
Value iteration and policy iteration

algorithms

for Markov decision problem

Elena Pashenkova Irina Rish
Rina Dechter

Department of Information and Computer Science,
University of California at Irvine

Irvine, CA 92717

April 18, 1996

Abstract

In this paper we consider computational aspects of decision-theoretic planning
modeled by Markov decision processes (MDPs). Commonly used algorithms, such
as value iteration (VI) [Bellman, 1957] and several versions of modi�ed policy it-
eration (MPI) [Puterman, 1994] (a modi�cation of the original Howard's policy
iteration (PI) [Howard, 1960]), are compared on a class of problems from the mo-
tion planning domain. Policy iteration and its modi�cations are usually recom-
mended as algorithms demonstrating a better performance than value iteration
[Russel & Norvig, 1995], [Puterman, 1994]. However, our results show that their
performance is not always superior and depends on the parameters of a problem
and the parameters of the algorithms, such as number of iterations in the value de-
termination procedure in MPI. Moreover, policy iteration applied to non-discounted
models without special restrictions might not even converge to an optimal policy, as
in case of the policy iteration algorithm introduced in [Russel & Norvig, 1995]. We
also introduce a new stopping criterion into value iteration based on policy changes.
The combined value-policy iteration (CVPI) algorithm proposed in the paper im-
plements this criterion and generates an optimal policy faster then both policy and
value iteration algorithms.

1

1 Introduction

We consider a commonly used approach to decision theoretic planning based
on the theory of Markov decision processes (MDPs). Environment is de-
scribed by a set of states S. A decision-making agent observes the current
state of the environment and chooses an action from a given set A. We
assume that the environment is completely observable, i.e. observations give
correct information about the state of the world. Nondeterministic e�ects
of actions are described by the set of transition probabilities P a

ij, which are
de�ned for every pair of states si and sj and for every action a. P a

ij is the
probability of reaching state sj from state si after taking an action a. There
is a reward function R de�ned on S which speci�es an immediate reward
of being in a given state s 2 S. A policy is a mapping from the set of states
to the set of actions � : S ! A describing an action to be taken given
the current state of the environment. Therefore, an MDP is a stochastic
automaton. Decision making is based on maximum expected utility (MEU)
approach. Given a policy, we compute an expected utility U of each state si
according to the formula:

U(si) = R(si) +
X

j

P
pi(si)
ij U(sj)

The goal is to �nd an optimal policy �� which maximizes the expected utility
of each state, i.e. given any other policy � and any s, ��(s) � �(s). There
are several algorithms commonly used for determining an optimal policy for
decision problems: value iteration (VI) [Bellman, 1957] and policy iteration
(PI) [Howard, 1960], as well as a variation called modi�ed policy iteration
(MPI) [Puterman, 1994].
We compare the performance of those algorithms on a motion planning
problem described in [Russel & Norvig, 1995].
The environment is described by a grid (see example in �gure 1) of size
NXM . Some squares in the grid represent obstacles such as a wall. The
other squares correspond to the states of the world. There is a start state an
agent is initially in, and a set of terminal states. An agent is moving from
one square to another until a terminal state is reached. In each location,
there are four available actions, North, South, East and West, that suppos-
edly move an agent one square in the intended direction, but achieving the

2

START

-1/25 -1/25 -1/25

-1/25

-1/25

-1/25 -1/25
-1/25

-1/25

1

2

3

1 2 3 4

 + 1

- 1

Figure 1: An example of an environment with reward function de�ned on states

desired e�ect only with some probability p. The rest of the time, the action
moves the agent at right angles to the intended direction. For example, if
the agent chooses the action North, it moves North with probability p, and
with probability (1� p)=2 it moves East or West. If the agent cannot move
in the intended direction because of an obstacle such as a wall, it stays in
the current location. There is a reward function de�ned on all states, and
the goal is to �nd an optimal policy.
VI and PI algorithms were implemented according to [Russel & Norvig, 1995].
VI does not di�er from the original algorithm proposed in [Bellman, 1957].
PI was given in [Russel & Norvig, 1995] in two versions, as the original
Howard's algorithm and as a variation on MPI described in [Puterman, 1994]
(although the name of the last algorithm was not explicitly mentioned). We
experimented with the second version of PI naming it MPI. Then we tried
another modi�cation of MPI proposed in [Puterman, 1994], which �xes the
number of steps in value determination part of the algorithm. Finally,
we propose a new algorithm called combined value-policy iteration (CVPI)
which introduces a better stopping criterion for the VI algorithm.

3

In the next sections we give a brief description of the algorithms we have
experimented with.

2 Value Iteration Algorithm

VI [Bellman, 1957] is an iterative procedure that calculates the expected
utility of each state using the utilities of the neighboring states until the
utilities calculated on two successive steps are close enough, i.e.

max
si
jU(si)� U 0(si)j < �;

where � is a prede�ned threshold value. The smaller the threshold is, the
higher is the precision of the algorithm. Given certain conditions on the
environment, the utility values are guaranteed to converge.
Given a utility matrix we can calculate a corresponding policy according to
the maximum expected utility principle, i.e. choosing

��(si) = argmaxa

X

j

P a
ijU(sj)

as an optimal policy.
Here is a schematic description of the VI algorithm:

function V ALUE � ITERATION(P;R) returns a utility matrix
inputs: P , a transition-probability matrix

R, a reward matrix
local variables: U , utility matrix, initially identical to R

U 0, utility matrix, initially identical toR
repeat

U U 0

for each state i do
U 0(si) R(si) + maxa

P
j P

a
ijU(sj)

end

until maxsi jU(si)� U 0(si)j < �
return U

4

3 Policy Iteration Algorithm

It was observed that the policy often becomes exactly optimal long before
the utility estimates have converged to their correct values. This observa-
tion suggests another way of �nding optimal policies, called policy iteration
(PI). PI picks an initial policy, usually just by taking rewards on states as
their utilities and computing a policy according to the maximum expected
utility principle. Then it iteratively performs two steps: value determina-
tion, which calculates the utility of each state given the current policy, and
policy improvement, which updates the current policy if any improvement
is possible. The algorithm terminates when the policy stabilizes.
Here is a schematic description of the PI algorithm:

function POLICY � ITERATION(P;R) returns a policy
inputs: P , a transition-probability matrix

R, a reward matrix
local variables: U , utility matrix, initially identical to R

�, a policy, initially optimal with respect to U
repeat

U VALUE-DETERMINATION((P,U,R,�)
changed false

for each state i do

if maxa
P

j P
a
ijU(sj) >

P
j P

�(sj)
ij U(sj)then

�(si) argmaxa
P

j P
a
ijU(sj)

changed true
end

until changed = false
return U

The most tricky part of PI is Value Determination. In [Howard, 1960] this
step is done by solving a system of linear equations

U(si) = R(si) +
P

j P
�(si)
ij U(sj)

5

where the reward R and the transitional probabilities matrix P �(si) are
given, and where U(si) are unknown. This is often the most e�cient ap-
proach for small state spaces. However, for larger state spaces solving a
system of linear equations is not e�cient.
Another way of implementing Value Determination is by iteratively calcu-
lating the utilities for the given policy as

U 0(si) R[i] +
P

j P
�(si)
ij U(sj)

This implementation of Value Determination is similar to VI with the only
di�erence that the utilities are computed for a �xed policy instead of comput-
ing the maximum of the utilities for all possible actions in each state. This
version of PI was introduced by Puterman and Shin [Puterman & Shin, 1978]
and is called modi�ed policy iteration (MPI). It leaves open the number
of approximation steps to be done in Value Determination. Puterman
[Puterman, 1994] proposed the following options for this decision:

� �xed number of steps for all iterations, i.e. Value Determination always
performs only n approximation step where n is �xed;

� choosing the number according to some prespeci�ed pattern (for ex-
ample, the number increases with each iteration of PI);

� selecting this number adaptively, for example, approximation steps are
repeated until the utility values stabilize with a given precision as in
VI.

The last option is the one mentioned in [Russel & Norvig, 1995] as an al-
ternative to the original PI, although there was no reference to MPI in
[Russel & Norvig, 1995]. We implemented that version of PI calling it MPI
and compared it to VI. Subsequently, we compared both algorithm to MPI
with �xed number of approximation steps in Value Determination. We use
notions of threshold and precision both for VI and MPI.

6

4 Convergence

The motivation for our experiments was to compare VI against di�erent
versions of PI on the motion planning domain, and check if the policy
iteration approach is indeed more e�cient than VI, as it is often assumed in
the literature. For example, Puterman [Puterman, 1994] gives an analysis of
convergence of MPI for discountedMDPs which lets him say: \ Therefore in
practice, value iteration should never be used. Implementation of modi�ed
policy iteration requires little additional programming e�ort yet attains
superior convergence".
In [Russel & Norvig, 1995] PI is also described as a preferred algorithm.
However, we need to notice that the model used in [Russel & Norvig, 1995]
is not discounted, and without making additional assumption VI and PI
(MPI) are not guaranteed to converge. That is why our implementation
of MPI was getting into an in�nite loop on some instances. This happens
when the system of linear equations in Value Determination does not have
a solution. For example, for some policy � the corresponding Markov chain
might have an absorbing state, i.e. a state i such that Pii = 1. It is
easy to see that det(I � P �) = 0, where I is identity matrix, therefore,
the system of linear equations for � cannot be solved, and the iterative
version of Value Determination will not converge. Absorbing states should
be treated di�erently. Although the original formulation of the grid problem
in [Russel & Norvig, 1995] has absorbing states (terminal states), no speci�c
treatment for them is described. 1

For the discounted MDP model with the discount factor 0 < � < 1 VI, PI
and MPI are guaranteed to converge [Puterman, 1994].
Our experiments showed that the performance of MPI depends on the way
Value Determination is implemented. A small �xed number of successive
approximation steps yields a much better performance than running Value
Determination until the utility values converge with a given precision, es-
pecially when the precision is high (i.e. the threshold � is small).

1Of course, we did not follow blindly the description of VI and PI given in [Russel & Norvig, 1995],
and did not calculate the values of two terminal states according to the general formula given there. The
authors of [Russel & Norvig, 1995] did probably same thing when experimented with the algorithms,
because we got same results on the example given in the book. Nevertheless, formally speaking VI and
PI presented in [Russel & Norvig, 1995] are incorrect in case of the given grid example.

7

5 Experimental Results

In our experiments we varied the size of domain (the number of states), the
con�guration (i.e. location of obstacles and goal states), and the threshold
value. Some of the results are shown in tables 1, 2 and 3. We compared
here VI and the precision-based version of MPI. The following input data
were used: two goal states, one with reward 1, the other with reward -1
(penalty), and reward -0.01 for all non-goal states; probability p = 0.7 of
successfully performed action.
In the tables below HD stands for the Hamming distance between the given
policy and the optimal policy, e.g. the number of states on which the given
policy di�ers from the policy obtained by running the algorithm with the
same initial data and maximum possible precision. Each row in the tables
below corresponds to one problem instance, only precision was varied.
Table 1 shows that VI �nds an optimal policy only when the threshold is
0.00006 or smaller. The thresholds in Tables 2 and 3 when VI reaches an
optimal policy are 0.000244 and 0.007812 respectively.
As to MPI we can see that its execution time increases dramatically when
the threshold changes from 0.015625 to 0.007812. Interesting to note is that
this \transition point" is the same for di�erent environment size as long as
other parameters are �xed (see �gure 2).
Making a conclusion we point out that the execution time for both algo-
rithms is sensitive to the threshold �. It is di�cult to choose a threshold
small enough to get an optimal policy before running experiments with
MPI (for VI it can be computed in advance [Williams & Baird]). Also, the
complexity of MPI might increase dramatically depending on the threshold
value. Therefore, VI with zero threshold is preferable, because it is an or-
der of magnitude faster than MPI with the same threshold, same order of
magnitude as MPI with signi�cantly larger thresholds (for which MPI is
not guaranteed to �nd an optimal policy), and is guaranteed to converge to
an optimal policy.
However, VI still performs unnecessary iterations when an optimal policy is
actually found but the utility values have not stabilized yet. We present here
an algorithm called combined value-policy iteration (CVPI) which improves
VI by introducing an alternative stopping criterion. At every step we not
only calculate the utilities of all states, but also determine the policy using

8

Table 1: Size of the world 40X40

Threshold VI MPI
Time HD Time HD

1.000000 0.18 1339 7.23 2
0.500000 0.29 1210 6.62 2
0.250000 0.60 783 5.38 2
0.125000 1.03 469 6.91 0
0.062500 1.81 64 7.51 0
0.031250 2.33 24 8.46 0
0.015625 2.73 15 9.05 2
0.007812 3.02 18 89.29 2
0.003906 3.26 16 89.27 2
0.001953 3.45 22 89.43 2
0.000977 3.72 15 89.59 2
0.000488 4.15 13 90.20 2
0.000244 4.69 7 90.47 2
0.000122 5.13 1 91.21 2
0.000061 5.48 0 91.88 2
0.000031 5.96 0 92.39 2
0.000015 6.43 0 93.82 0
0.000008 6.95 0 94.46 2
0.000000 10.09 103.14

the utilities calculated at this step. Then we compare the policy found on
the current step with the policy found on the previous step. If the policy
remains the same it does not mean yet that this policy is optimal. In order
to check if it is indeed the optimal policy, we use Value Determination as
described above with zero threshold in order to calculate exact utility values
for that �xed policy. Than we perform the policy evaluation step, i.e. check
if this policy can be improved given just calculated utility values of states.
If it cannot be improved, an optimal policy is found, otherwise we continue
the value iteration starting from the most recently computed utility values.

9

Table 2: Size of the world 35X35

Threshold VI MPI
Time HD Time HD

1.000000 0.14 964 5.25 0
0.500000 0.23 835 4.55 0
0.250000 0.47 478 3.92 0
0.125000 0.79 277 4.30 0
0.062500 1.17 58 4.78 0
0.031250 1.69 16 5.28 0
0.015625 1.96 12 6.57 0
0.007812 2.10 7 54.81 0
0.003906 2.26 10 70.07 0
0.001953 2.50 8 70.42 0
0.000977 2.84 11 71.10 0
0.000488 3.14 7 71.55 0
0.000244 3.52 0 71.97 0
0.000122 3.93 0 71.23 0
0.000061 4.18 0 71.47 0
0.000000 7.73 77.17

COMBINED VALUE-POLICY ITERATION

1. Perform Value Iteration + compute policy at each step of VI

2. IF no change in policy on two successive steps, �x the policy and
perform one step of Policy Iteration:

� Value Determination �nding precise values for the �xed policy;

� policy evaluation

� IF no change in policy, return it as an optimal policy, ELSE go
to 1.

Our experiments on various input problems show that CVPI algorithm

10

Table 3: Size of the world 20X20

Threshold VI MPI
Time HD Time HD

1.000000 0.05 171 0.76 1
0.500000 0.09 151 0.75 1
0.250000 0.15 103 0.74 1
0.125000 0.23 21 0.81 1
0.062500 0.31 3 0.89 1
0.031250 0.39 2 1.03 0
0.015625 0.47 2 1.25 0
0.007812 0.57 0 13.14 8
0.003906 0.69 0 17.23 9
0.001953 0.82 0 21.32 9
0.000977 0.92 0 22.42 9
0.000488 1.03 0 22.12 0
0.000000 2.50 23.48

works better then both MPI and VI (an example is shown in table 4, each
row per one problem instance of the speci�ed size).
After comparison VI, MPI and CVPI for di�erent threshold values, we de-
cided to vary the probability of success when �xing all other parameters.
We ran VI and precision-based MPI with � = 0, and compared them to MPI
with �xed number of steps and to CVPI. The grid size was varied from 5X5
to 50X50. The location of terminal states and an obstacle remained the
same. We also varied the cost of step from -0.01 to -0.8 but did not see any
signi�cant di�erence in results, so that we present results just for the cost
of step = -0.01.
We present the experimental results in �gure 3 and, more detailed, in tables
5 and 6. MPI was tried with �xed number of steps (2,4,6) and with precision-
based stopping criterion (unlimited number of steps marked as 1 in the
tables). The numbers in the tables represent execution time in seconds. The
pair of numbers in braces for MPI and CVPI has the following meaning:
(the number of states where the �nal utility found by the algorithm di�ers

11

0.1200.1100.1000.0900.0800.0700.0600.0500.0400.0300.0200.0100.0000.000
.1

1

10

100

40X40
35X35
20X20

MPI for different domain size

Threshold

T
im

e
in

 s
ec

on
d

s

Figure 2: MPI performance as a function of precision in Value Determination

from one found by VI, the numbers of states where the policy found by
the algorithm di�ers from one found by VI). Each point corresponds to one
problem instance.

6 Conclusions

We have experimented with four di�erent algorithms for computing an op-
timal policy in MDPs: VI, two versions of MPI, and CVPI, an algorithm
proposed in this paper.
Our experiments show that CVPI is slightly more e�cient than VI on the
grid problems we experimented with. Both algorithms signi�cantly (1-2
orders of magnitude) outperform MPI described in [Russel & Norvig, 1995]
when using maximum possible precision (zero threshold) in value determi-
nation part of MPI. Also, the performance of this version of MPI highly
depends on the precision required in value determination. MPI with �xed
number of steps is more e�cient than VI, CVPI, and precision-based MPI,
but is not guaranteed to �nd an optimal policy. The behavior of all four

12

Table 4: Computing times for algorithms running with zero-threshold

Size of the world VI MPI CVPI
10X10 0.61 5.51 0.33
20X20 2.50 23.48 1.33
25X25 3.89 37.35 1.51
30X30 5.66 55.55 3.74
35X35 7.73 77.17 5.02
40X40 10.09 103.14 7.06
50X50 31.20 191.44 11.86

algorithms depends on other parameters of the problem, particularly on the
probability of success of actions.

References

[Bellman, 1957] R. Bellman, Dynamic Programming. Princeton University
Press, 1957.

[Howard, 1960] R.A. Howard, Dynamic Programming and Markov Pro-
cesses. MIT Press, Cambridge, Massachusetts, 1960.

[Puterman, 1994] M.L. Puterman, Markov decision processes : discrete
stochastic dynamic programming. New York : John Wiley & Sons,
1994.

[Puterman & Shin, 1978] M.L. Puterman and M.C. Shin, Modi�ed policy
iteration algorithms for discounted Markov decision problems. Man-
agement Science, 24:1127-1137, 1978.

[Russel & Norvig, 1995] S.J. Russel and P. Norvig, Arti�cial intelligence :
a modern approach. Englewood Cli�s, N.J. : Prentice Hall, 1995.

[Williams & Baird] R.J. Williams and L.C.III Baird, Tight Performance
Bounds on Greedy Policies Based on Imperfect Value Functions, Tech-

13

1.00.80.60.40.20.0
0

20

40

60

80

100

VI
MPI (10 steps)
CVPI

Grid size 40X40
Cost of step = -0.01

P(success)

T
im

e
in

 s
ec

on
d

s

1.00.80.60.40.20.0
0

100

200

300

400

500

600

VI
MPI (10 steps)
MPI
CVPI

Grid size 40X40
Cost of step = -0.01

P(success)

T
im

e
in

 s
ec

on
d

s

Figure 3: VI, MPI and CVPI for di�erent probabilities of success

nicalReport NU-CCS-93-13, Northeastern University, College of Com-
puter Science, Boston, MA, November 1993.

14

Table 5: VI, MPI and CVPI on grid size 30 X 30
� = 0:000000

Cost of step = -0.010000
Pr of VI MPI with given # of steps in VD CVPI
success 4 7 10 1

0.010 25.73 2.31 (897, 19) 2.60 (897, 14) 3.45 (897, 7) 132.70 (897, 1) 15.82 (830, 1)
0.020 25.88 3.90 (897, 5) 3.52 (897, 5) 3.32 (897, 5) 150.68 (897, 0) 18.53 (897, 0)
0.030 26.61 3.19 (897, 86) 5.26 (897, 4) 5.02 (897, 4) 89.47 (897, 0) 20.82 (897, 0)
0.040 27.65 3.12 (897, 37) 3.93 (897, 12) 3.85 (897, 12) 84.12 (895, 0) 18.78 (895, 0)
0.050 23.27 3.77 (896, 20) 3.82 (895, 10) 3.61 (895, 10) 71.54 (897, 1) 21.64 (897, 1)
0.060 20.12 3.78 (895, 11) 3.31 (896, 11) 3.18 (897, 10) 65.51 (897, 0) 19.44 (893, 0)
0.070 18.55 3.19 (897, 16) 3.31 (897, 9) 3.05 (897, 9) 59.48 (897, 1) 18.26 (726, 1)
0.080 17.18 2.96 (897, 14) 2.59 (897, 14) 2.40 (897, 14) 60.86 (897, 1) 16.22 (622, 0)
0.090 16.93 2.30 (897, 16) 2.18 (897, 13) 2.67 (897, 4) 55.24 (897, 0) 16.85 (622, 0)
0.100 16.67 2.22 (897, 13) 2.40 (897, 3) 2.53 (896, 1) 58.85 (897, 0) 15.28 (573, 0)
0.110 16.84 1.80 (897, 8) 1.81 (896, 4) 1.62 (897, 2) 46.63 (897, 0) 14.22 (552, 0)
0.210 8.16 2.00 (889, 3) 1.87 (889, 3) 1.86 (889, 3) 41.81 (534, 0) 6.93
0.310 5.55 1.64 (858, 1) 1.66 (857, 0) 1.88 (842, 0) 45.02 (56, 0) 4.15
0.410 3.67 1.41 (858, 0) 1.87 (347, 0) 2.41 (319, 0) 44.24 2.91
0.510 2.64 1.49 (61, 1) 1.77 (13, 1) 2.11 (0, 1) 52.29 (0, 1) 1.99 (0, 1)
0.610 2.07 1.32 (0, 3) 1.56 (0, 3) 2.01 (2, 3) 72.22 (0, 3) 1.83 (0, 3)
0.710 2.56 1.57 (1, 0) 1.88 2.42 103.87 1.72
0.810 3.47 1.20 (1, 0) 1.67 (2, 0) 2.07 103.65 1.77
0.910 0.52 1.26 (3, 0) 1.81 2.25 101.96 0.47
0.920 0.47 1.35 1.82 2.20 102.07 0.44
0.930 0.50 1.25 1.79 2.14 101.95 0.41
0.940 0.44 1.25 1.89 2.15 101.82 0.39
0.950 0.45 1.33 1.88 2.23 101.68 0.41
0.960 0.39 1.31 1.88 2.15 101.72 0.33
0.970 0.37 1.77 2.35 2.50 101.41 0.31
0.980 0.32 1.89 2.33 2.44 101.44 0.27
0.990 0.29 1.99 2.31 2.52 101.17 0.23

Table 6: VI, MPI and CVPI on grid size 40 X 40
� = 0:000000

Cost of step = -0.010000
Pr of VI MPI with given # of steps in VD CVPI
success 4 7 10 1

0.010 80.86 14.07 (1597, 8) 13.61 (1597, 8) 11.80 (1597, 8) 599.93 (1597, 0) 58.81 (1595, 0)
0.020 81.19 14.06 (1597, 87) 14.90 (1597, 43) 18.61 (1597, 3) 295.73 (1597, 0) 59.72 (1597, 0)
0.030 77.07 11.08 (1597, 90) 11.21 (1597, 64) 13.27 (1597, 40) 250.23 (1597, 2) 70.20 (1597, 2)
0.040 64.97 10.65 (1332, 63) 11.07 (1597, 46) 14.59 (1597, 11) 208.37 (1597, 0) 65.89 (1597, 0)
0.050 53.53 9.48 (1597, 53) 9.03 (1597, 42) 11.09 (1597, 12) 178.03 (1597, 0) 58.43 (1222, 0)
0.060 47.77 9.47 (1596, 22) 9.74 (1596, 12) 9.21 (1597, 12) 157.74 (1597, 0) 52.54 (1127, 0)
0.070 44.02 8.56 (1597, 26) 7.94 (1597, 18) 8.73 (1597, 12) 166.18 (1597, 0) 47.63 (958, 1)
0.080 43.07 6.20 (1597, 39) 8.48 (1596, 6) 8.02 (1597, 6) 155.45 (1597, 1) 45.42 (897, 1)
0.090 43.31 5.66 (1597, 33) 6.07 (1597, 14) 5.67 (1597, 14) 160.64 (1597, 0) 41.79 (813, 0)
0.100 38.44 6.11 (1597, 11) 5.74 (1596, 6) 5.68 (1597, 5) 120.44 (1597, 0) 32.53 (781, 0)
0.110 33.47 5.67 (1597, 10) 5.73 (1597, 5) 4.03 (1597, 11) 121.41 (1597, 0) 27.60 (781, 0)
0.210 15.91 4.37 (1589, 4) 4.24 (1589, 1) 4.27 (1589, 1) 100.11 (1092, 0) 12.79
0.310 10.43 3.44 (1577, 2) 3.33 (1577, 2) 3.82 (1510, 0) 108.46 (755, 0) 8.41
0.410 7.11 2.80 (1308, 1) 3.52 (630, 1) 4.75 (486, 1) 116.45 (80, 1) 5.68
0.510 5.14 3.32 (147, 1) 4.65 (27, 1) 6.15 (2, 1) 145.63 (0, 1) 3.85 (0, 1)
0.610 3.71 3.27 (0, 10) 4.12 (0, 10) 5.72 (0, 10) 190.66 (0, 10) 3.51 (0, 10)
0.710 4.60 3.22 (0, 2) 4.26 (0, 2) 5.35 (0, 2) 189.58 (0, 2) 3.27 (0, 2)
0.810 6.20 2.67 (1, 0) 3.98 4.80 189.37 3.30
0.910 1.04 3.01 4.10 5.31 186.14 0.96
0.920 0.94 3.09 4.13 5.33 185.88 0.84
0.930 0.93 3.00 4.48 5.01 185.55 0.82
0.940 0.85 3.19 (6, 0) 4.48 4.97 185.57 0.76
0.950 0.85 3.45 4.67 5.36 184.69 0.75
0.960 0.71 3.96 5.57 6.27 184.96 0.65
0.970 0.66 4.37 5.47 5.98 184.68 0.62
0.980 0.60 4.55 5.37 5.84 185.15 0.50
0.990 0.53 4.59 5.70 6.24 184.40 0.41

15

