-
pected utility. Given a belief network, evidence e, a real-valued utility func-
tion u(x) additively decomposable relative to functions f1; :::; fj de�ned over
Q = fQ1; :::; Qjg, Qi � X, such that u(x) =

P
Qj2Q

fj(xQj
), and given a sub-

set of decision variables D = fD1; :::Dkg that are assumed to be root nodes,3

3We make this assumption for simplicity of presentation. The general case can be easily

handled as is done for general in
uence diagrams.
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Algorithm elim-map

Input: A belief network BN = fP1; :::; Png; a subset of variables A =
fA1; :::; Akg; an ordering of the variables, d, in which the A's are �rst in the
ordering; observations e.
Output: A most probable assignment A = a.
1. Initialize: Generate an ordered partition of the conditional probability ma-
trices, bucket1, : : :, bucketn, where bucketi contains all matrices whose highest
variable is Xi.
2. Backwards For p n downto 1, do
for all the matrices �1; �2; :::; �j in bucketp, do

� If (observed variable) bucketp contains the observation Xp = xp, assign
Xp = xp to each �i and put each in appropriate bucket.

� else, Up  
Sj
i=1 Si � fXpg. If Xp is not in A, then �p =

P
Xp

�j
i=1�i;

else, Xp 2 A, and �p = maxXp
�
j
i=1�i and a0 = argmaxXp

�p. Add �p
to the bucket of the largest-index variable in Up.

3. Forward: Assign values, in the ordering d = A1; :::; Ak, using the informa-
tion recorded in each bucket.

Figure 21: Algorithm elim-map

the meu task is to �nd a set of decisions do = (do1; :::; d
o
k) (di 2 Di), that

maximizes the expected utility. We assume that variables not appearing in D

are indexed Xk+1; :::; Xn. We want to compute

E = max
d1;:::;dk

X

xk+1 ;:::xn

�n
i=1P (xi; ejxpai ; d1; :::; dk)u(x);

and
d0 = argmaxDE

As in previous tasks, we will begin by identifying the computation associated
with Xn from which we will extract the computation in each bucket. We denote
an assignment to the decision variables by d = (d1; :::; dk) and, as before, �x

j
k =

(xk; :::; xj). Algebraic manipulation yields

E = max
d

X

�x
n�1

k+1

X

xn

�n
i=1P (xi; ejxpai; d)

X

Qj2Q

fj(xQj
)

We can now separate the components in the utility functions into those men-
tioning Xn, denoted by the index set tn, and those not mentioning Xn, labeled
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with indexes ln = f1; :::; ng� tn. Accordingly we produce

E = max
d

X

�x
(n�1)

k+1

X

xn

�n
i=1P (xi; ejxpai; d) � (

X

j2ln

fj(xQj
) +
X

j2tn

fj(xQj
))

E = max
d

[
X

�x
(n�1)

k+1

X

xn

�n
i=1P (xi; ejxpai; d)

X

j2ln

fj(xQj
)

+
X

�x
(n�1)

k+1

X

xn

�n
i=1P (xi; ejxpai ; d)

X

j2tn

fj(xQj
)]

By migrating to the left of Xn all of the elements that are not a function of Xn,
we get

max
d

[
X

�xn�1
k+1

�Xi2X�FnP (xi; ejxpai; d) � (
X

j2ln

fj(xQj
))
X

xn

�Xi2FnP (xi; ejxpai; d)

(8)

+
X

�xn�1
k+1

�Xi2X�FnP (xi; ejxpai ; d) �
X

xn

�Xi2FnP (xi; ejxpai ; d)
X

j2tn

fj(xQj
)]

We denote by Un the subset of variables that appear with Xn in a probabilistic
component, excluding Xn itself, and by Wn the union of variables that appear
in probabilistic and utility components with Xn, excluding Xn itself. We de�ne
�n over Un as (x is a tuple over Un [Xn)

�n(xUn jd) =
X

xn

�Xi2FnP (xi; ejxpai ; d) (9)

We de�ne �n over Wn as

�n(xWn
jd) =

X

xn

�Xi2FnP (xi; ejxpai; d)
X

j2tn

fj(xQj
)) (10)

After substituting Eqs. (9) and (10) into Eq. (8), we get

E = max
d

X

�xn�1
k+1

�Xi2X�FnP (xi; ejxpai; d) � �n(xUn jd)[
X

j2ln

fj(xQj
) +

�n(xWn
jd)

�n(xUn jd)
]

(11)
The functions �n and �n compute the e�ect of eliminating Xn. The result (Eq.
(11)) is an expression which does not include Xn, where the product has one
more matrix �n and the utility components have one more element 
n = �n

�n
.

Applying such algebraic manipulation to the rest of the variables in order, yields
the elimination algorithm elim-meu in Figure 22. Each bucket contains utility
components, �i, and probability components, �i. Variables can be marked as
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Algorithm elim-meu

Input: A belief network BN = fP1; :::; Png; a subset of decision variables
D1; :::; Dk that are root nodes; a utility function over X, u(x) =

P
j fj(xQj

);
an ordering of the variables, o, in which the D's appear �rst; observations e.
Output: An assignment d1; :::; dk that maximizes the expected utility.
1. Initialize: Partition components into buckets, where bucketi contains all
matrices whose highest variable is Xi. Call probability matrices �1; :::; �j and
utility matrices �1; :::; �l. Let S1; :::; Sj be the scopes of probability functions
and Q1; :::; Ql be the scopes of the utility functions.
2. Backward: For p n downto k + 1, do
for all matrices �1; :::; �j; �1; :::; �l in bucketp, do

� If (observed variable) bucketp contains the observationXp = xp, then as-
sign Xp = xp to each �i; �i and puts each resulting matrix in appropriate
bucket.

� else, Up  
Sj
i=1 Si � fXpg and Wp  Up [ (

Sl
i=1Qi � fXp)g. If Xp

is marked then �p =
P

Xp
�i�i and �p = 1

�p

P
Xp

�
j
i=1�i

Pl

j=1 �j ; else,

�p =
P

Xp
�j
i=1�i

Pl

j=1 �j . Add �p and �p to the bucket of the largest-
index variable in Wp and Up, respectively.

3. Forward: Assign values in the ordering o = D1; :::; Dk using the informa-
tion recorded in each bucket of the decision variables.

Figure 22: Algorithm elim-meu

relevant or irrelevant as in the elim-bel case. If a bucket is irrelevant �n is
a constant. Otherwise, during processing, the algorithm generates the �i of a
bucket by multiplying all its probability components and summing over Xi. The
�i of bucket Xi is computed as the average utility of the bucket; if the bucket is
marked, the average utility of the bucket is normalized by its �. The resulting
�i and �i are placed into the appropriate buckets.

Finally, the maximization over the decision variables can now be accom-
plished using maximization as the elimination operator. We do not include
this step explicitly; given our simplifying assumption that all decisions are root
nodes, this step is straightforward.

Example 5 Consider the network of Figure 13 augmented by utility compo-

nents and two decision variables D1 and D2. Assume that there are utility

functions u(f; g); u(b; c); u(d) such that the utility of a value assignment is the

sum u(f; g)+u(b; c)+u(d). The decision variables D1 and D2 have two options.

Decision D1 a�ects the outcome at G as speci�ed by P (gjf;D1), while D2 af-

fects variable A as speci�ed by P (ajD2). The modi�ed belief network is shown in

Figure 23. The bucket's partitioning and the schematic computation of this de-
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cision problem is given in Figure 24. Initially, bucketG contains P (gjf;D1),
u(f; g) and g = 1. Since the bucket contains an observation, we generate

�G(f;D1) = P (g = 1jf;D1) and �G(f) = u(f; g = 1) and put both in bucket

F . Next, bucket D, which contains only P (djb; a) and u(d), is processed. Since
this bucket is not marked, it will not create a probabilistic term. The utility

term: �D(b; a) =
P

d P (djb; a)u(d) is created and placed in bucket B. Subse-

quently, when bucket F is processed, it generates the probabilistic component

�F (b; c;D1) =
P

f P (f jb; c)�G(f;D1) and the utility component

�F (b; c;D1) =
1

�F (b; c;D1)

X

f

P (f jb; c)�G(f;D1)�G(f)

Both new components are placed in bucket B. When bucketB is processed next,

it creates the component �B(a; c;D1) =
P

b P (bja)�F (b; c;D1) and

�B(a; c;D1) =
1

�B(a; c;D1)

X

b

P (bja)�F (b; c;D1)[u(b; c)+�D(b; a)+�G(b; c;D1)]:

Processing bucketC generates �C(a;D1) =
P

c P (cja)�B(a; c;D1) and �C(a;D1) =
1

�C(a;D1)

P
c P (cja)�B(a; c;D1)�B(a; c;D1) while placing the two new compo-

nents in bucketA. Processing bucketA yields: �A(D1; D2) =
P

a P (ajD2)�C(a;D1)
and �A(D1; D2) = 1

�A(D1;D2)

P
a P (ajD2)�C(a;D1)�C(a;D1), both placed in

bucketD1
. BucketD1

is processed next by maximization generating �D1
D2 =

maxD1
�A(D1; D2) which is placed in bucketD2

. Now the decision of D2 that

maximizes �D1
(D2), is selected. Subsequently, the decision that maximizes �A(D1; D2)

tabulated in bucketD1
, is selected.

As before, the algorithm's performance can be bounded as a function of the
structure of its augmented graph. The augmented graph is the moral graph
augmented with arcs connecting any two variables appearing in the same utility
component fi, for every i.

Theorem 10 Algorithm elim-meu computes the meu of a belief network aug-

mented with utility components (i.e., an in
uence diagram) in O(n�exp(w�(d; e))
time and space, where w�(d; e) is the adjusted induced width along d of the aug-

mented moral graph. 2

Tatman and Schachter [50] have published an algorithm for the general in-

uence diagram that is a variation of elim-meu. Kjaerul�'s algorithm [29] can
be viewed as a variation of elim-meu tailored to dynamic probabilistic networks.

8 Cost Networks and Dynamic Programming

As we have mentioned at the outset, bucket-elimination algorithms are varia-
tions of dynamic programming. Here we make the connection explicit, observing
that elim-mpe is dynamic programming with some simple transformation.
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Figure 23: An in
uence diagram

bucketG : P (f jg;D1), g = 1, u(f; g)
bucketD: P (djb; a), u(d)
bucketF : P (f jb; c) jj �G(f;D1); �G(f)
bucketB: P (bja); u(b; c) jj �F (b; c;D1); �D(b; a); �F (b; c;D1)
bucketC: P (cja) jj �B(a; c;D1); �B(a; c;D1)
bucketA: P (ajD2) jj �C(a;D1); �C(a;D1)
bucketD1

: jj �A(D1; D2); �A(D1; D2)
bucketD2

: jj �D1
(D2)

Figure 24: A schematic execution of elim-meu
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Algorithm elim-opt

Input: A cost network C = fC1; :::;Clg; ordering o; assignment e.

Output: The minimal cost assignment.

1. Initialize: Partition the cost components into buckets.
2. Process buckets from p n downto 1

For costs h1; h2; :::; hj in bucketp, do:

� If (observed variable) Xp = xp, assign Xp = xp to each hi and put in buckets.

� Else, (sum and minimize)

hp = minXp

Pj

i=1
hi. Add hp to its bucket.

3. Forward: Assign minimizing values in ordering o, consulting functions in each

bucket.

Figure 25: Dynamic programming as elim-opt

That elim-mpe is dynamic programming becomes apparent once we trans-
form the mpe's cost function, which has a product function, into the tradi-
tional additive function using the log function. For example, P (a; b; c; d; f; g) =
P (a)P (bja)P (cja)P (f jb; c)P (dja; b)P (gjf) becomes C(a; b; c; d; e) = �logP =
C(a)+C(b; a)+C(c; a)+C(f; b; c)+C(d; a; b)+C(g; f) where each Ci = �logPi.
Indeed, the general dynamic programming algorithm is de�ned over cost net-
works. A cost network is a triplet (X;D;C), where X = fX1; :::; Xng are vari-
ables over domainsD = fD1; :::; Dng, C are real-valued cost functions C1; :::; Cl.
de�ned over subsets Si = fXi1 ; :::; Xirg, Ci :1

r
j=1 Dij ! R+. The cost graph

of a cost network has a node for each variable and connects nodes denoting vari-
ables appearing in the same cost component. The task is to �nd an assignment
to the variables that minimizes

P
iCi.

A straightforward elimination process similar to that of elim-mpe, (where the
product is replaced by summation and maximization by minimization)yields the
non-serial dynamic programming algorithm [5]. The algorithm, called elim-opt,
is given in Figure 25.

A schematic execution of our example along ordering d = G;A; F;D;C;B is

depicted in Figure 26. Clearly,

Theorem 11 Given a cost network, elim-opt generates a representation from

which the optimal solution can be generated in linear time by a greedy procedure.

The algorithm's complexity is time and space exponential in the cost-graph's

adjusted induced-width. 2

9 Relation with Other Methods

We show next that bucket-elimination is similar to a directional version of the
poly-tree propagation for singly-connected networks and to a directional version
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Figure 26: Schematic execution of elim-opt

of tree-clustering for general networks.

9.1 Poly-tree algorithm

When the belief network is a polytree, belief assessment, the mpe task and map
task can be accomplished e�ciently using Pearl's belief propagation algorithm
[34]. As well, when the augmented graph is a tree, the meu can be computed
e�ciently. Bucket elimination is also guaranteed to be time and space linear
on any polytree because the induced-width of its moral graph is bounded by its
largest family and realizing an ordering having a minimal induced width is easy.

Theorem 12 Given a polytree, a bucket-elimination's complexity is time and

space exponential in the largest family size. 2

We next show that Pearl's belief propagation and bucket-elimination are
very similar algorithms on polytrees. In fact, a directional version of belief

propagation that computes the belief in a single proposition only, is identical to
elim-bel that processes the buckets of each family as super-buckets.

A polytree is a directed acyclic graph whose underlying undirected graph
has no cycles (see Figure 27(a)). Belief propagation (we assume familiarity with
this algorithm) is a distributed, message-passing algorithm that computes the
belief in each proposition by transmitting two messages, one in each direction,
on each link. The messages are called �'s or �'s, depending on whether they are
transmitted upwards or downwards in the directed polytree.

If only a belief in a single proposition is desired, propagation can be restricted
to one direction only. Messages will only propagate along the paths leading to
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Figure 27: (a) A polytree and (b) a legal processing ordering

the queried variable. Many orderings can accommodate this message-passing
and will be termed legal orderings. In particular, a reversed, breadth-�rst traver-
sal ordering initiated at the queried proposition can be used.

We denote by DBP the directional belief propagation algorithm. Given a legal
ordering, the algorithm processes the variables in a reverse ordering, where each
node, in turn, computes and sends its message to its neighbor along the path
to the root. We will show via an example that when using the same ordering,
this directional version of belief propagation is identical to elim-bel.

Assume that we seek P (x1jz1 = 0; z2 = 0; z3 = 0; y1 = 0) for the network
in Figure 27(a). A breadth-�rst ordering of the (underlying undirected) tree
initiated at X1 is d = X1; U3; U2; U1; Y1; Z1; Z2; Z3. (Clearly a breadth-�rst
ordering is just one feasible ordering. In fact any ordering in which child nodes
are eliminated before their parents is satisfactory.) DBP will send messages
from the last variable to the �rst. The message sent by each Zi towards Ui is
�Zi(ui) = P (zi = 0jui) = P (zi0jui) (we denote by primes instantiated variables
and by lower case uninstantiated variables). The next message sent by Y1 is
�Y1(x1) = P (y10jx1). Subsequently, U1; U2; U3; each multiply the messages they
receive by P (ui), yielding �Ui(x1) = P (ui)�Zi (ui), which is sent toX1. Variable
X1 now computes its � message as:

�(x1) = P (x1)
X

u1;u2;u3

P (x1ju1; u2; u3)�U1
(x1)�U2

(x1)�U3
(x1): (12)

Finally, X1 computes its own belief Bel(x1) = �(x1) � �Y1(x1).
Let us follow elim-bel's performance along the same ordering. The initial

partitioning into buckets is:
bucket(Z3) = P (z3ju3); z3 = 0.
bucket(Z2) = P (z2ju2), z2 = 0.
bucket(Z1) = P (z1ju1), z1 = 0.
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bucket(Y1) = P (y1jx1), y1 = 0.
bucket(U3) = P (u3); P (x1ju1; u2; u3)
bucket(U2) = P (u2)
bucket(U1) = P (u1)
bucket(X1) = P (x1)

Processing the initial buckets of Z3; Z2, and Z1, generates �Zi(ui) = P (z0ijui).
Each is placed in bucket(Ui), i 2 f1; 2; 3g. These functions are identical to
the � messages sent from the Zis to the Uis by DBP. Likewise, bucket(Y1)
creates the function �Y1(x1) = P (y01jx1), which goes into bucket(X1) and
is identical to the message sent from Y1 to X1 by DBP. Processing buckets
U3, U2 and U1 produces �U3

(u1; u2; x1) =
P

u3
P (x1ju1; u2; u3)�z1(u1)P (u3),

which is put in bucket(U2). Processing bucket(U2) generates �U2
(u1; x1) =P

u2
�U2

(x1; u1; u2)�z2 (u2)P (u2), which is positioned in bucket(U1). Subse-
quently, bucket(U1) yields �U1

(x1) =
P

u1
�U2

(x1; u1)�Z1
(u1)P (u1) which is

assigned to bucket(X1). The combined computation in buckets U1 U2 and U3 is
equivalent to the message computed in Eq. (12). Notice that �U1

(x1) generated
in bucket(U1) is identical to the message �(x1) produced by BDP (Eq. (12)).
Subsequently, in bucket(X1) we take the product of all functions and normalize.
The �nal resulting buckets are:
bucket(Z3) = P (z3ju3); z3 = 0 .
bucket(Z2) = P (z2ju2), z2 = 0.
bucket(Z1) = P (z1ju1), z1 = 0.
bucket(Y1) = P (y1jx1), y1 = 0.
bucket(U3) = P (u3); P (x1ju1; u2; u3); jj �Z3

(u3)
bucket(U2) = P (u2); jj �Z2

(u2), �U3
(x1; u2; u1)

bucket(U1) = P (u1); jj �Z1
(u1), �U2

(x1; u1)
bucket(X1) = P (x1) jj �Y1(x1), �U1

(x1)

We see that all the DBP messages map to functions recorded by elim-bel.
However, in elim-bel we had two additional functions (generated in bucket(U3)
and bucket(U2)) that are avoided by DBP. A simple modi�cation of elim-bel can
avoid recording those functions: all the buckets that correspond to the same fam-
ily can be processed simultaneously, as a single super-bucket where summation

is applied over all the variables in the family. The two algorithms, directional
belief propagation and elim-bel, become identical with these modi�cations.

The super-bucket idea can be implemented by using orderings that allow
nodes of the same family to appear consecutively. These adjacent nodes are col-
lected into super-buckets. Appropriate ordering is achieved by reversed breadth-
�rst ordering. Processing a super-bucket amounts to eliminating all the super-
bucket's variables without recording intermediate results.

Consider the polytree in Figure 27a and the ordering in 27b. Instead of
processing each bucket(Ui) separately, we compute the function �U1;U2;U3

(x1) in
the super-bucket bucket(U1; U2; U3) and place the result in bucket(X1), creating
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the unary function

�U1;U2;U3
(x1) =

X

u1;u2;u3

P (u3)P (x1ju1; u2; u3)P (z03ju3)P (u2)P (z02ju2)P (u1)P (z01ju1):

In summary, elim-bel with the super-bucket processing yields the following
buckets:
bucket(Z3) = P (z3ju3); z3 = 0 .
bucket(Z2) = P (z2ju2), z2 = 0.
bucket(Z1) = P (z1ju1), z1 = 0.
bucket(Y1) = P (y1jx1), y1 = 0.
bucket(U3; U2; U1) = P (u3); P (u2); P (u1); P (x1ju1; u2; u3); jj �Z3

(u3), �Z2
(u2); �Z1

(u1),
bucket(X1) = P (x1) jj �Y1(x1), �U1;U2;U3

(x1)

We demonstrated that,

Proposition 13 Given a polytree and a breadth-�rst ordering d, initiated at the

queried variable, the set of functions generated by the modi�ed elim-bel using d

is identical to the messages generated by DBP when messages are generated in

reverse order of d. 2.

9.2 Join-tree clustering

The polytree algorithm was extended to general networks by a method, similar
to bucket elimination, known as Join-tree clustering [31]. The two algorithms
(i.e., bucket-elimination and join-tree clustering) are closely related, and their
worst-case complexity (time and space) is essentially the same (as already ob-
served for constraint processing [20]).

Join-tree clustering is initiated by triangulating the moral graph along a
given variable ordering. The maximal cliques (i.e., maximally fully connected
subgraphs) of the triangulated graph are used to identify new subproblems that
can be connected in a tree-like network called a join-tree. The complexity of tree-
clustering is time and space exponential in the size of the largest clique because
it is necessary to compile subproblems over the cliques (we assume familiarity
with the join-tree algorithm). Since the triangulated graph is the same as the
induced graph, the cliques' sizes in a join-tree clustering are identical to the
induced-width (plus one). Therefore, the time and space complexity of join-tree
clustering and bucket-elimination are the same.

This congruence in complexity is a result of the inherent similarity between
the algorithms themselves. A directional version of join-tree clustering that
updates a singleton belief is equivalent to elim-bel. In full tree-clustering, once
the join-tree structure is identi�ed, the cliques' potentials are compiled by taking
the product of the conditional probabilities associated with each clique. Once
the potentials are available, the problem resembles a tree. This allows message-
passing between cliques in a manner similar to the message-passing in a polytree
[34, 31].
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Figure 28: Clique-tree associated with the induced graph of Figure 7a

In a directional version of join-tree clustering, message-passing is restricted
to one direction only: from leaf cliques towards a clique which contain the
queried proposition, called a root. Moreover, instead of computing a clique's
potential �rst, the computation of potentials and message-passing can be inter-
leaved.

We will demonstrate next that a bucket-elimination trace corresponds to ex-
ecuting directional join-tree clustering. An ordering used by bucket-elimination
generates a corresponding ordered induced moral graph (or triangulated moral

graph). Each variable and its earlier neighbors in the induced moral graph form
a clique, and each clique can be connected to an earlier clique with whom it
shares a largest subset of variables [20]. For example, the induced graph in
Figure 28(a) may generate the clique-tree in Figure 28(b).

The performance of directional join-tree parallels elim-bel in this exam-
ple, assuming we seek the belief P (ajg = 1). The ordering of cliques d1 =
(CBA;FCB;DBA;GF ) is used for join-tree clustering, while the correspond-

ing ordering of d2 = (A;C;B; F;D;G) is used for elim-bel.
Join-tree processing GF : Its clique contains only P (GjF ), so no potential

is updated. Message-passing assigns the value g = 1 resulting in the message
P (g = 1jf) that is propagated to clique FCB. The corresponding elim-bel step
is to process bucket(G). P (g = 1jF ) is generated and put in Bucket(F ).

Join-tree processing of DBA: The clique which contains P (djb; a), P (bja)
and P (a), results in the potential h(d; b; a) = P (djb; a)P (bja)P (a). Subse-
quently, the message sent to clique CBA is the marginal

P
d h(a; b; d) = P (bja)P (a).

A corresponding elim-bel step processes Bucket(D), computing �D(b; a) =
P

D P (djb; a),

yields the constant 1. (Note that P (bja) already resides in bucket(B) and P (a)
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is already in bucket(A)).
Join-tree process FCB: This clique contains P (f jc; b) and the mes-

sage P (g = 1jf). The potential remains P (f jc; b). The message �F (c; b) =P
F P (f jc; b)P (g = 1jf) will then be computed and sent to clique CBA. Elim-

bel processing bucket(F ) computes the same function �F (b; c) and places it in
bucket(B).

Join-tree processingCBA: It computes the potential h(a; b; c) = P (bja)P (cja)P (a),
incorporates the message it received earlier, �F (c; b), and computes the desired
belief P (ajg = 1) = �

P
b;c h(a; b; c)�F (c; b). Elim-bel now processes buckets

C;B;A in sequence (or alternatively the super-bucket bucket(B;C;A)) resulting
in: �C(a; b) =

P
c P (cja)�F (c; b) then �B(a) =

P
bP (bja)�C((a; b) and �nally,

the desired belief: P (ajg = 1) = �P (a)�B(a).
The relationship between directional join-tree clustering and bucket elimina-

tion provides semantics to the functions computed by bucket-elimination. Fo-
cusing �rst on the most probable explanation, mpe, the function hp(u) recorded
in bucketp by elim-mpe and de�ned over Up = [iSi � fXpg, is the maximum
probability extension of Up = u, to variables appearing later in the ordering,
and restricted to the clique-subtree rooted at the clique containing Up. For in-
stance, hF (b; c) recorded by elim-mpe equals maxf;g P (b; c; f; g), since F and G
appear in the clique-tree rooted at clique FCB. For belief assessment the func-
tion �p =

P
Xp

�j
i=1�i, de�ned over Up = [iSi�Xp, denotes the probability of

all the evidence e+p observed in the clique subtree rooted at a clique containing
Up, conjoined with u, speci�cally, �p(u) = �P (e+p; u).

Algorithms for join-tree clustering in belief networks are sometimes ambigu-
ous in that they seem to imply that only topological orderings are acceptable for
triangulation. In fact, the tree-clustering algorithm is correct for any ordering.
Its e�ciency, however, (its clique size) indeed depends on the ordering selected.
For tasks other than belief updating, the considerations for identifying good or-
derings are identical to those associated with constraint satisfaction. However,
in belief updating, because of the ability to exploit relevant subgraphs, orderings
that are consistent with the acyclic graph may be more suitable.

10 Combining Elimination and Conditioning

As noted earlier for deterministic reasoning, a serious drawback of elimination
and clustering algorithms is that they require considerable memory for recording
the intermediate functions. Conditioning search, on the other hand, requires

only linear space. By combining conditioning and elimination, we may be able to
reduce the amount of memory needed while still having performance guarantee.

Full conditioning for probabilistic networks is search, namely, traversing the
tree of partial value assignments and accumulating the appropriate sums of
probabilities. (It can be viewed as an algorithm for processing the algebraic
expressions from left to right, rather than from right to left as was demonstrated
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Figure 29: probability tree

for elimination). For example, we can compute the expression for mpe in the
network of Figure 13:

M = max
a;c;b;f;d;g

P (gjf)P (f jb; c)P (dja; b)P (cja)P (bja)P (a)

= max
a

P (a)max
c

P (cja)max
b

P (bja)max
f

P (f jb; c)max
d

P (djb; a)max
g

P (gjf);

(13)
by traversing the tree in Figure 29, going along the ordering from �rst variable
to last variable. The tree can be traversed either breadth-�rst or depth-�rst
resulting in algorithms such as best-�rst search and branch and bound, respec-
tively.

We will demonstrate one scheme of combining conditioning with elimination
using the mpe task.

Notation: Let X be a subset of variables and V = v be a value assignment
to V . f(X)jv denotes the function f where the arguments in X\V are assigned
the corresponding values in v.

Let C be a subset of conditioned variables, C � X, and V = X � C. We
denote by v an assignment to V and by c an assignment to C. Obviously,

max
x

P (x; e) = max
c

max
v

P (c; v; e) = maxc;v�iP (xijxpai)j(c;v;e)

Therefore, for every partial tuple c, we can compute maxv P (v; c; e) and a cor-

43



Algorithm elim-cond-mpe

Input: A belief network BN = fP1; :::; Png; an ordering of the variables, d; a
subset C of conditioned variables; observations e.
Output: The most probable assignment.
Initialize: p = 0.

1. For every assignment C = c, do
� p1  The output of elim-mpe with c [ e as observations.
� p maxfp; p1g (update the maximum probability).

2. Return p and a maximizing tuple.

Figure 30: Algorithm elim-cond-mpe

responding maximizing tuple

(xoV )(c) = argmaxV�
n
i=1P (xijxpai)j(c;e)

using variable elimination, while treating the conditioned variables as observed
variables. This basic computation will be enumerated for all value combinations
of the conditioned variables, and the tuple retaining the maximum probability
will be kept. This straightforward algorithm is presented in Figure 30.

Given a particular value assignment c, the time and space complexity of
computing the maximum probability over the rest of the variables is bounded
exponentially by the induced width w�(d; e[c) of the ordered moral graph along
d adjusted for both observed and conditioned nodes. Therefore, the induced
graph is generated without connecting earlier neighbors of both evidence and
conditioned variables.

Theorem 14 Given a set of conditioning variables, C, the space complexity of

algorithm elim-cond-mpe is O(n � exp(w�(d; c[ e)), while its time complexity is

O(n � exp(w�(d; e[ c) + jCj)), where the induced width w�(d; c[ e), is computed

on the ordered moral graph that was adjusted relative to e and c. 2

When the variables in e[ c constitute a cycle-cutset of the graph, the graph
can be ordered so that its adjusted induced width equals 1 and elim-cond-mpe
reduces to the known loop-cutset algorithms [34, 12].

In general Theorem 14 calls for a secondary optimization task on graphs:

De�nition 6 (secondary-optimization task) Given a graph G = (V;E) and
a constant r, �nd a smallest subset of nodes Cr, such that G0 = (V � Cr; E0),
where E0 includes all the edgs in E that are not incident to nodes in Cr, has

induced-width less or equal r.
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Clearly, the minimal cycle-cutset corresponds to the case where the induced-
width is r = 1. The general task is clearly NP-complete.

Clearly, algorithm elim-cond-mpe can be implemented more e�ectively if we
take advantage of shared partial assignments to the conditioned variables. There
are a variety of possible hybrids between conditioning and elimination that can
re�ne this basic procedure. One method imposes an upper bound on the arity
of functions recorded and decides dynamically, during processing, whether to
process a bucket by elimination or by conditioning (see [40]). Another method
which uses the super-bucket approach collects a set of consecutive buckets into
one super-bucket that it processes by conditioning, thus avoiding recording some
intermediate results [15, 24]. See also [9].

11 Additional related work

We have mentioned throughout this paper algorithms in probabilistic and deter-
ministic reasoning that can be viewed as bucket-elimination algorithms. Among
those are the peeling algorithm for genetic trees [8], Zhang and Poole's VE1 algo-
rithm [51] which is identical to elim-bel, SPI algorithmby D'Ambrosio et.al., [39]
which preceded both elim-bel and VE1 and provided the principle ideas in the
context of belief updating. Decimation algorithms in statistical physics are also
related and were applied to Boltzmann trees [43]. We also made explicit the ob-
servation that bucket elimination algorithms resemble tree-clustering methods,
an observation that was made earlier in the context of constraint satisfaction
tasks [20].

The observation that a variety of tasks allow e�cient algorithms of hyper-
trees and therefore can bene�t from a tree-clustering approach was recognized
by several works in the last decade. In [38] the connection between optimiza-
tion and constraint satisfaction and its relationship to dynamic programming is
explicated. In the work of [33, 47] and later in [6] an axiomatic framework that
characterize tasks that can be solved polynomially over hyper-trees, is intro-
duced. Such tasks can be described using combination and projection operators
over real-valued functions, and satisfy a certain set of axioms. The axiomatic
framework [47] was shown to capture optimization tasks, inference problems
in probabilistic reasoning, as well as constraint satisfaction. Indeed, the tasks
considered in this paper can be expressed using operators obeying those axioms
and therefore their solution by tree-clustering methods follows. Since, as shown
in [20] and here, tree-clustering and bucket elimination schemes are closely re-
lated, tasks that fall within the axiomatic framework [47] can be accomplished
by bucket elimination algorithms as well. In [6] a di�erent axiomatic scheme is
presented using semi-ring structures showing that impotent semi-rings charac-
terize the applicability of constraint propagation algorithms. Most of the tasks
considered here do not belong to this class.

In contrast, the contribution of this paper is in making the derivation process
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of variable elimination algorithms from the algebraic expression of the tasks,
explicit. This makes the algorithms more accessible and their properties better
understood. The associated complexity analysis and the connection to graph
parameters are also made explicit. Task speci�c properties are also studied (e.g,
irrelevant buckets in belief updating).

The work we show here also �ts into the framework developed by Arnborg
and Proskourowski [2, 1]. They present table-based reductions for various NP-
hard graph problems such as the independent-set problem, network reliability,
vertex cover, graph k-colorability, and Hamilton circuits. Here and elsewhere
[22, 16] we extend the approach to a di�erent set of problems.

The following paragraphs summarize and generalizes the bucket elimination
algorithm using two operators of combination and marginalization. The task at
hand can be de�ned in terms of a triplet (X;D;F ) where X = fX1; :::; Xng is a

set of variables having domain of values fD1; :::; Dng. and F = ff1; :::; fkg is a
set of functions, where each fi is de�ned over a scope Si � X. Given a function h
de�ned over scope S � X, and given Y � S, the (generalized) projection opera-
tor +Y f is de�ned by enumeration as +Y h 2 fmaxS�Y h;minS�Y h;�S�Y h;

P
S�Y hg

and the (generalized) combination operator 
jfj is de�ned over U = [jSj .



k
j=1fj 2 f�

k
j=1fj ;

Pk

j=1 fj; 1j fjg.
The problem is to compute

+Y 

n
i=1fi

(In [47] the fi are called valuations.) We showed that such problems can be
solved by the bucket-elimination algorithm, stated using this general form in
Figure 31. For example, elim-bel is obtained when +Y=

P
S�Y and 
j = �j ,

elim-mpe is obtained when +Y= maxS�Y and 
j = �j , and adaptive consis-
tency corresponds to +Y= �S�Y and 
j =1j . Similarly, Fourier elimination,
directional resolution as well as elim-meu can be shown to be expressible in
terms of such operators.

12 Conclusion

The paper describes the bucket-elimination framework which uni�es variable
elimination algorithms appearing for deterministic and probabilistic reasoning
as well as for optimization tasks. In this framework, the algorithms exploit the
structure of the relevant network without conscious e�ort on the part of the
designer. Most bucket-elimination algorithms4 are time and space exponential
in the induced-width of the underlying dependency graph of the problem.

The simplicity of the proposed framework highlights the features common to
bucket-eliminationand join-tree clustering, and allows focusing belief-assessment
procedures on the relevant portions of the network. Such enhancements were

4all, except Fourier algorithm.
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Algorithm bucket-elimination

Input: A set of functions F = ff1; :::; fng over scopes S1; :::; Sn; an ordering
of the variables, d = X1; :::; Xn; A subset Y .
Output: A new compiled set of functions
from which +Y 


n
i=1fi can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into
bucket1; :::; bucketn, where bucketi contains all the functions whose highest
variable in their scope is Xi. Let S1; :::; Sj be the subset of variables in the
processed bucket on which functions (new or old) are de�ned.
2. Backward: For p n downto 1, do
for all the functions �1; �2; :::; �j in bucketp, do

� If (observed variable) Xp = xp appears in bucketp, assign Xp = xp to
each �i and then put each resulting function in appropriate bucket.

� else, Up  
Sj
i=1 Si � fXpg. Generate �p =+Up 


j
i=1�i and add �p to

the largest-index variable in Up.

3. Return: all the functions in each bucket.

Figure 31: Algorithm bucket-elimination

accompanied by graph-based complexity bounds which are even more re�ned
than the standard induced-width bound.

The performance of bucket-elimination and tree-clustering algorithms su�ers
from the usual di�culty associated with dynamic programming: exponential
space and exponential time in the worst case. Such performance de�ciencies
also plague resolution and constraint-satisfaction algorithms [21, 16]. Space
complexity can be reduced using conditioning search. We have presented one
generic scheme showing how conditioning can be combined on top of elimination,
reducing the space requirement while still exploiting topological features.

In summary, we provided a uniform exposition across several tasks, appli-
cable to both probabilistic and deterministic reasoning, which facilitates the
transfer of ideas between several areas of research. More importantly, the orga-
nizational bene�t associated with the use of buckets should allow all the bucket-
elimination algorithms to be improved uniformly. This can be done either by
combining conditioning with elimination as we have shown, or via approxima-
tion algorithms as is shown in [16].

Finally, no attempt was made in this paper to optimize the algorithms for
distributed computation, nor to exploit compilation vs. run-time resources.
These issues should be addressed. In particular, improvements exploiting the
structure of the conditional probability matrices as presented recently in [42, 7,
37] can be incorporated on top of bucket-elimination.
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