
Local and Global Relational Consistency

Rina Dechter1 and Peter van Beek2

1 Department of Information and Computer Science
University of California, Irvine
Irvine, California, USA 92717

dechter@ics.uci.edu
2 Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2H1

vanbeek@cs.ualberta.ca

Abstract. Local consistency has proven to be an important concept in
the theory and practice of constraint networks. In this paper, we present
a new de�nition of local consistency, called relational consistency. The
new de�nition is relation-based, in contrast with the previous de�nition of
local consistency, which we characterize as variable-based. We show the
conceptual power of the new de�nition by showing how it uni�es known
elimination operators such as resolution in theorem proving, joins in rela-
tional databases, and variable elimination for solving linear inequalities.
Algorithms for enforcing various levels of relational consistency are in-
troduced and analyzed. We also show the usefulness of the new de�nition
in characterizing relationships between properties of constraint network-
sand the level of local consistency needed to ensure global consistency.

1 Introduction

Constraint networks are a simple representation and reasoning framework. A
problem is represented as a set of variables, a domain of values for each variable,
and a set of constraints between the variables. A central reasoning task is then
to �nd an instantiation of the variables that satis�es the constraints.

In general, what makes constraint networks hard to solve is that they can
contain many local inconsistencies. A local inconsistency is a consistent instan-
tiation of k � 1 of the variables that cannot be extended to a kth variable and
so cannot be part of any global solution. If we are using a backtracking search
to �nd a solution, such an inconsistency can lead to a dead end in the search.
This insight has led to the de�nition of conditions that characterize the level
of local consistency of a network [29, 33] and to the development of algorithms
for enforcing local consistency conditions by removing local inconsistencies (e.g.,
[33, 29, 19, 12, 6]).

In this paper, we present a new de�nition of local consistency called relational
consistency3. The virtue of the new de�nition of local consistency is that, �rstly,
it removes the need for referencing the arity of the constraints when discussing

3 A preliminary version of this de�nition appears in [37].

relationships between the properties of the constraints and local consistency.
Secondly, it is operational, thus generalizing the concept of the composition
operation de�ned for binary constraints, and can be incorporated naturally in
algorithms for enforcing desired levels of relational consistency. Thirdly, it uni-
�es known operators such as resolution in theorem proving, joins in relational
databases, and variable elimination for solving equations and inequalities, thus
allowing the formulation of an elimination algorithm that generalizes algorithms
appearing in each of these areas. Finally, it allows identifying those formalisms
for which consistency can be decided by enforcing a bounded level of relational
consistency, like propositional databases, linear equalities and inequalities, and
crossword puzzles from general databases requiring higher levels of relational
consistency. We also demonstrate the usefulness of the new de�nition in charac-
terizing relationships between various properties of constraint networks|domain
size and acyclicity| and the level of local consistency needed to ensure global
consistency.

Following de�nition and preliminaries (section 2), relational local consistency
is de�ned and algorithms for enforcing such conditions are introduced (section 3).
Section 4 shows that the algorithms unify algorithms appearing in propositional
databases and linear inequalities. Finally, section 5 describes new associations
between constraint properties and relational local consistency needed for global
consistency. Discussion and conclusions are given in sections 6 and 7 respectively.

2 De�nitions and Preliminaries

De�nition1 (constraint network). 4 A constraint network R is a set of n
variables X = fx1; . . . ; xng, a domain Di of possible values for each variable xi,
1 � i � n, and a set of t relations RS1 , . . . , RSt , where Si � X, 1 � i � n.
A constraint or relation RS over a set of variables S = fx1; . . . ; xrg is a subset
of the product of their domains (i.e., RS � D1 � � � � � Dr). The set of subsets
fS1; . . . ; Stg on which constraints are speci�ed is called the scheme of R. A
binary constraint network is the special case where all constraints are over pairs
of variables. A constraint graph associates each variable with a node and connects
any two nodes whose variables appear in the same constraint.

De�nition2 (solution to a constraint network). An instantiation of the vari-
ables in X, denoted XI , is an n-tuple (a1; . . . ; an), representing an assignment
of ai 2 Di to xi, 1 � i � n. A consistent instantiation of a network is an instan-
tiation of the variables such that the constraints between variables are satis�ed.
A consistent instantiation is also called a solution.

The order of the variables constrained by a relation is not important; that
is, we follow the set-of-mappings formulation of relations (see [34]). The notion
of a consistent instantiation of a subset of the variables can be de�ned in several

4 Note that all the de�nitions and algorithms are applicable to relations without the
�niteness assumption; a point we make explicit in section 4.2

2

ways. We use the following de�nition: an instantiation is consistent if it satis�es
all of the constraints that have no uninstantiated variables.

De�nition3 (consistent instantiation of subsets of variables). Let Y and
S be sets of variables, and let YI be an instantiation of the variables in Y . We de-
note by YI [S] the tuple consisting of only the components of YI that correspond
to the variables in S. An instantiation YI is consistent relative to a network R
i� for all Si in the scheme of R such that Si � Y , YI [Si] 2 RSi . The set of all
consistent instantiations of the variables in Y is denoted �(Y).

One can view �(Y) as the set of all solutions of the subnetwork de�ned by
Y . We now introduce the needed operations on constraints adopted from the
relational calculus (see [34] for details).

De�nition4 (operations on constraints). Let R be a relation on a set S of
variables, let Y � S be a subset of the variables, and let YI be an instantiation
of the variables in Y . We denote by �YI (R) the selection of those tuples in R

that agree with YI . We denote by �Y (R) the projection of the relation R on
the subset Y ; that is, a tuple over Y appears in �Y (R) if and only if it can
be extended to a full tuple in R. Let RS1 be a relation on a set S1 of variables
and let RS2 be a relation on a set S2 of variables. We denote by RS1 1 RS2 the
natural join of the two relations. The join of RS1 and RS2 is a relation de�ned
over S1 [S2 containing all the tuples t, satisfying t[S1] 2 RS1 and t[S2] 2 RS2 .

Two properties of constraint networks that arise later in the paper are domain
size and row convexity.

De�nition5 (k-valued domains). A network of constraints is k-valued if the
domain sizes of all variables are bounded by k.

De�nition6 (row convex constraints ([38])). A binary constraint R on a
set fx1; x2g of variables with associated domains D1 and D2, is row convex
if there exists an ordering of D2 such that, for every a1 2 D1, the set fx2 j
(a1; x2) 2 Rg can be ordered such that the elements appear consecutively in the
ordering of D2. An r-ary relation R on a set S of variables fx1; . . . ; xrg is row
convex if for every subset of r � 2 variables Y � S and for every instantiation
YI of the variables in Y , the binary relation �(S�Y)(�YI (R)) is row convex. A
constraint network is row convex if all its constraints are row convex.

Example 1. We illustrate the de�nitions using the following network R over
the set X of variables fx1; x2; x3; x4g. The network is 3-valued. The domains of
the variables are Di = fa,b,cg, 1 � i � 4, and the relations are given by,

RS1 = f(a,a,a), (a,a,c), (a,b,c), (a,c,b), (b,a,c),
(b,b,b), (b,c,a), (c,a,b), (c,b,a), (c,c,c)g,

RS2 = f(a,b), (b,a), (b,c), (c,a), (c,c)g,
RS3 = f(a,b), (a,c), (b,b), (c,a), (c,b)g,

3

where S1 = fx1; x2; x3g, S2 = fx2; x4g, and S3 = fx3; x4g. The projection of
RS1 over fx1; x3g, is given by

�fx1;x3gRS1 = f(a,a), (a,c), (a,b), (b,c), (b,b), (b,a), (c,b), (c,a), (c,c)g.

The join of RS2 and RS3 is given by:

RY = RS2 1 RS3 = f(a,a,b), (a,b,b), (a,c,b), (b,c,a), (b,a,c), (c,c,a), (c,a,c)g,

where Y = fx2; x3; x4g. The set of all solutions of the network is given by,

�(X) = f(a,a,a,b), (a,a,c,b), (a,b,c,a), (b,a,c,b),
(b,c,a,c), (c,a,b,b), (c,b,a,c), (c,c,c,a)g.

Let Y = fx2; x3; x4g be a subset of the variables and let YI be an instantiation
of the variables in Y . The tuple YI = (a,c,b) is consistent relative to R since
YI [S2] = (a,b) and (a,b) 2 RS2 , and YI [S3] = (c,b) and (c,b) 2 RS3 . The tuple
YI = (c,a,b) is not consistent relative to R since YI [S2] = (c,b), and (c,b) 62 RS2 .
The set of all consistent instantiations of the variables in Y is given by,

�(Y) = f(a,a,b), (a,b,b), (a,c,b), (b,a,c), (b,c,a), (c,a,c), (c,c,a)g.

3 Local Consistency

Local consistency has proven to be an important concept in the theory and
practice of constraint networks. In this section we �rst review previous de�nitions
of local consistency, which we characterize as variable-based. We then present
new de�nitions of local consistency that are relation-based and present algorithms
for enforcing these local consistencies.

3.1 Variable-based consistency

Mackworth [29] de�nes three properties of networks that characterize local con-
sistency of networks: node, arc, and path consistency. Freuder [19] generalizes
this to k-consistency.

De�nition7 (k-consistency; Freuder [19, 20]). A network is k-consistent if
and only if given any instantiation of any k � 1 distinct variables satisfying all
of the direct relations among those variables, there exists an instantiation of any
kth variable such that the k values taken together satisfy all of the relations
among the k variables. A network is strongly k-consistent if and only if it is
j-consistent for all j � k.

Node, arc, and path consistency correspond to one-, two-, and three-consistency,
respectively. A strongly n-consistent network is called globally consistent. Glob-
ally consistent networks have the property that any consistent instantiation of
a subset of the variables can be extended to a consistent instantiation of all the
variables without backtracking [9]. It is frequently enough to have a globally con-
sistent network along a single ordering of the variables as long as this ordering
is known in advance.

4

De�nition8 (globally solved). We say that a problem is globally solved if
it is consistent, and if there is a known ordering of the variables along which
solutions can be assembled without encountering deadends; that is, the network
is strong n-consistent relative to the given ordering. An algorithm globally solves
a problem if it generates a globally solved network.

A globally solved representation is a useful representation of all solutions when-
ever such a representation is more compact than the set of all solutions.

3.2 Relation-based consistency

In [38], we extended the notions of arc and path consistency to non-binary re-
lations, and used it to specify an alternative condition under which row-convex
non-binary networks are globally consistent. The new local consistency condi-
tions were called relational arc- and path-consistency. In [37] we generalized
relational arc- and path-consistency to relational m-consistency and used it to
specify conditions under which tight binary constraints are globally consistent.
In the de�nition of relational-consistency, the relations rather than the variables
are the primitive entities. In particular, this allows expressing the relationships
between properties of the constraints and local consistency in a way that avoids
an explicit reference to the arity of the constraints. In this section we revisit the
de�nition of relational consistency and augment it with the option of having also
an explicit reference to a constraint's arity, to allow polynomial algorithms for
enforcing those conditions.

De�nition9 (relational arc, and path-consistency). LetR be a constraint
network over a set of variables X, and let RS and RT be two relations in R,
where S; T � X. We say that RS is relationally arc-consistent relative to a sub-
set of variables A � S i� any consistent instantiation of the variables in A has
an extension to a full tuple in RS ; that is, i�

�(A) � �A(RS):

(Recall that �(A) is the set of all consistent instantiations of the variables in
A.) A relation RS is relationally arc-consistent if it is relationally arc-consistent
relative to every subset A � S. A network is relationally arc-consistent i� every
relation is relationally arc-consistent. We say that RS and RT are relationally
path-consistent relative to a subset of variables A � S [T i� any consistent
instantiation of the variables in A has an extension to the variables in S[T that
satis�es RS and RT simultaneously; that is, i�

�(A) � �A(RS 1 RT);

A pair of relations RS and RT is relationally path-consistent i� it is relationally
path-consistent relative to every subset A � S [T . A network is relationally
path-consistent i� every pair of relations is relationally path-consistent.

5

De�nition10 (relational m-consistency). Let R be a constraint network
over a set of variables X, and let RS1 ; . . . ; RSm be m distinct relations in R,
where Si � X. We say that RS1 ; . . . ; RSm are relationally m-consistent relative
to a subset A �

Sm

i=1 Si i� any consistent instantiation of the variables in A,
has an extension to

Sm
i=1 Si that satis�es RS1 ; . . . ; RSm simultaneously; that is,

if and only if
�(A) � �A(1

m
i=1 RSi):

A set of relations fRS1 ; . . . ; RSmg is relationally m-consistent i� it is relation-
ally m-consistent relative to every A �

Sm

i=1 Si. A network is relationally m-
consistent i� every set of m relations is relationally m-consistent.

Note that if a network is relationally m-consistent then it is also relationally
m0-consistent for every m0 � m. Relational arc- and path-consistency correspond
to relational 1- and 2-consistency, respectively.

We next re�ne the de�nition of relational consistency to be restricted to
subsets of bounded size. This restriction is similar to the original restriction
used for variable-based local consistency. In relational (i;m)-consistency de�ned
below, m always indexes the cardinality of a set of relations and i corresponds
to the constraint's arity tested for local consistency.

De�nition11 (relational (i;m)-consistency). A set of relations fRS1 ; . . . ; RSmg
is relationally (i;m)-consistent i� it is relationally m-consistent relative to ev-
ery subset A of size i, A �

Sm
i=1 Si. A network is relationally (i;m)-consistent

i� every set of m relations is relationally (i;m)-consistent. A network is strong
relational (i;m)-consistent i� it is relational (j;m)-consistent for every j � i.
Strong relational (n;m)-consistency is identical to relational m-consistency.

The relational based de�nition of arc-consistency given in [30] is identical to
relational (1,1)-consistency.

De�nition12 (directional relational consistency). Given an ordering of the
variables, o = x1; . . . ; xn, a network is m-directionally relationally consistent i�
for every l, every subset of relations fRS1 ; . . . ; RSmg whose largest index vari-
able is xl, and for every subset A � fx1; . . . ; xl�1g, every consistent assign-
ment to A can be extended to xl while satisfying all the relevant constraints
in fRS1; . . . ; RSmg simultaneously. Directional relational (resp., strong) (i;m)-
consistency is de�ned accordingly, by restricting the cardinality of A to i.

Revisiting the de�nition of a globally solved problem:

De�nition13 (globally solved). A problem is globally solved i� there is a
known ordering along which the problem is e-directionally relationally consistent,
where e is the maximum number of constraints.

Example 2. Consider the constraint network over the set of variables fx1, x2,
x3, x4, x5g, where the domains of the variables are all Di = fa,b,cg, 1 � i � 4,
and the relations are given by,

6

R2;3;4;5 = f (a,a,a,a), (b,a,a,a), (a,b,a,a), (a,a,b,a), (a,a,a,b) g,
R1;2;5 = f (b,a,b), (c,b,c), (b,a,c) g.

The constraints are not relationally arc-consistent. For example, the instantia-
tion x2 = a, x3 = b, x4 = b is a consistent instantiation as it satis�es all the
applicable constraints (trivially so, as there are no constraints de�ned strictly
over fx2; x3; x4g or over any subset), but it does not have an extension to x5
that satis�es R2;3;4;5. It is not even (1, 1)-consistent since the value x2 = b is
consistent, but is not consistent relative to R2;3;4;5. Similarly, the constraints are
not relationally path-consistent. For example, the instantiation x1 = c, x2 = b,
x3 = a, x4 = a is a consistent instantiation (again, trivially so), but it does not
have an extension to x5 that satis�es R2;3;4;5 and R1;2;5 simultaneously. If we
add the constraints R2 = R3 = R4 = fag and R1 = R5 = fbg (namely, if we
enforce (1,2)-consistency) the set of solutions of the network does not change,
and the network is both relationally arc- and path-consistent. The reason being
that all the variables' domains have a singleton value and therefore, the set of
solutions over every subset of variables will contain a single tuple only; the one
that is extended to a full solution.

By de�nition, relational k-consistency implies relational (i; k)-consistency
for i � k � 1, which, for binary constraints, implies strong variable-based k-
consistency. The virtue in the relational de�nition (relative, for instance, to the
one based on the dual graph [22]), is that it is easy to work with; it can be
incorporated naturally into algorithms for enforcing desired levels of relational
consistency.

Below we present algorithmRelational-Consistency or RC(i;m), a brute-
force algorithm for enforcing relational (i;m)-consistency on a network R. Note
that RA stands for the current unique constraint speci�ed over a subset of vari-
ables A. If no constraint exists, then RA denotes the universal relation over A.
Algorithm RCm is the unbounded version of algorithm RC(i;m) in which the
recorded constraints arity is not restricted.

Relational-Consistency(R; i;m)(RC(i;m))

1. repeat

2. Q R

3. for every m relations RS1 ; . . . ; RSm 2 Q

4. and every subset Ai of size i, Ai �
Sm

j=1 Sj do

5. RAi
 RAi

\ �Ai
(1mj=1 RSj)

6. if RAi
is the empty relation

7. then exit and return the empty network
8. until Q = R

We call the operation in Step 5 extended composition, since it generalizes the
composition operation de�ned on binary relations.

De�nition14 (extended composition). The extended composition of rela-
tion RS1 , . . . , RSm relative to a subset of variables A �

Sm
i=1 Si, denoted

7

ECA(RS1 ; . . . ; RSm) is de�ned by:

ECA(RS1 ; . . . ; RSm) = �A 1
m
i=1 RSi

When the operator is applied tom relations, it is called extended m-composition.
If the projection operation is restricted to a set of size i, it is called extended
(i;m)-composition.

AlgorithmRC(i;m) computes the closure ofR with respect to extended (i;m)-
composition. Its complexity is O(exp(i �m)) (see Theorem 16) which is clearly
computationally expensive for large i and m though it can be improved in a
manner parallel to the improvements of path-consistency algorithms [31].

As with variable-based local-consistency, we can improve the e�ciency of
enforcing relational consistency by enforcing it only along a certain direction.
In Figure 1 we present two versions of algorithm Directional-Relational-

Consistency, DRC(i;m), (DRCm, respectively) which enforces directional rela-
tional (i;m)-consistency (m-consistency, respectively) on a network R, relative
to a given ordering o = x1; x2; . . . ; xn. We call the network generated by the al-
gorithm the (i,m)-directional extension (m-directional extension, respectively) of
R, denoted E(i;m)(R) (Em(R), respectively). Given an ordering of the variables,
the algorithm partitions the relations into buckets. In the bucket of xj it places
all the relations whose largest indexed variable is xj. Buckets are subsequently
processed in descending order, and each is closed under the extended (i;m)-
composition relative to subsets that exclude the bucket's variable. The resulting
relations are placed in lower buckets. Since the operation of extended composi-
tion computes constraints that eliminate certain variables it is often called an
elimination operator. Indeed, as we discuss later, algorithm DRCm belongs to
the class of variable elimination algorithms.

In addition to the main operation of extended composition we propose two
optional steps of simpli�cation and instantiation. These steps are targeted to
provide a more e�cient implementation and allow the identi�cation of some
tractable classes. The simpli�cation step ensures that each bucket contains re-
lations de�ned on distinct subsets of variables that are not included in each
other. The instantiation step exploits the property that whenever one of the
relations in the bucket is a singleton tuple we need not perform the full ex-
tended m-composition. Instead we can restrict each relation to those tuples that
are consistent with the singleton tuple and move each restricted relation to its
appropriate buckets. This is equivalent to applying extended 2-composition be-
tween each relation and the singleton relation. This special case-handling for
instantiation exploits the computational e�ect of conditioning as described in
[8, 15].

In step 7 of the algorithm, if the size of
Sj

t=1 St � fxpg is smaller than i, we

apply the operation to A =
Sj
t=1 St � fxpg. In step 8, if more than one relation

is recorded on the same subset of variables, a subsequent simpli�cation step will
combine all such relations into one. Algorithm DRCm is identical to DRC(i;m)

except that constraints are recorded on all the variables in the bucket excluding

8

Directional-Relational-Consistency(R; i;m; o) (DRC(i;m))

1. Initialize: generate an ordered partition of the constraints, bucket1, . . . , bucketn,
where bucketi contains all constraints whose highest variable is xi.

2. for p n downto 1 do

3. simpli�cation step:
for every Si; Sj 2 bucketp, such that Si � Sj do

RSi �Si(RSi 1 RSj)

4. instantiation step:
if bucketp contains the constraint xp = u then

for every Si 2 bucketp do

A Si � fxpg

RA �A(�xp=uRSi)

if RA is not the empty relation then

add RA to its appropriate bucket
else exit and return the empty network

5. else (the general case)
j minfcardinality of bucketp, mg

6. for every j relations RS1 ; . . . ;RSj in bucketp do

Fj 1
j
t=1 RSt

7. for every subset A of size iA �
Sj

t=1
St � fxpg do

8. RA �AFj

9. if RA is not the empty relation then

10. add RA to its appropriate bucket
11. else exit and return the empty network
12. return E(i;m)(R) =

Sn

j=1 bucketj

Fig. 1. Algorithm DRCi;m

xp; that is, step 7 is modi�ed to:

7a. for A
Sj

t=1 St � fxpg do

Theorem15. Let R be a network processed by DRC(i;m) (DRCm, respectively)
along ordering o, then the directional extension E(i;m)(R) (Em(R), respectively)
is directionally relationally (i;m)-consistent (m-consistent, respectively) relative
to o.

Proof. Clear.

Theorem16. The complexity of DRC(i;m) is O(ni(k � n)(im)) where k bounds
the domain sizes and n is the number of variables. The complexity of RC(i;m) is

O((n � k)i � ni(k � n)(im))

Proof. The main step of the algorithm (lines 5-8) relates to the processing of a
bucket. The number of relations in each bucket is bounded by e + ni where e

9

is size of the initial set of relations and O(ni) bounds the number of possible
relations of arity i out of n variables. The new relations are of size ki at the
most since they are recorded on at most i variables only. The number of subsets
of size m out of ni relations (assuming e � O(ni)) is O(nim). Performing an
m-way join when each relation is of size at most ki takes O(kim), leading to an
overall complexity of O((n � k)im). Applying a projection over all subsets of size
i (step 8) adds a factor of ni leading to an overall bound of O(ni(n � k)im). The
complexity of RC(i;m) can be derived similarly. One loop of the algorithm (steps
2-7) may require O(ni(n � k)im) using a similar analysis. Since the number of
loops is bounded by the total number of tuples that can be removed in all the
i-ary constraints, which is O(niki), the result follows. 2

The complexity of the nonrestricted version of the algorithms,DRCm, is not
likely to be polynomial even for m = 2 since, as we will see, it can solve NP -
complete problems. Like similar algorithms for enforcing directional consistency,
the worst-case complexity of Directional-Relational-Consistency can be
bounded as a function of the topological structure of the problem via parameters
like the induced width of the graph [11], also known as tree-width [1, 2].

De�nition17 (width, tree-width). A constraint network R can be associ-
ated with a constraint graph, where each node is a variable and two variables
that appear in one constraint are connected. A general graph can be embed-
ded in a chordal graph5. This is normally accomplished by picking a variable
ordering o = x1; :::; xn, then, moving from xn to x1, recursively connecting all
the neighbors of xi that precede it in the ordering. The induced width (or tree
width) of this ordered graph, denoted w�(o), is the maximal number of earlier
neighbors in the resulting graph of each node. The maximal cliques in the newly
generated chordal graph form a clique-tree and may serve as the subproblems
in a procedure called tree-clustering [12]. The size of the smallest induced width
over all the graph's clique-tree embeddings is the induced width, w� of the graph.

It is known that �nding the induced width of a graph is NP-complete [2],
nevertheless every ordering of the variables o, yields a simple to compute up-
per bound denoted w�(o) (see [12]). The complexity of DRCm along o can be
bounded as a function of w�(o) of its constraint graph. Speci�cally [12],

Theorem18. The time complexity and size of the network generated by DRCm

along ordering o is O(nm � (2mk3)(w
�(o)+1)). In particular, the time complexity

of DRC2 is O((4k3)(w
�(o)+1)).

Proof. Observe that the number of variables mentioned in any bucket is at most
w�(o)+1, and thus the number of relations in a bucket is bounded by O(2w

�(o)+1)
and the number of subsets of size m is O(2(w

�(o)+1)m). Also, the number of
tuples in each relation is bounded by kw

�(o)+1. The complexity of an m-way join
of relations of size kw

�(o)+1 can be bounded by O(m � k2(w
�(o)+1)) since the size

5 A graph is chordal if every cycle of size 4 or more has a chord.

10

of the relation resulting from every pair-wise join is still bounded by kw
�(o)+1

and thus, m consecutive joins do not multiply but only add. Projection adds a
factor of kw

�(o)+1. Consequently, the overall complexity is O((nm) �2(w
�(o)+1)m �

k3(w
�(o)+1)) which equals the claim. 2

The only case for which DRCm is tractable occurs when m = 1.

Lemma19. The complexity of DRC1 is O(n � e2 � t2) when e is the number of
input relations, and t bounds the number of tuples in each relation.

Proof. We have n buckets to process. Each bucket will not contain more then
e relations, at any time. The reason is that extended 1-composition involves
projections and intersections only, which add only a linear number of constraints
and which takes O(t � e) steps. Simpli�cation of a bucket takes O(e2 � t2) yielding
the result. 2

Example 3. Crossword puzzles have been used experimentally in evaluating
backtracking algorithms for solving constraint networks [21]. We use an example
puzzle to illustrate algorithmDRC2 (see Figure 2). One possible constraint net-
work formulation of the problem is as follows: there is a variable for each square
that can hold a character, x1; . . . ; x13; the domains of the variables are the al-
phabet letters; and the constraints are the possible words. For this example, the
constraints are given by,

R1;2;3;4;5 = f(H,O,S,E,S), (L,A,S,E,R), (S,H,E,E,T), (S,N,A,I,L), (S,T,E,E,R)g

R3;6;9;12 = f(H,I,K,E), (A,R,O,N), (K,E,E,T), (E,A,R,N), (S,A,M,E)g

R5;7;11 = f(R,U,N), (S,U,N), (L,E,T), (Y,E,S), (E,A,T), (T,E,N)g

R8;9;10;11 = R3;6;9;12

R10;13 = f(N,O), (B,E), (U,S), (I,T)g

R12;13 = R10;13

1 2 3 4 5

6 7

8 9 10 11

12 13

Fig. 2. A crossword puzzle

11

Let us perform a few iterations ofDirectional-Relational-Consistency,
with m equal to 2 and o as the ordering of the variables x13; x12; . . . ; x1. Thus,
x1 is the highest variable in the ordering and x13 is the lowest. The bucket for
x1 contains the single relation R1;2;3;4;5. Processing bucket1 adds the relation,

R2;3;4;5 = �2;3;4;5(R1;2;3;4;5)

= f(O,S,E,S), (A,S,E,R), (H,E,E,T), (N,A,I,L), (T,E,E,R)g,

to the bucket of variable x2 which is processed next. The bucket for x2 contains
the single relation R2;3;4;5. Processing bucket2 adds the relation,

R3;4;5 = �3;4;5(R2;3;4;5) = f(S,E,S), (S,E,R), (E,E,T), (A,I,L), (E,E,R)g,

to the bucket of variable x3 which is processed next. This bucket contains the
relations R3;4;5 and R3;6;9;12. Processing bucket3 adds one relation,

R4;5;6;9;12 = �4;5;6;9;12(R3;4;5 1 R3;6;9;12)

= f(E,S,A,M,E), (E,R,A,M,E), (E,T,A,R,N), (I,L,R,O,N), (E,R,A,R,N)g,

to the bucket of variable x4. The bucket for x4 now contains the relationR4;5;6;9;12.
Processing bucket4 adds the relation,

R5;6;9;12 = f(S,A,M,E), (R,A,M,E), (T,A,R,N), (L,R,O,N), (R,A,R,N)g.

The bucket for x5 contains now the relations R5;6;9;12, and R5;7;11. Processing
bucket5 adds the relation,

R6;7;9;11;12 =f(A,E,R,N,N), (A,U,M,N,E), (A,U,R,N,N), (R,E,O,T,N)g.

The bucket for x6 contains only the newly generated relation R6;7;9;11;12. Pro-
cessing bucket6 adds the relation,

R7;9;11;12 = f(E,R,N,N), (U,M,N,E), (U,R,N,N), (E,O,T,N)g,

to the bucket for x7. Processing bucket7 adds the relation,

R9;11;12 = f(R,N,N), (M,N,E), (O,T,N)g,

to the bucket of x9. The bucket of x8 contains only the original relationR8;9;10;11,
and when processed it adds the relation,

R9;10;11 = f(I,K,E), (R,O,N), (E,E,T), (A,R,N), (A,M,E)g.

The bucket for x9 contains the relations R9;10;11, R9;11;12. Processing bucket9
adds the relation,

R10;11;12 = f(O,N,N)g.

The bucket for x10 contains the relationsR10;11;12, andR10;13. Processing bucket10
adds the empty relation. Since the empty relation was derived, the algorithm
stops and reports that the network is inconsistent.

12

Finally, we propose algorithmAdaptive-Relational-Consistency (ARC)
which is the relational counter-part of algorithm adaptive-consistency [11]. Like
algorithm DRCm, it processes the buckets in order from last to �rst. When
processing the bucket of xj, it applies extended composition relative to all the
relations in that bucket, and with respect to the whole set of variables appearing
in the bucket excluding xj . It then places the resulting relation in its appropriate
bucket. Algorithm ARCi is a restricted version of ARC that records relations
of arity i only. It is identical to ARC accept that step 4 and 5 are modi�ed to
record constraints on subsets of size i at the most. Algorithm ARC generates a
globally-solved problem and it can be viewed as a compilation algorithm since it
yields a representation from which the set of solutions can be recovered in linear
time. It is identical to DRCm when m is not bounded. For brevity, we omit the
full steps of simpli�cation and instantiations.

Adaptive-Relational-Consistency(R; o)

1. Initialize: generate an ordered partition of the constraints, bucket1, . . . ,
bucketn, where bucketi contains all constraints whose highest variable is xi.

2. for p n downto 1 do

3. simplify,
4. instantiate,
5. for all the relations RS1 ; . . . ; RSj in bucketp do

6. A
Sj

i=1 Si � fxpg

7. RA RA \ �A(1
j
i=1 RSi)

8. if RA is not the empty relation then
9. add RA to its appropriate bucket
10. else exit and return the empty network
11. return Eo(R) = bucket1 [bucket2 [� � � [bucketn

Theorem20. Algorithm Adaptive-Relational-Consistency (ARC) glob-
ally solves any constraint network. The complexity of the algorithm when pro-
cessed along ordering o is bounded by O(n � (2k3)w

�(o)+1).

Proof. The algorithm is clearly generating a backtrack-free representation. The
number of relations in each bucket will increase to at most 2w

�(o)+1 relations.
The arity of each relation is bounded by w�(o)+1 and thus its size is bounded by
O(kw

�(o)+1). Consequently the overall complexity is bounded by the cost of join-
ing at mostO(2w

�(o)+1) relations of size O(kw
�(o)+1) which, when adding a factor

of O(kw
�(o)+1) for projection, can be bounded by O(n �2w

�(o)+1 �k3(w
�(o)+1)). 2

Finally we can show that some NP-complete problems are solved by DRC2.

Theorem21. Crossword puzzles can be globally solved by DRC2 in any variable
ordering and its complexity is O(n � k3(w

�(o)+1)).

Proof. Let R be a crossword puzzle instance. We will show that the buckets of
the network generated by ARC have at most two relations. Therefore, for such

13

problems ARC reduces to DRC2. Since ARC generates a backtrack-free prob-
lem it follows that so will DRC2. We will now prove that there are at most two
relations in each bucket of the crossword puzzle at any time during processing
by ARC. Let us annotate each variable in a constraint by a + if it appears
in a horizontal word and by a � if it appears in a vertical word. Clearly, in
the initial speci�cation each variable appears in at most two constraints and
each annotated variable appears in just one constraint (with that annotation).
We show that this property is maintained throughout the algorithm's perfor-
mance. It could be the case that the two annotated variables will appear in
the same constraint. The annotation of the variables in the constraint resulting
from extended 2-composition inherits the annotation in the parent constraints.
If a variable appeared with annotation \+" in one, and annotation \�" in the
other, its annotation in the resulting constraint will be \+,�". The claim can
be proved by induction on the processed buckets. Assume that after processing
buckets xn; . . . ; xi all the constraints appearing in the union of all the buck-
ets from bucketi�1 to bucket1, satisfy that each annotated variable appears in
at most one constraint. When processing bucketi�1, since it contains only two
constraints (otherwise it will contain multiple annotations of variable xi�1), it
generates a single new constraint. Assume that the constraint is added to the
bucket of xj . Clearly, if xj is annotated positively (respectively negatively) in
the added constraint, bucketj cannot contain already a constraint with a pos-
itive (respectively, negative) annotation of xj. Otherwise, it means that before
processing bucket i � 1, there were two constraints with positive (respectively
negative) annotation of xj , one in the bucket of xi�1 and one in the bucket of
xj , which contradicts the induction hypothesis. A very similar argument can
be applied to the multiple annotation case. The complexity of DRC2 for the
crossword puzzles is bounded by O(n � k3(w

�(o)+1)) thus reducing the base of the
exponent by a factor of 2w

�(o) relative to the general bound of DRC2. 2

4 Variable elimination operators

The extended m-composition operator uni�es known operators such as resolution
in theorem proving, joins in relational databases, and variable elimination for
solving equations and inequalities.

4.1 Variable elimination in propositional CNF theories

We denote propositional symbols, also called variables, by uppercase letters
P;Q;R; . . ., propositional literals (i.e., P;:P) by lowercase letters p; q; r; . . ., and
disjunctions of literals, or clauses, by �; �; A unit clause is a clause of size 1.
The notation (� _ T), when � = (P _Q _R) is a shorthand for the disjunction
(P _Q_R_ T), and �_ � denotes the clause whose literal appears in either �
or �. The resolution operation over two clauses (�_Q) and (� _:Q) results in
a clause (� _ �), thus eliminating Q. A formula ' in conjunctive normal form
(CNF) is a set of clauses ' = f�1; . . . ; �tg that denotes their conjunction. The

14

set of models of a formula ', denoted models('), is the set of all satisfying
truth assignments to all its symbols. A Horn formula is a CNF formula whose
clauses all have at most one positive literal. Let ECQ0(RA; RB) denote the rela-
tion generated by extended 2-composition of RA and RB relative to A[B�fQg,
Q 2 A \ B. It is easy to see that pair-wise resolution is equivalent to extended
2-composition.

Lemma22. The resolution operation over two clauses (�_Q) and (�_:Q), re-
sults in a clause (�_�) satisfying:models(�_�) = ECQ0(models(�);models(�)).

Proof. Clear.

In [35] we have shown that row-convex relations that are closed under ex-
tended 2-composition can be globally solved by DRC2. Observe that any bi-
valued relation is row-convex, therefore, since CNF theories are bi-valued,DRC2,
if applied to the relational representation of a CNF theory, will decide the
problem's satis�ability and generate a globally solved representation. From the
above lemma, extended 2-decomposition can be applied to the CNF representa-
tion directly and therefore, transformation to a relational representation can be
avoided.

Replacing extended 2-composition by resolution and the instantiation step
by unit resolution inDRC2, results in algorithmDirectional Resolution (denoted
DR)which is the core of the well known Davis Putnam algorithm for satis�ability
[7, 14]. Applying the same exchange within DRC(i;2) yields algorithm bounded
directional resolution (BDRi) which is a polynomial approximation of DR [14].
As is well known and as also follows from our theory, algorithm directional
resolution globally solves any CNF theory.

Directional-Resolution ('; o)

Input: A CNF theory ', an ordering o = Q1; . . . ; Qn of its variables.

Output: A decision of whether ' is satis�able. if it is, a theory Eo('), equivalent
to ', else an empty directional extension.

1. Initialize: generate an ordered partition of clauses into buckets. bucket1,
. . . , bucketn, where bucketi contains all clauses whose highest literal is Qi.

2. for i n downto 1 do
3. if there is a unit clause then

apply unit-resolution and place the resolvents in their right bucket
if the empty clause was generated, theory is not satis�able

4. else resolve each pair f(� _Qi); (� _ :Qi)g � bucketi.
if
 = � _ � is empty, return Eo(') = fg, theory is not satis�able
else determine the index of
 and add it to the appropriate bucket.

5. return Eo(')
S
i bucketi

Incorporating resolution into DRC1 yields algorithm unit propagation. The
operation of extended 1-composition in DRC1 will have no e�ect since projec-
tions on clauses generate universal relations. The only relevant steps are the

15

simpli�cation and instantiation. The simpli�cation step, if included, allows reso-
lution involving non-unit clauses as long as the variables appearing in one clause
are contained in the other clause. The instantiations step translates to unit res-
olution.

As in the general case, DR generates a globally solved representation and its
complexity can be bounded exponentially as a function of the induced width w�

of the CNF theory. The graph of a CNF theory associates propositional symbols
with nodes and connects two nodes if their associated symbols appear in the
same clause.

4.2 Variable elimination in linear inequalities

In database theory, a k-ary relation r is a �nite set of tuples and a database
is a �nite set of relations. However, the relational calculus and algebra can be
developed without the �niteness assumptions for relations. We will use the term
unrestricted relation, for �nite or in�nite sets of points in a k-dimensional space
[24]. In particular, it was shown that relational calculus is identical to relational
algebra for countable domains and that relational algebra for in�nite relations
is exactly the same as for �nite relations [25]6. Therefore, the relational frame-
work we have presented applies as is to in�nite relations. In this section we will
demonstrate the applicability of our results to the special case of linear inequal-
ities over in�nite domains like the Rationals as well as over �nite and in�nite
subsets of the Integers.

Let us consider the class of linear inequalities where a constraint between
r variables or less is a conjunction of linear equalities and inequalities of the
form

Pr

i=1 aixi � c, where ai, and c are rational constants. For example, the
conjunction (3xi+2xj � 3)^ (�4xi+5xj � 1) is an allowed constraint between
variables xi and xj. A network with constraints of this form can be formulated
as a linear program where the domains are in�nite Rational, or Integers, or
�nite subsets of integers restricted by unary linear inequalities. We will show
�rst that over the Rationals the standard operation of variable elimination is
equivalent to extended 2-composition while this equivalence is not maintained
over the integers. Let us denote by sol(�) the unrestricted relation of tuples from
the domain satisfying a set of linear inequalities, �. We de�ne the elimination
operation as follows:

De�nition23 (linear elimination). Let � =
P(r�1)

i=1 aixi + arxr � c, and

� =
P(r�1)

i=1 bixi + brxr � d. Then elimr (�; �) is applicable only if ar and br

have opposite signs, in which case elimr (�; �) =
Pr�1

i=1 (�ai
br
ar
+bi)xi � �

br
ar
c+d.

If ar and br have the same sign the elimination implicitly generates the universal
constraint.

Lemma24. sol(elimr (�; �)) � ECr(sol(�); sol(�)) when the domains are the
Integers. However, over the Rationals sol(elimr (�; �)) = ECr(sol(�); sol(�)).

6 We thank Manolis Koubarakis for pointing to us the extension to in�nite domains.

16

Proof. It is easy to see that if ar and br have the same sign (both are positive
or both are negative), then for any assignment to x1; . . . ; xi�1 there is always a
value for xr that extends x1; . . . ; xi�1 and that satis�es both � and �. Therefore,
the extended composition produces the universal relation. Assume now that ar
and br have opposite signs. Multiplying � by � br

ar
and summing the resulting

inequality with � yields the inequality

r�1X

i=1

(�ai
br

ar
+ bi)xi � �

br

ar
c + d:

In other words, any tuple satisfying this inequality can be extended to a rational
value of xr in a way that satis�es both � and �. It is unclear, though, that there
exists an integer extension to xr which is the reason for partial containment for
the integers. 2

In [35] we have shown that linear inequality constraints over �nite sets of
integers are row-convex and therefore can be globally solved by DRC2 using
their relational form. The de�nition of row-convexity can be extended to in�nite
domains without any modi�cation. This implies that linear inequalities over the
Rationals that are relationally 2-consistent are globally solved and consequently
linear inequalities can be globally solved by DRC2.

Incorporating linear elimination into DRC2 (when the constraints are pre-
sented as linear inequalities) results in algorithmDirectional Linear Elimination
(abbreviated DLE) which is the well known Fourier elimination algorithm (see
[28]). Indeed, as dictated by our theory and as is already known the algorithm
decides the solvability of any set of linear inequalities over the Rationals.

Directional-Linear-Elimination ('; o)

Input: A set of linear inequalities ', an ordering o = x1; . . . ; xn of its vari-
ables.

Output: A decision of whether ' is satis�able. if it is, a theory Eo('), equivalent
to ', else an empty directional extension.

1. Initialize: generate an ordered partition of the inequalities into buckets.

2. for i n downto 1 do

3. if xi has one value in its domain then

4. substitute the value into each inequality in the bucket and put the
resulting inequality in the right bucket.

4. else for each pair f�; �g � bucketi, compute
 = elimi(�; �)
if
 has no solutions, return Eo(') = fg, theory is not satis�able
else add
 to the appropriate bucket.

5. return Eo(')
S
i bucketi

Example 4.

'(x1; x2; x3; x4) = f(1) 5x4 + 3x2 � x1 � 5; (2) x4 + x1 � 2; (3) � x4 � 0;

(4) x3 � 5; (5) x1 + x2 � x3 � �10; (6) x1 + 2x2 � 0g:

17

Initially, bucket4 = f5x4 + 3x2 � x1 � 5; x4 + x1 � 2; �x4 � 0g, bucket3 =
f x3 � 5; x1 + x2 � x3 � �10g and bucket2 = fx1 + 2x2 � 0g. Processing
bucket4, applying elimination relative to x4 over inequalities (1) (3), and (2)
(3), respectively, results in: 3x2 � x1 � 5, placed into bucket2, and x1 � 2,
placed into bucket1. Processing bucket3 next, eliminates x3 from (4) and (5),
yielding x1 + x2 � �5, placed into bucket2 and processing bucket2 adds no new
inequality. We can now generate a backtrack-free solution in the following way.
Select a value for x1 from its domains satisfying the unary inequalities in bucket1.
After selecting assignments to x1; . . . ; xi�1 select a value for xi satisfying all the
inequalities in bucketi. This is easy since all the constraints are unary once the
values of x1; . . . ; xi�1 are determined.

Theorem25. DLE (Fourier elimination) globally solves a set of linear inequal-
ities over the Rationals7.

Proof. It is known that the Fourier elimination algorithm decides the consistency
of a set of linear inequalities over the rationals. Since DRC2 globally solves a set
of row-convex constraints, since linear inequalities are row-convex and are closed
under extended 2-composition, and since DLE is equivalent to DRC2, the claim
follows. 2

Linear inequalities over the integers: When the domains are the Integers
the algorithm is no longer guaranteed to decide consistency since linear elimina-
tion is not identical to extended 2-composition. If the empty relation is generated
byDLE, the problem is indeed inconsistent, else, the problemmay or may not be
consistent. Nevertheless, the representation generated by DLE could be useful
since it is a backtrack-free representation relative to the rationals, of a super-
set of the sought-for integer solutions. From such a representation an integer
solution may be extracted using backtrack search that may enjoy a substantial
amount of pruning.

Complexity of DLE Algorithm DLE is generally exponential since it may
record an exponential number of inequalities. If the domains are �nite, the �nite
relational representation can be used (in which case DLE = DRC2), and in
this case the complexity can be bounded using the notion of induced width.
Otherwise, DLE's complexity may be worst-case exponential even when the
induced width w�, is bounded. The reason is that an exponential number of
inequalities may need to be recorded on the same subset of variables. One cannot
\intersect" two inequalities and replace them by one. In other words, linear
inequalities are not closed under intersection while relations are.

7 The result holds also for the Reals, however since relational algebra was extended
for countable domains only it does not follow from the general theory and needs to
be proved directly.

18

Case of binary inequalities: When the linear inequalities are over pairs of
variables only, algorithm DLE, as presented here is still exponential. However
it was shown to have a polynomial implementation over the Rationals that uses
a special data structure that bounds the number of inequalities over any pair of
variables and leads to a polynomial algorithm [18]. Over the integers the binary
linear problem is NP-complete [27]. A more restricted case of binary monotone
inequalities of the form axi � bxj � c, where a; b; c positive integers, was shown
to be weakly NP-complete since there exists a pseudo-polynomial algorithm [18].
A polynomial algorithm that globally solves the problem over the rationals is
given in [17]. For bounded integer domains the general binary linear problem
can be expressed in a relational form and since DRC2 is polynomial over binary
constraints, the class can be solved in polynomial time relative to the maximal
range of the integer domains. In summary,

Theorem26. Algorithm DLE is exponential even for binary inequalities and
even for bounded induced width. For �nite domains DRC2 is applicable. Its com-
plexity for binary constraints is polynomial (in the input and the maximum do-
main range), and is exponentially bounded by the induced width, for non-binary
constraints. 2

There are additional special classes for which DLE is polynomial. One case is
the class of simple temporal constraints. Those are unary and binary constraints
of the form X � Y � a. Algorithm DLE reduces, in this case, to the shortest
path algorithm presented in [10]. The algorithm is polynomial since the number
of inequalities produced is bounded (in this simple case at most two inequalities
are needed between any pair of variables) and since the class is closed under
linear elimination. The linear elimination operator over the integers, coincides
with extended 2-composition in this case, and therefore, DLE is complete for
simple temporal constraints over the integers as well. Note, that although this
is a subclass of monotone inequalities, tractability of DLE over this class does
not follow from [18] whereby a special implementation was required.

Theorem27. Algorithm DLE is polynomial over the class of unary and binary
inequalities of the form X � Y � a, X � b. The algorithm globally solves such
inequalities, over the Integers (if a and b are integers), the Rationals and the
Reals.

Proof. Over the Integers and the Rationals, global consistency follows from the
global consistency of DRC2. In this case DLE is complete since simple tempo-
ral inequalities over the integers are closed under extended 2-composition and
intersection. the proof is given in [10].

Case of zero-diversity theories: Propositional CNFs as well as linear in-
equalities share an interesting syntactic property: It is easy to recognize whether
applying extended 2-composition relative to variable xi results in a universal
constraint. Both resolution and linear elimination relative to xi are e�ective

19

only when the variable to be eliminated appears with opposite signs. This leads
to a simple-to-identify tractable class for both these languages. If there exists an
ordering of the variables, such that in each of its bucketi, xi appears with the
same sign, then the theory is already globally solved relative to that ordering.
We called in [14] such theories as \zero diversity" and we showed that they can
be recognized in linear time.

5 From Local to Global Consistency

Much work has been done on identifying relationships between properties of
constraint networks and the level of local consistency su�cient to ensure global
consistency. This work falls into two classes: identifying topological properties of
the underlying graph of the network and identifying properties of the constraints.

For work on identifying topological properties, Freuder [20] identi�es a rela-
tionship between the width of a constraint graph and the level of local consistency
needed to ensure a solution can be found without backtracking. In particular bi-
nary trees can be solved by arc-consistency [31]. Dechter and Pearl [11] provide
an adaptive scheme where the level of local consistency is adjusted on a node-by-
node basis. Dechter and Pearl [12] generalize the results on trees to hyper-trees
which are called acyclic in the database community [4].

For work on identifying properties of the constraints, Montanari [33] shows
that path consistency is su�cient to guarantee that a binary network is globally
consistent if the relations are monotone. Dechter [9] identi�es a relationship
between the size of the domains of the variables, the arity of the constraints,
and the level of local consistency su�cient to ensure the network is globally
consistent. These results were extended recently by van Beek and Dechter to the
property of tightness and looseness of the constraints in the network [37, 36].
Van Hentenryck, Deville, and Teng [39] show that arc consistency is su�cient to
test whether a network is satis�able if the relations are from a restricted class of
functional and monotone constraints. These properties were generalized recently
to implicational constraints [26, 23] and to row-convexity [38].

Finally, for work that falls into both classes, Dechter and Pearl [13] present
e�ective procedures for determining whether a constraint network can be formu-
lated as a causal theory and thus a solution can be found without backtracking.
Whether a constraint network can be so formulated depends on the topology of
the underlying constraint graph and the type of the constraints.

Most of these relationships were formulated initially using the variable-based
de�nition of local-consistency. Reference to constraints was indirect via the con-
straint's arity as a parameter. Recently, we have shown that these relationships
can be generalized using relational consistency and that they lead to a char-
acterization of classes of problems that can be solved by a restricted level m
of DRCm. The general pattern is as follows. We present a su�cient condition
showing that a network satisfying a property p, and having a corresponding level
of relational consistency l(p), is globally consistent. This implies that whenever
the property p is maintained under extended l(p)-composition, those networks

20

(satisfying p) can be globally solved by DRCl(p). Furthermore, it is su�cient
for condition l(p) to hold only relative to the particular ordering on which the
algorithm is applied. We have recently demonstrated the use of our de�nition
for two properties: row-convexity and tightness. We have shown that,

Theorem28. [38]. A networks of relations that are row-convex and are rela-
tional 2-consistent are globally consistent.

Consequently, a network of row-convex relations that are closed under extended
2-composition can be globally-solved by DRC2. Similarly, we have shown that:

Theorem29. [37] If a network of constraints is m-tight and m + 2-relational
consistent, than it is globally consistent.

Consequently, whenever a set ofm-tight relations is closed under extended m+2-
composition it can be solved by DRCm+2. The notion of m-tightness is de�ned
as follows. A binary relation is m-tight if every value of one variable is consistent
with at most m values of the second variable. A general relation is m-tight if
every tuple on all the variables excluding one, has an extension in the constraint
to the missing variable using at most m values.

In this section we apply the de�nition of relational consistency to relation-
ships involving properties such as the size of the domains, acyclicity and causal-
ity.

5.1 Domain size and global consistency

In [9], we have shown that:

Theorem30. [9] If R is a k-valued binary constraint network that is k+1 con-
sistent then it is globally consistent. If R is a k-valued r-ary constraint network
that is k(r � 1) + 1 consistent then it is globally consistent.

We now show that by using the notion of relational consistency the above
relationship for r-ary networks (as well as its proof), are simpli�ed. Moreover,
the algorithm can be stated more coherently.

Theorem31. A k-valued constraint network R, that is k-relationally-consistent
is globally consistent.

Proof. We prove the theorem by showing that relationally k-consistent k-valued
networks are relationally (k + i)-consistent for any i � 1. According to the
de�nitions, we need to show that, if there are relations RS1 ; . . . ; RSk+i , all sharing

variable xt, and if �x is a locally consistent tuple de�ned over
Sk+i
i=1 Si � fxtg,

then there is a value a of xt such that (�x,a) belongs to the joined relation
RS1 1; . . . ;1 RSk+i . With each value j, in the domain of xt we associate a subset
Aj that contains all those relations in fRS1 ; . . . ; RSk+ig that are consistent with
the assignment xt = j. Since variable xt may take on k possible values 1; 2; . . . ; k
we get k such subsets, A1; . . . ; Ak. We claim that there must be at least one set,

21

say A1, that contains all the constraints fRS1 ; . . . ; RSk+ig. If this were not the
case, each subset Aj would be missing some member, say R0

S0

j
, which means that

the partial tuple �x' = �A(�x), A =
Sk
i=1 S

0
i � fxtg, is locally consistent, namely

it belongs to �A, but it cannot be consistently extended to a value of xt while
satisfying the k relations R0

S0

1

; . . . ; R0
S0

k

. This leads to a contradiction because as

a subset of �x, �x' is locally consistent, and from the assumption of relational k-
consistency, this tuple should be extensible by any additional variable including
xt. 2

Since the domains do not increase by extended k-composition we get:

Theorem32. Any k-valued network R can be globally solved by DRCk.

Example 5. From Theorem 32, bi-valued networks can be globally solved
by DRC2. In particular, propositional CNFs can be globally solved by DRC2.
As we have seen, in this case, the operator of extended 2-composition takes the
form of pair-wise resolution yielding algorithm directional resolution [14].

5.2 Acyclicity, causality and global consistency

Relational consistency and the DRCm algorithms can also capture the tractable
classes of acyclic and causal networks. It is well known that acyclic networks are
tractable [32, 12].

De�nition33 (acyclic networks). A network of constraints is acyclic if it has
a chordal constraint graph and if each maximal clique is associated with a single
constraint.

It is easy to see that:

Lemma34. If a network is acyclic then there exists an ordering of the variables
for which each bucket has a single relation.

Causal networks include acyclic networks. They were de�ned in order to
capture the ease of some tasks in physical systems, such as projection.

De�nition35 (causal networks [13]). A constraint network is causal rela-
tive to an ordering o = x1; :::; xn i� it is globally solved (i.e., backtrack-free).

De�nition36 (causal relations [13]). A constraint is called causal if its pro-
jection on any subset of variables generates a universal relation.

Lemma37. [13] A single-bucket network relative to ordering o whose constraints
are causal, is causal relative to o.

Finally, it is easy to see that:

Theorem38. Single-bucket networks that are closed under DRC1 are tractable.

22

Proof. Since each bucket contains a single relation throughout processing, DRC1

is equivalent to ARC and therefore, complete. Since DRC1 is polynomial, the
claim follows. 2

Since acyclic networks are single-buckets and closed under DRC1, and since
single-bucket causal relations are closed under DRC1, and, since CNF formulas
as well as linear inequalities are causal relations, we conclude:

Corollary39. Algorithm DRC1 is complete for: 1. Acyclic networks, 2. single-
bucket causal relations, and in particular for single-bucket CNF 's and linear
inequalities. For the latter two classes this is a special case of the zero-diversity
class.

6 Discussion

The algorithmswe present in this paper belong to the class of variable elimination
algorithms, formulated recently within the bucket elimination framework [15],
which generalize non-serial dynamic programming [5]. We have recently shown
how a collection of probabilistic and combinatorial optimization tasks can be
formulated within this framework [15]. Such algorithms were also presented for
various graph-based tasks by [1, 3]. All the algorithms possess similar properties
of compiling a theory into a backtrack-free one (or greedy) and their complexity is
dependent on the same graph properties. Speci�cally they all have a complexity
bound which is exponential in the induced-width of some graph.

Another common property often overlooked of all such algorithms, is that
they also require space exponential in the induced width. We have recently
demonstrated how a method of conditioning can be incorporated into the bucket-
elimination scheme to allow trading space for time. The special case-handling of
singleton values that we had introduced (i.e., instantiation) permits this exten-
sion [16] and will lead to similar time-space tradeo�s.

Since the algorithms may be quite time demanding, unless the problem is
very sparse, practical considerations call for the use of approximations. Polyno-
mial approximation algorithms such as DRC(i;m) could be useful and may be
extended to optimization and probabilistic inference as well.

7 Conclusions

We focused on a new de�nition of local consistency called relational consistency.
This de�nition is relational-based, in contrast with previous de�nitions which
were variable-based. We presented algorithms, Directional Relational Consis-
tency (DRCm), enforcing relational consistency using a general composition op-
erator which uni�es resolution for CNF theories, variable elimination in linear
inequalities and the project-join operator in relational databases. We also show
that relational consistency is useful in characterizing relationships between prop-
erties of constraint networks and the level of local consistency needed to ensure
global consistency.

23

Speci�cally, we have shown that di�erent levels of DRC can globally solve
di�erent classes of constraint networks:

1. DRC1 globally solves acyclic and single-bucket, causal relations in polyno-
mial time.

2. DRC2 globally solves bi-valued domain networks, crossword puzzles, and
linear inequalities over �nite subsets of the integers. The algorithm is poly-
nomial for binary constraints over �nite domains in relational form, and is
exponential otherwise. Algorithm DLE (or Fourier elimination) is a linear
elimination algorithm equivalent to DRC2 over the rationals, and approx-
imates DRC2 over integers. The resolution algorithm of Davis-Putnam is
equivalent to DRC2.

3. AlgorithmDRCm globally solves m-valued networks. The algorithm is poly-
nomial for binary constraints.

4. Algorithm ARC globally solves all networks.
5. The complexity of both DRCm and ARC is exponentially bounded by w�,

the induced-width (tree-width) of the network over �nite domains.
6. We introduced a class of polynomial directional relational consistency al-

gorithms DRC(i;m) that approximate DRCm. The algorithms are complete
when i � w�(o).

All the algorithms we present belong to the family of variable elimination
algorithms that are widely applicable to deterministic reasoning tasks, to opti-
mization problems and to probabilistic inference [16, 15].

Acknowledgement. We would like to thank Simon Kasif for mentioning Fourier's
elimination algorithm to us and to Irina Rish for commenting on the latest
version of this manuscript. This work was partially supported by NSF grant IRI-
9157636, By the electrical Power Research institute (EPRI) and by grants from
Northrop and Rockwell. This work was also supported in part by the Natural
Sciences and Engineering Research Council of Canada.

References

1. S. Arnborg. E�cient algorithms for combinatorial problems on graphs with
bounded decomposability | a survey. BIT, 25:2{23, 1985.

2. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of �nding an embed-
ding in k-trees. SIAM Journal of Algebraic Discrete Methods, 8:177{184, 1987.

3. S. Arnborg, and A. Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete and applied Mathematics 23 (1989) 11-24.

4. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. J. ACM, 30:479{513, 1983.

5. U. Bertele and F. Brioschi. Nonserial Dynamic Programming, Academic Press,
New York, 1972.

6. M. C. Cooper. An optimal k-consistency algorithm. Artif. Intell., 41:89{95, 1989.
7. M. Davis and H. Putnam. A computing procedure for quanti�cation theory. J.

ACM, 7:201{215, 1960.

24

8. R. Dechter. Enhancement schemes for constraint processing incorporating, back-
jumping, learning and cutset decomposition. Artif. Intell., 41:273{312, 1990.

9. R. Dechter. From local to global consistency. Artif. Intell., 55:87{107, 1992.
10. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artif. Intell.,

49:61{95, 1991.
11. R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction prob-

lems. Artif. Intell., 34:1{38, 1988.
12. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artif. Intell.,

38:353{366, 1989.
13. R. Dechter and J. Pearl. Directed constraint networks: A relational framework for

causal modeling. In Proc. of the 12th Int'l Joint Conf. on AI, pages 1164{1170,
1991.

14. R. Dechter and I. Rish. Directional resolution: The Davis-Putnam procedure, re-
visited. In Proc. of the 4th Int'l Conf. on Principles of KR&R, 134{145, 1994.

15. R. Dechter. Bucket elimination: a unifying framework for probabilistic inference.
In Proceedings of Uncertainty in Arti�cial Intelligence (UAI-96), 1996.

16. R. Dechter. Topological properties of time-space tradeo�. In Proceedings of Un-
certainty in Arti�cial Intelligence (UAI-96), 1996.

17. D. Q. Goldin and P. C. Kanellakis, Constraint query algebras. In Constraints
1,1-41,1996.

18. D. S. Hochbaum and J. Naor, Simple and Fast algorithms for linear integer pro-
grams with two variables per inequality. SIAM J. of Computing 23:6:1179-1192,
1994.

19. E. C. Freuder. Synthesizing constraint expressions. Comm. ACM, 21:958{966,
1978.

20. E. C. Freuder. A su�cient condition for backtrack-free search. J. ACM, 29:24{32,
1982.

21. M. L. Ginsberg, M. Frank, M. P. Halpin, and M. C. Torrance. Search lessons
learned from crossword puzzles. In Proc. of the 8th Nat'l Conf. on AI, pages
210{215, 1990.

22. P. J�egou. On the consistency of general constraint satisfaction problems. In Proc.
of the 11th National Conf. on AI, pages 114{119, 1993.

23. M.C. Cooper, D,A, Cohen and P.G. Jeavons. Characterizing tractable constraints
Arti�cial Intelligence 65, 347-361, 1994.

24. P.C. Kanellakis, G.M. Kuper and P. Z. Revesz. Constraint Query languages. Proc.
9th ACM PODS, 299-313, 1990.

25. P. Kanellakis, Elements of Relational Database Theory, Handbook of Theoretical
Computer Science, Chapter 17, Vol, B, J. van Leeuwen editor, North-Holland,
1990.

26. L. M. Kirousis. Fast parallel constraint satisfaction. Artif. Intell., 64:147{160,
1993.

27. J. C. Lagarias, \The computational complexity of
simultaneous Diophantine approximation problems" SIAM Journal on Computing,
Vol 14, No. 1 (1985), pp. 196-209.

28. J-L Lassez and M. Mahler, \On Fourier's algorithm for linear constraints" Journal
of Automated Reasoning, Vol 9, 1992.

29. A. K. Mackworth. Consistency in networks of relations. Artif. Intell., 8:99{118,
1977.

30. A. K. Mackworth. On reading sketch maps. International joint conference on
Arti�cial Intelligence(IJCAI-77), Cambridge, Mass. 1977, pp. 587-606.

25

31. A. K. Mackworth and E. C. Freuder. The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems. Artif. Intell., 25:65{74,
1985.

32. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
33. U. Montanari. Networks of constraints: Fundamental properties and applications

to picture processing. Inform. Sci., 7:95{132, 1974.
34. J. D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. 1. Com-

puter Science Press, 1988.
35. P. van Beek. On the minimality and decomposability of constraint networks. In

Proc. of the 10th National Conf. on AI, pages 447{452, 1992.
36. P. van Beek. On the inherent level of local consistency in constraint networks. In

Proc. of the 12th National Conf. on AI, pages 368{373, 1994.
37. P. van Beek and R. Dechter. Constraint tightness versus global consistency. In

Proc. of the 4th Int'l Conf. on Principles of KR&R, pages 572{582, 1994.
38. P. van Beek and R. Dechter. On the minimality and global consistency of row-

convex constraint networks. Journal of the ACM, 42:543-561, 1995.
39. P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc consistency algo-

rithm and its specializations. Artif. Intell., 57:291{321, 1992.

This article was processed using the LaTEX macro package with LLNCS style

26

