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Abstract

We propose a propositional language for tem-
poral reasoning that is computationally ef-
fective yet expressive enough to describe in-
formation about 
uents, events and temporal
constraints. Although the complete inference
algorithm is exponential, we characterize a
tractable core with limited expressibility and
inferential power. Our results render a variety
of constraint propagation techniques applica-
ble for reasoning with constraints on 
uents.

1 Introduction

Consider the issues raised by the following \story". At
8:00 the micro�lm was deposited in the safe and at
11:00 the micro�lm was gone. John was at the bar
between 8:10 - 8:30 and between 9:10 -12:00. He was
also at the poker table between 8:35 - 9:00. Fred was
at the bar between 8:30 - 10:00 and between 10:45 -
12:00. The bar opened at 7:30 and closed at 12:00. We
know that at least 15 minutes are required to take the
micro�lm and return to the bar.

Given the story above, we are interested in answer-
ing queries such as \Does the story entail that Fred
took the micro�lm ?" and \What are all the possible
scenarios in this story ?". We wish to capture the hu-
man ability to answer such queries without information
about speed of movement or distances.

We wish to describe information conditioned on occur-
rences of events. For instance, a sentence like \at least
15 minutes are required to take the micro�lm and re-
turn to the bar" should be accounted for only if some-
one took the �lm; a query like \When did John take the
micro�lm ?" assumes that John took the micro�lm.

�This work was partially supported by NSF grant IRI-
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In classical propositional logic the atomic entities are
propositions. In dynamic environments the atomic en-
tities are called 
uents. They may repeatedly change
their value as events occur and are functions of the
situation or time. Our work builds upon temporal
languages proposed by McDermott and Dean [11, 5],
Allen [2], Kowalski and Sergot [9] and Shoham [14].
We accommodate various constructs proposed in these
languages (time points and intervals). Our main goal,
however, is to equip a temporal language with a com-
putationally manageable inference engine.

The primary task of any reasoning system is determin-
ing consistency of the given theory. For temporal lan-
guages this means determining the consistency of sen-
tences involving a combination of temporal and propo-
sitional constraints. For example, consider the state-
ment \Either Bob or Mary must tend the bar, but Bob
has to leave on an errand andMary has an appointment
with the doctor". How do we infer that Bob's errand
must be either before or after Mary's appointment ?

In this paper we propose a temporal language whose in-
ference engine is based on qualitative and quantitative
temporal constraints [1, 6, 7, 12, 15, 16]. Decoupling
the propositional and temporal constraints provides us
with inference algorithms that are based on proposi-
tional satis�ability and temporal constraint satisfac-
tion, and allows us to identify a useful tractable core.

The proposed language, called HOT, is de�ned over
Holds, Occurs and Temporal propositions. We as-
sume that events are instantaneous and serve as the
only time points at which 
uents may change their val-
ues. We use Holds(F;E1; E2) to state that the 
uent
F is true between events E1 and E2, Occurs(E) to
state that event E occurred, and T ime(E) for the time
of its occurrence. We focus on the tasks of deciding
consistency and computing consistent scenarios, which
enables us to answer entailment and other queries of in-
terest (such as inferring whether certain events must,
might, or could not have occurred). Our language has
a tractable core which allows us to make weak (sound
but incomplete) inferences. When augmented with ad-



ditional axioms, our language yields sound and com-
plete inference algorithms at the expense of increased
computational complexity.

The paper is organized as follows. Section 2 describes
the syntax and semantics of our language. Section 3
gives an alternative propositional semantics for the lan-
guage. Section 4 introduces a new model of conditional
temporal constraint networks that serves as the com-
putational engine.

2 The Language

Our language, called HOT, is a set of sentences over
Holds, Occurs and Temporal propositions. We use
two (disjoint) sets of symbols, 
uent symbols and event
symbols. A 
uent is a propositional function of time
and a 
uent literal is either a 
uent symbol or its nega-
tion. An event E is a pair (Occurs(E); T ime(E)),
where Occurs(E) is a propositional variable that is
assigned true i� E occurred, and T ime(E) is a real
valued variable that speci�es the time E occurred. We
use two special events: Ebegin, for \the beginning of the
world", and Eend, for \the end of the world". Unless
otherwise noted, we use right-sided half open intervals
[a; b) for reasons to be clari�ed later.

In addition to Occurs propositions there are Holds and
Temporal propositions.

A Holds proposition has the form

Holds('; Ei; Ej) (1)

where Ei and Ej are event symbols and ' = F1_� � �_Fk
is a disjunction of 
uent literals. We also use the
following abbreviations: If Ei = Ej we write (1)
as Holds('; Ei). If Ei = Ebegin we write (1) as
Holds('; before Ej). If Ej = Eend we write (1)
as Holds('; after Ei). If Ei = Ej = Ebegin or
Ei = Ej = Eend or both Ei = Ebegin and Ej = Eend

we write (1) as initially ', eventually ', always '
respectively.

A Temporal proposition is a qualitative or quantita-
tive temporal constraint over time points and time in-
tervals [12]. Given a pair of events Ei; Ej, IEi;Ej

de-
notes an half-open interval that begins with (includes)
T ime(Ei) and ends with (excludes) T ime(Ej ). A tem-
poral proposition is a constraint having one of three
forms:

1. A point-point constraint

T ime(Ej)� T ime(Ei) 2 I1 [ I2 [ � � � [ Ik (2)

where I1; . . . ; Ik are intervals (over real numbers), spec-
i�ed by their end points. We also use the shortcuts
T ime(Ej) 2 I1 [ I2 [ � � � [ Ik, T ime(Ej ) = t and
T ime(Ej) � T ime(Ei) to have the obvious meaning.

2. A point-interval constraint between the time point
at which event Ei occurred and the interval that begins

with Ej and ends with Ek,

T ime(Ei) fR1; . . . ; Rmg IEj ;Ek
(3)

where R1; . . . ; Rm 2 f before, starts; during, �n-
ishes, after g.

3. An interval-interval constraint

IEi;Ej
fR1; . . . ; Rmg IEp;Eq (4)

where R1; . . . ; Rm; m � 13 are distinct and

R1; . . . ;Rm 2

8>><
>>:

before; after; meets; met�by;
overlaps; overlapped�by;
during; contains; equals;

starts; started�by;
�nishes; �nished�by

9>>=
>>;
:

Sentences in HOT are conjunctive normal form (CNF)
formulas over Holds, Occurs and Temporal propositions
as their atoms.

Example 1: Consider the story in the introduction.
The sentence \At 8:00 the �lm was deposited in the
safe and at 11:00 the �lm was gone" is described by

Holds(Film in safe; F ilm deposited)^
(Time(Film deposited) = 8 : 00) ^
Holds(:Film in safe; F ilm checked) ^
(Time(Film checked) = 11 : 00):

The sentence \at least 15 minutes are required to take
the micro�lm and return to the bar" is described by

Occurs(John take film)! (Time(end John go safe)
�Time(begin John go safe) 2 [15;1])

A similar sentence can be described for Fred.

2.1 Semantics

An interpretation of a formula in HOT is a quadruple
< F ;Mf ; E ;Me >, where F is a set of two-valued
functions of time; Mf is a mapping Mf : F 7! F
of 
uent symbols into functions in F ; E is a subset of
event symbols and Me is a mapping Me : E 7! < of
events in E into real valued time points. The value of
Mf (') may change only when events occur, namely at
a time point t =Me(E) for some event E.

Intuitively, F is a set of 
uents that corresponds to

uent symbols used in the formula and E is the set
of events that actually occurred, mapped to the time
points at which each of them occurred.

De�nition 1: An interpretation is a scenario (or a
model) of a formula if all its clauses are assigned the
truth value true under the following rules of evaluation:

1. Occurs(E) is true i� E 2 E .

2. We extend Mf to disjunction and negation,
Mf (F1 _ � � � _ Fk) = Mf (F1) _ � � � _ Mf (Fk),
M (:F ) = :M (F ).



3. A holds proposition Holds('; Ei; Ej) is true i�
Ei; Ej 2 E , and (a) in case Ei = Ej then
Mf (')(Me(E)) is true, (b) in case Ei 6= Ej

then Me(Ei) < Me(Ej) and for any t such that
Me(Ei) � t < Me(Ej), Mf (')(t) is true.

4. A temporal proposition is true i� the events spec-
i�ed occurred and the temporal constraint is sat-
is�ed, namely

(a) a point-point temporal proposition (2) is true
i� Ei; Ej 2 E , and Me(Ej)�Me(Ei) 2 I1 [
I2 [ � � � [ Ik.

(b) a point-interval temporal proposition (3) is
true i� Ei; Ej; Ek 2 E andMe(Ej) < Me(Ek)
and one of the relations R1; . . . ; Rm holds.

(c) an interval-interval temporal proposition (4)
is true i� Ei; Ej; Ep; Eq 2 E and Me(Ei) <
Me(Ej) and Me(Ep) < Me(Eq) and one of
the relations R1; . . . ; Rm holds.

5. The truth value of the clauses and the CNF for-
mula is evaluated with respect to the truth values
of occurs, holds and temporal propositions using
standard rules of evaluation.

A formula is s-satis�able i� it has a scenario.

Note that Holds('1 ^ '2; Ei; Ej) � Holds('1; Ei; Ej)
^ Holds('2; Ei; Ej). However, Holds('1 _ '2; Ei; Ej)
is obviously not equivalent to Holds('1; Ei; Ej)_
Holds('2; Ei; Ej). Also note that Holds(:';Ei; Ej)
is not equivalent to :Holds(';Ei; Ej).

The formulaHolds(F;Ei; Ej)^Holds(:F;Ei) is incon-
sistent but Holds(F;Ei; Ej)^Holds(:F;Ej) is consis-
tent because the interval IEi;Ej

is half-open. If we used
closed intervals, Holds(F;Ei; Ej) ^Holds(:F;Ej; Ek)
would have been inconsistent and the values of the 
u-
ents would not be allowed to change when events occur.
If we had used open intervals, specifying Holds(F;Ei)
would have been useless since it does not induce a con-
straint on the value of Mf (F )(t) for the open interval
t 2 (T ime(Ei); T ime(Ej)).

An occurs, holds, or temporal proposition q is entailed
by 	, denoted 	 j= q, i� it is true in all scenarios of 	.
As usual, 	 j= q i� 	 ^ :q is inconsistent.

Example 2 : Consider the statement \John was
at the bar from 8:10 to 8:30". It is described
by the formula 	 = Holds(John at bar; 8:10; 8:30).1

	 j= Holds(John at bar; 8:15; 8:25) but 	 6j=
Holds(John at bar; 8:15; 8:35) because the value of the

uent John at bar is not constrained after 8:30 and
thus it can be either true or false.

1For the sake of convenience we will use real time points
as events.

For the rest of this paper we will restrict our treatment
to HOT sentences whose Holds(';Ei; Ej) propositions
we call simple, namely holds propositions in which ' is
a single 
uent literal unless Ei = Ebegin and Ej = Eend

(i.e. Holds('; always)). General holds propositions
introduce computational complications which we will
not address in this paper.

3 Propositional Semantics for HOT

In this section we address the task of deciding whether
a formula is s-satis�able. We wish to show that the
task of deciding s-satis�ability and �nding a scenario
reduces to a two-step process of propositional satis�a-
bility and temporal constraint satisfaction. Although
both of these tasks are NP-complete, such a reduction
opens the way for using known heuristics and known
tractable classes. The idea is to view 	 as a propo-
sitional CNF formula. Once a propositional model is
available, using temporal constraint satisfaction we can
determine whether all temporal constraints, speci�ed
by temporal propositions assigned true by the model,
can be satis�ed simultaneously.

De�nition 2: [ p-model ] Given a set of event and 
u-
ent symbols, a p-interpretation is a truth value assign-
ment to holds, occurs and temporal propositions when
viewed as propositional variables. A p-interpretation
is a p-model of a HOT formula 	 i� it is a proposi-
tional model of 	 and the set of temporal constraints
speci�ed by the temporal propositions assigned true is
consistent.

Upon trying this approach we see immediately that this
process may yield p-models that do not correspond to
any real scenario. The reason is twofold: holds propo-
sitions impose implicit temporal constraints that are
not explicit in the formula, and temporal propositions
should be assigned true i� the temporal constraint they
induce is satis�ed (p-models capture only one-way im-
plication). For instance, a formula consisting of just
one holds proposition Holds(F;Ei; Ej) will have a p-
model that allows any assignment to temporal variables
T ime(Ei) and T ime(Ej), since there is no explicit tem-
poral proposition specifying T ime(Ei) < Time(Ej ). In
order to avoid these super
uous p-models, we augment
	 with axioms that explicate the intended meaning.

In the following paragraphs we will augment a formula
	 with additional HOT sentences that will be called ax-
ioms. The resulting augmented theory 	0 describes the
same set of scenarios as the original theory 	. However,
every p-model of 	0 corresponds to a set of scenarios
of 	 and every scenario of 	 corresponds to a p-model
of 	0.

De�nition 3: [ axiom set A1 ] Given a formula 	,
the axiom set A1 has four parts:



1. For all events add T ime(Ebegin) < Time(E) <
Time(Eend), and for all pairs of events Ei; Ej add
IEi;Ej

fequalsgIEj ;Ei
.

2. For every event E speci�ed in a temporal propo-
sition T we add the axiom T ! Occurs(E).

3. For every holds proposition Holds(';Ei; Ej) of 	
we include sentences stating that if a holds propo-
sition is true, the corresponding events should have
occurred and in the intended order:

Holds(';Ei; Ej)! Occurs(Ei) ^Occurs(Ej);
Holds(';Ei; Ej)! (Time(Ei)fstartsgIEi ;Ej );
Holds(';Ei; Ej)! (Time(Ej)ffinishesgIEi ;Ej ):

4. For every pair of holds propositions with opposing

uents, Holds(F;Ei; Ej) and Holds(:F;Ep; Eq),
we add a sentence stating that the two intervals
are disjoint. In general we will add

Holds(F; Ei; Ej) ^Holds(:F; Ep; Eq)!
(IEi;Ej fbefore;meets;met�by; aftergIEp ;Eq ):

although there are special cases that are simpler.

The next set of axioms deals with the complications
introduced by disjunctive holds propositions. Here is
an example.

Example 3: Consider the example statement \Either
Bob or Mary must tend the bar, but Bob has to leave
on an errand and Mary has an appointment with the
doctor". It can be represented by the formula 	 =

Holds(Bob tend bar _Mary tend bar; always) ^
Holds(:Bob tend bar; begin errand; end errand) ^
Holds(:Mary tend bar; begin apnt; end apnt)

(5)

In order to guarantee consistency of (5), it is necessary
that the intervals of Bob's errand and Mary's appoint-
ment be disjoint. Otherwise, there will be a time point
at which both Bob tend bar and Mary tend bar are
false, contradicting

Holds(Bob tend bar _Mary tend bar; always):

The set of axioms A2, de�ned next, includes a con-
straint that enforces those intervals to be disjoint.

De�nition 4: [ axiom set A2 ] Given a formula 	, if
there exists a holds proposition h0 = Holds(F1 _ . . ._
Fk; always) then for any set of k holds propositions
fhi = Holds(:Fi; Epi ; Eqi) j 1 � i � kg we include
the sentence

h0 ^ h1 ^ . . . ^ hk !W
i<j�k

(IEpi ;Eqi fbefore;meets;met�by; aftergIEpj ;Eqj )

although there are special cases that are simpler.

Example 4: To illustrate the utility of axiomsA1 and
A2, consider the statement \John or Fred was always
at the bar, but Fred was not at the bar after 8 : 00

and John was not at the bar at 10 : 00" which can be
represented by the formula

Holds(John at bar _ Fred at bar; always) ^
Holds(:Fred at bar; after 8:00) ^
Holds(:John at bar; 10:00)

The axiom set A1 includes T ime(Ebegin) < 8:00 <

10:00 < Time(Eend), and the axiom set A2 includes

Holds(John at bar _ Fred at bar; Ebegin; Eend) ^
Holds(:Fred at bar; 8:00; Eend) ^
Holds(:John at bar; 10:00) !

(I8:00;Eend fbefore;meets;met�by; afterg10:00):

Since, the constraints introduced by A1 and A2 are
inconsistent, the statement is inconsistent.

The set of axioms A1 and A2 is not su�cient to elim-
inate all super
uous p-models. They do guarantee
that for every holds proposition Holds(F;Ei; Ej) as-
signed true we can assign Mf (F )(t) = true for every
t 2 IEi;Ej

without creating con
icts. However, A1 and
A2 do not guarantee that when the holds proposition is
assigned false, the negation of the intended constraint
is satis�ed in every p-model. To guarantee complete-
ness we provide yet another set of axioms, denoted A3,
which specify that the truth value of a holds proposi-
tion is inherited by sub- and super-intervals and that a
temporal proposition is assigned true i� the temporal
constraint is satis�ed.

De�nition 5: [ axiom set A3 ] Given a formula 	,
for every disjunction of 
uent symbols ' = F1_ :::_Fk
used in the formula, all 
uent symbols F , every set of
events Ei, Ej, Ep, Eq and every temporal proposition
T we include:
:Holds( ;Ei; Ej) ^ Occurs(Ei) ^Occurs(Ej)!W

8p;q
f(IEp;Eq � IEi;Ej ) ^ Holds(:  ;Ep; Eq)g

(6)

Holds( ;Ei; Ej) ^ (IEp ;Eq � IEi ;Ej ) !
Holds( ;Ep; Eq)

(7)

2 :T
^

8E specified in T

Occurs(E) ! T (8)

where  2 f'; Fg, � stands for the constraint fstarts,
during, �nishes, equalsg and T denotes the complement
of the temporal constraint T .

For example, if T = (I1fstarts,during,�nishesgI2) then
T = (I1 fbefore, after, meets, met-by, overlaps, over-
lapped-by, contains,�nished-by,started-by,equalsgI2).

Lemma 1: The size of axiom sets A1; A2 and A3 is

at most O(n2), O(nk2(n
k
)k) and O(n � n4e) respectively,

where n is the size of the theory axioms are added to,
ne is the number of event symbols and k is the max-
imum number of 
uent literals in a disjunctive holds
proposition.

2This axiom enables contrapositive reasoning with tem-
poral propositions.
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Figure 1: The structure of CTNs.

We use 	 [A1 [A2 [A3 to denote the closure under
axioms A1; A2 and A3.

Lemma 2: The HOT formulas 	 and 	0 = 	 [ A1 [
A2 [A3 are equivalent with respect to s-satis�ability.

Theorem 1: Every p-model of 	[A1[A2 [A3 cor-
responds to a set of scenarios of 	 and every scenario
of 	 corresponds to a p-model of 	 [A1 [A2 [A3.

4 Conditional Temporal Networks

The notion of p-models decouples the propositional
constraints from the temporal constraints and enables
us to discuss them in isolation. We call this framework
conditional temporal networks.

De�nition 6: A conditional temporal network (CTN)
has two types of variables: propositional and tempo-
ral (point and interval), and two types of constraints:
propositional and temporal. Every temporal constraint
T is associated with a unique propositional variable
C, called its condition. A conditional temporal con-
straint is a pair (C : T ). A propositional constraint is
a propositional CNF formula over propositional vari-
ables and temporal conditions. A solution to a CTN is
a truth value assignment to the propositional variables
and temporal conditions, an assignment of values to
the temporal point variables and a selection of a sin-
gle relation from every qualitative temporal constraint,
such that every propositional constraint and all tem-
poral constraints whose condition is assigned true are
satis�ed simultaneously.

Using these de�nitions, we can intuitively divide every
CTN into propositional and temporal parts. Propo-
sitional constraints impose certain restrictions on the
conditions that act as a bu�er and allow us to perform
computations on the propositional and temporal parts
of the network separately (see Figure 1).

Example 5: Consider a network with seven variables:
a propositional variable P , a point variable X1, two in-
terval variables I2; I3, and three conditions C1; C2; C3,
with the constraints

P $ C1 $ C2 $ C3;

(C1 : X1fstartsgI2); (C2 : X1ffinishesgI3);
(C3 : I2fbefore; after;meets;met�bygI3):

One solution is P = C1 = C2 = C3 = true, X1 = 1:0,
X1fstartsgI2, X1ffinishesgI3 , I2fmet�bygI3.

The truth values of conditions control the temporal
subnetwork that needs to be satis�ed. Clearly as more
conditions are assigned true the corresponding tempo-
ral network is more constrained. We can conclude:

Theorem 2: A conditional temporal network N is
consistent i� there exists a minimal model of the propo-
sitional part of N such that the set of temporal con-
straints whose condition is assigned true is satis�able.

This suggests a procedure for determining the consis-
tency of a CTN. We enumerate all minimal models of
the propositional part of a CTN and for each of them
determine whether the applicable temporal network is
consistent. The task of computing the minimalmodels
of a CNF formulahas been investigated and is known to
be hard [4, 3]. For Horn formulas, the minimalmodel is
unique and can be computed in polynomial time, thus
tractability depends on the temporal constraints.

Corollary 1: Given a CTN whose propositional part
is Horn and temporal part is tractable, consistency can
be determined in polynomial time.

4.1 Tractable Core

We determine the consistency of 	0 = 	[A1[A2[A3

by checking the consistency of a CTN in which propo-
sitional constraints are the propositional clauses of 	0,
conditions are the temporal propositions of 	0 and
temporal constraints are speci�ed by those temporal
propositions. Axiom set A1 introduces Horn clauses
and tractable temporal constraints. Axiom set A2 and
axioms (6) and (8) of A3 are intractable since they in-
troduce non-Horn clauses. If we do not add axiom sets
A2 and A3, p-satis�ability and p-entailment become
tractable for Horn temporal formulas.

Theorem 3: If 	 is a Horn temporal formula in
which every holds proposition speci�es a single 
uent
literal and every temporal proposition speci�es either
single interval (if point-point) fstartsg or f�nishesg
(if point-interval), fequalsg, fbefore,meetsg,fafter,met-
byg or any of their disjunctions (if interval-interval),
then p-consistency of 	 [ A1 can be determined in
O(j	j2 + n3e) steps, where ne is the number of event
symbols.

We will examine the inferences that 	 [A1 is capable
of making. We use 	 j= � to denote s-entailment and
	 j=p � to denote p-entailment. Clearly, for every
sentence �, if 	[A1 j=p � then 	[A1[A2[A3 j=p �
and thus 	 j= �. However, it might be that 	 j= �
and 	[A1 6j=p �. Still, if there is a clause �! � in 	
and 	 [A1 j=p � then 	 [A1 j=p �.



Example 6: When adding only A1,

Holds(F; always) j=p :Holds(:F; Ei; Ej);
Holds(F; always) 6j=p Holds(F; Ei; Ej);
Holds(F1; Ei; Ej) j=p :Holds(:(F1 _ F2); Ei; Ej);
Holds(F1; Ei; Ej) 6j=p Holds(F1 _ F2; Ei; Ej):

The anomalies of the second and fourth inference can
be avoided by adding some subsets of axioms A3. In
principle, as a topic for future research, it would be
worthwhile to associate classes of queries with a subset
of axioms A1; A2 and A3 that, if added, will guarantee
sound and complete inferences with respect to these
queries.

Qualitative and quantitative Temporal constraint net-
works can be processed with a variety of algorithms,
presented in [1, 6, 12, 10, 15, 13]. In particular, it was
reported in [10] that qualitative temporal networks can
be e�ciently solved using path-consistency as a prepro-
cessing procedure before backtracking. In [13] an e�ec-
tive preprocessing procedure for quantitative temporal
networks is presented.

5 Conclusion

We have proposed a propositional language for tempo-
ral reasoning that is computationally e�ective yet is ex-
pressive enough to describe information about 
uents,
events and temporal constraints. The language, called
HOT, is a set of propositional CNF formulas over Holds,
Occurs and Temporal propositions as their atoms. A
model (or a scenario) of an input theory determines
what events happened and speci�es the value of every

uent at every point in time.

We de�ne an alternative propositional semantics for
HOT that decouples propositional constraints from tem-
poral constraints and allows to consider them sepa-
rately. We call this framework conditional temporal
networks. A conditional temporal network is consis-
tent i� there exists a minimal model of the proposi-
tional constraints such that the set of temporal con-
straints whose condition is assigned true is satis�able.
These results render a wide variety of temporal con-
straint propagation techniques applicable to reasoning
about events and 
uents.

In particular, we identify a syntactically character-
ized tractable core for which a weaker (sound but in-
complete) tractable inference procedure exists. This
tractable core can be used as an upper bound ap-
proximation. Additional axioms yield more inferential
power but at the cost of increased computational com-
plexity. In practice, when it is known which queries are
of interest, a user can add only an appropriate subset
of the axioms.
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