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Abstract

Path-consistency algorithms, which are polynomial for
discrete problems, are exponential when applied to
problems involving quantitative temporal information.
The source of complexity stems from specifying rela-
tionships between pairs of time points as disjunction of
intervals. We propose a polynomial algorithm, called
ULT, that approximates path-consistency in Temporal
Constraint Satisfaction Problems (TCSPs). We com-
pare ULT empirically to path-consistency and direc-
tional path-consistency algorithms. When used as a
preprocessing to backtracking, ULT is shown to be 10
times more effective then either DPC or PC-2.

1. Introduction

Problems involving temporal constraints arise in vari-
ous areas of computer science such as scheduling, cir-
cuit and program verification, parallel computation
and common sense reasoning. Several formalisms for
expressing and reasoning with temporal knowledge
have been proposed, most notably Allen’s interval al-
gebra (Allen 83), Vilain and Kautz’s point algebra (Vi-
lain 86, Vanbeek 92), and Dean & Mcdermott’s Time
Map Management (TMM) (Dean & McDermott 87).
Recently, a framework called Temporal Constraint
Problem (TCSP) was proposed (Dechter Meiri & Pearl
91), in which network-based methods (Dechter & Pearl
88, Dechter 92) were extended to include continuous
variables. In this framework, variables represent time
points and quantitative temporal information is repre-
sented by a set of unary and binary constraints over the
variables. This model was further extended in (Meiri
91) to include qualitative information. The advantage
of this framework is that i1t facilitates the following
tasks: (1) finding all feasible times a given event can
occur, (2) finding all possible relationships between two
given events, (3) finding one or more scenarios consis-
tent with the information provided, and (4) represent-
ing the data in a minimal network form that can pro-
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vide answers to a variety of additional queries.

It is well known that all these tasks are NP-hard.
The source of complexity stems from specifying rela-
tionships between pairs of time points as disjunctions
of intervals. Even enforcing path-consistency, which is
polynomial in discrete problems, becomes worst-case
exponential in the number of intervals in each con-
straint. On the other hand, simple temporal problems
having only one interval per constraint are tractable
and can be solved by path-consistency. Consequently,
we propose to exploit the efficiency of processing sim-
ple temporal problems for approximating path consis-
tency. This leads to a polynomial algorithm, called
ULT.

We compare ULT empirically with path-consistency
(PC-2) and directional path-consistency (DPC). Our
results show that while ULT is always a very efficient
algorithm, it is most accurate (relative to full path-
consistency enforced by PC-2) for problems having a
small number of intervals and high connectivity. When
used as a preprocessing procedure before backtracking,
ULT is 10 times more effective then DPC or PC.

The paper is organized as follows. Section 2 presents
the TCSP model. Section 3 presents algorithm ULT;
Section 4 presents the empirical evaluation and the
conclusion is presented in Section 5.

2. The TCSP Model

A TCSP involves a set of variables; X1, ..., X,, having
continuous domains, each representing a time point.
Each constraint 7' is represented by a set of intervals
T=(I,.... L) ={la1,b1],.. ., [an, bn]}. For a unary
constraint 7; over X;, the set of intervals restricts the
domain such that (a; < X; <b)U...U(a, < X; <
b,). For a binary constraint T;; over X;, X;, the set
of intervals restricts the permissible values for the dis-
tance X; — X;; namely it represents the disjunction
(a1 SX]' - X; < bl)U...U(an SX]' - X; < bn) All
intervals are pairwise disjoint.

A binary TCSP can be represented by a directed con-



straint graph, where nodes represent variables and an
edge 7 — j indicates that a constraint 7;; is specified.
Every edge is labeled by the interval set (Figure 1).
A special time point X is introduced to represent the
“beginning of the world”. Because all times are rela-
tive to Xy, thus we may treat each unary constraint
T; as a binary constraint Ty, (having the same interval
representation). For simplicity, we choose Xy = 0.
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Figure 1: A graphical representation of a TCSP
where Xo =0, X; = 1.5, X2 =4.5, X5; =8 is a solution.

A tuple X = (21,...,2,) is called a solution if
the assignment X; = #1,...,X,, = =z, satisfies all
the constraints. The network is consistent iff at least
one solution exists. A value v is a feasible value of
X; if there exists a solution in which X; = v. The
minimal domain of a variable is the set of all feasible
values of that variable. The minimal consiraint is the
tightest constraint that describes the same set of solu-
tions. The minimal network is such that its domains
and constraints are minimal.

Definition 1:  TLet 7 = {I,,...,;} and S =

{J1,...,Jm} be two sets of intervals which can cor-

respond to either unary or binary constraints.

1. The wntersection of T and S, denoted by T'$ 5,
admits only values that are allowed by both of them.

2. The composition of T and S, denoted by T'® 5, ad-
mits only values r for which there exists ¢ € T" and
s € S such that r = ¢+ s.

2 -1 0 1 2 3 4 7

T | —

S [ D
TPs 0 0
TRIS 1 J -+
T = {[ 1.25, 0.25], [2.75,4.25]}
S = {[ 0.25, 1.25], [3.77,4.25]}
PSS = {[ 0.25, 0.25], [3.75,4.25]}
QS = {[ 1.50, 1.50], [2.50,5.50], [6.50,8.50]}

Figure 2: A pictorial example of the @ and ® operations.

The ® operation may result in intervals that are not
pairwise disjoint. Therefore, additional processing may
be required to compute the disjoint interval set.

Definition 2: The path-induced constraint on vari-

ables XZ',X]' 18 Rf;”h = @Vk(Tzk ® Tk]'). A con-

straint 1;; is path-consistent iff Tj; C Rf]qth and path-
redundant iff T;; D Rf;”h. A network is path-consistent
iff all 1ts constraints are path-consistent.

A general TCSP can be converted into an equivalent
path-consistent network by applying the relaxation op-
eration T;; — T3; @ Tip, ® Ty , using algorithm PC-2
(Figure 3). Some problems may benefit from a weaker
version, called DPC, which can be enforced more effi-
ciently.

Algorithm PC-2
Q — (i, k,J)I(i < j)and(k #1,5)}
while @ # {} do
select and delete a path (i, %, j) from @
if Ti; #Tix @ Tx; then
Ti] — Ti] ©® (Tzk ® Tk])
if T;; = {} then exit (inconsistency)
Q— QU RELATED-PATHS((i,k,j))
end-if
end-while

—_
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Algorithm DPC

1. for k — n downto 1 by -1 do

2 for Vi, j < k such that (i, k), (k,j) € E do

3. if Ti; # T @ Ty then

4. F— FU (i, ])

6 if T;; ={} then exit (inconsistency)
7 end-if

8 end-for

9. end-for

Figure 3: Algorithms PC-2 and DPC (Dechter Meiri
& Pearl 91).

3. Upper-Lower Tightening (ULT)

The relaxation operation T5; < T;; @13, @1}  increases
the number of intervals and may result in exponential
blow-up. As a result, the complexity of PC-2 and DPC
is exponential in the number of intervals, but can be
bounded by O(n3R?) and O(n®R?), respectively, where
n 1s the number of variables and R is the range of the
constraints. When running PC-2 on random instances,
we encountered problems for which path-consistency
required 11 minutes on toy-sized problems with 10 vari-
ables, range of [0,600], and with 50 input intervals in
each constraint. Evidently, PC-2 is computationally
expensive (also observed by (Poesio 91)).

A special class of TCSPs that allow efficient process-
ing is the Simple Temporal Problem (STP) (Dechter
Meiri & Pearl 91). In this class, a constraint has a sin-
gle interval. An STP can be associated with a directed
edge-weighted graph, Gy, called a distance graph, hav-
ing the same vertices as the constraint graph G; each
edge ¢ — j is labeled by a weight w;; representing
the constraint X; — X; < w;; (Figure 4). An STP
is consistent iff the corresponding d-graph G4 has no
negative cycles and the minimal network of the STP
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Figure 5: A sample run of ULT. We start with N (Figure 1) and compute N('l), ('1), N('il). Thereafter, we perform a

second iteration in which we compute N('2), N(';), N(';') and finally, in the third iteration, there is no change. The first

iteration removes two intervals, while the second iteration removes one.

corresponds to the minimal distances of G4. For a pro-
cessing example, see figure 4. Alternatively, the mini-
mal network of an STP can be computed by PC-2 in
O(n?) steps.
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Figure 4: Processing an STP. The minimal network is in
Figure 5, network N('i)

Motivated by these results, we propose an efficient
algorithm that approximates path-consistency. The
idea is to use the extreme points of all intervals associ-
ated with a single constraint as one big interval, yield-
ing an STP, and then to perform path-consistency on
that STP. This process will not increasing the number
of intervals.

Definition 3:  Let Tj; = [I1,..., 1] be the con-
straint over variables X;, X; and let L;;, U;; be the

lowest and highest value of T;;, respectively. We de-
fine N, N, N"" as follows (see Figure 5):

Algorithm Upper-Lower Tightening (ULT)

1 input: N

2 N/// — N

3. repeat

4. N — N"

5 compute N', N", N

6 until Yij  (L{ = Liy) and (U} = Usy)

or Fij (UL < LY
if 35 (U5 < LY) output: “Inconsistent.”
otherwise output: N’

Figure 6: The ULT algorithm.

-

e N’ is an STP derived from N by relaxing its con-
straints to 17, = [Lij, Uy
e N" is the minimal network of N’.
e N is derived from N” and N by intersecting
T =T T
ij ij e

Algorithm ULT is presented in Figure 6. We can
show that ULT computes a network equivalent to its
input network.

Lemma 1: Let N be the input to ULT and R be its
output. The networks N and R are equivalent.

Regarding the effectiveness of ULT, we can show
that

Lemma 2:  Fuvery iteration of ULT (excluding the
last) removes at least one interval.



This can be used to show that

Theorem 1:  Algorithm ULT terminates in O(n’ek+
e?k?) steps where n is the number of variables, e is
the number of edges, and k is the marimal number of
wntervals i each constraint.

In contrast to PC-2, ULT is guaranteed to converge in
O(ek) iterations even if the interval boundaries are not
rational numbers. For a sample execution see Figure

5.

Algorithm ULT can also be used to identify path-
redundancies.

Definition 4: A constraint 7j; is redundant-prone iff,
after applying ULT, 7}’ is redundant in N""'.

Lemma 3: 7]} is path-redundant in N of 171 C

Tij and Tjf = Swi (T3, © T75).
Corollary 1: A single interval constraint Tj; 1s
redundant-prone iff 171 = ®vi (13}, ® T,é’])

Consequently, after applying ULT to a TCSP, we can
test the condition in Corollary 1 and eliminate some re-
dundant constraints.

A brute-force algorithm for solving a TCSP decom-
poses it into separate STPs by selecting a single inter-
val from each constraint (Dechter Meiri & Pearl 91).
Each STP is then solved separately and the solutions
are combined. Alternatively, a naive backtracking al-
gorithm will successively assign an interval to a con-
straint, as long as the resulting STP is consistent.!
Once inconsistency is detected, the algorithm back-
tracks. Algorithm ULT can be used as a preprocess-
ing stage to reduce the number of intervals in each
constraint and to identify some path-redundant con-
straints. Since every iteration of ULT removes at least
one interval, the search space is pruned. More impor-
tantly, if ULT causes redundant constraints to be re-
moved, the search space may be pruned exponentially
in the number of constraints removed. Note however
that the number of constraints in the initial network
is e while following the application of ULT, DPC or
PC-2, the constraint graph becomes complete thus the
number of constraints is O(n?).

4. Empirical Evaluation

We conducted two sets of experiments. One comparing
the efficiency and accuracy of ULT and DPC relative
to PC-2, and the other comparing their effectiveness
as a preprocessing to backtracking.

Our experiments were conducted on randomly gener-
ated sets of instances. Our random problem generator
uses five parameters: (1) n, the number of variables,
(2) k, the number of intervals in each constraint, (3)

!We call this process “labeling the TCSP?”.

Efficiency of ULT, DPC, PC-2, PC-1 (20 reps)
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Figure 8: The execution time and quality of the approx-
imation obtained by DPC and ULT to PC. Each point
represents 20 runs on networks with 10 variables, .95
tightness, connectivity Pc = .14 and range [0, 600].

R = [Inf,Sup], the range of the constraints, (4) Tr,
the tightness of the constraints, namely, the fraction
of values allowed relative to the interval [Inf,Sup], and
(5) Pc, the probability that a constraint T;; exists.
Intuitively, problems with dense graphs and loose con-
straints with many intervals should be more difficult.

To evaluate the quality of the approximation
achieved by ULT and DPC relative to PC-2, we
counted the number of cases in which ULT and DPC
detected inconsistency given that PC-2 detected one.
From Figure 8, we conclude that when the number of
intervals is small, DPC is faster than ULT but produces
weaker approximations. When the number of intervals
is large, DPC is much slower but is more accurate. In
addition, we observe that when the number of intervals
is very large, DPC computes a very good approxima-
tion to PC-2, and runs about 10 times faster.

In Figure 9 we report the relative quality of ULT
and DPC for a small (3) and for a large (20) number
of intervals, as a function of connectivity. As the con-
nectivity increases, the approximation quality of both
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Figure 9: Quality of the approximation vs connectivity
on problems with 10 variables, tightness .95 and range
[0,600]. We measured on problems of 3 intervals (top)
where each point represents 1000 runs, and on 20 inter-
vals (bottom) where each point represents 100 runs.

ULT and DPC increases. Note again that ULT is more
accurate for a small number of intervals while DPC
dominates for large number of intervals.

We measured the number of iterations performed by
ULT, PC-2, and PC-1? (Figure 10). We observe that
for our benchmarks, ULT performed 1 iteration (ex-
cluding the termination iteration) in most of the cases,
while PC-1 and PC-2 performed more (DPC performs
only one iteration).

In the second set of experiments we tested the power
of ULT, DPC and P(C-2 as preprocessing to backtrack-
ing. Without preprocessing, the problems could not be
solved using the naive backtracking. Our preliminary
tests ran on 20 problem instances with 10 variables and
3 intervals and none terminated before 1000000 STP
checks. We therefore continued with testing backtrack-
ing following preprocessing by ULT, DPC and PC-2.

2A brute force path-comsistency algorithm (Dechter
Meiri & Pearl).
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Figure 10: The number of iterations ULT, PC-2 and
PC-1 performed (excluding the termination iteration) on
problems with 10 variables, 20 intervals, Po = .14, and
tightness .95. Each point represents 20 runs.

Testing the consistency of a labeling requires solving
the corresponding STP. An inconsistent STP repre-
sents a dead-end. Therefore, we counted the number
of inconsistent STPs tested before a single consistent
one was found and the overall time required (including
preprocessing). The results are presented in Figure 11
on a logarithmic scale. We observe that ULT was
able to remove intervals effectively and appears to be
the most effective as a preprocessing procedure. For
additional experiments with path-consistency for qual-
itative temporal networks see (Ladkin & Reinefeld 92).

Summary and conclusion

In this paper we presented a polynomial approximation
algorithm to path-consistency for temporal constraint
problems, called ULT. Its complexity is O(n3ek+e?k?),
in contrast to path-consistency which is exponential in
k, where n 1s the number of variables, e is the number
of constraints and & is the maximal number of intervals
per constraint. We also argued that ULT can be used
to effectively identify some path-redundancies.

We evaluated the performance of DPC and ULT em-
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Figure 11: Backtracking performance following prepro-
cessing by ULT, PC-2 and PC-1 respectively, on prob-
lems with 10 variables, 3 intervals, and tightness .95.
Each point represents 20 runs. The time includes pre-
processing.

pirically by comparing their run-time and quality of
output relative to PC-2. The results show that while
ULT is always very efficient, it is most accurate (i.e.
it generates output closer to PC-2) for problems hav-
ing a small number of intervals and high connectiv-
ity. Specifically, we saw that: 1. The complexity of
both PC-2 and DPC grows exponentially in the num-
ber of intervals, while the complexity of ULT remains
almost constant. 2. When the number of intervals is
small, DPC is faster but produces weaker approxima-
tions relative to ULT. When the number of intervals
is large, DPC is much slower but more accurate. 3.
For a large number of intervals, DPC computes a very
good approximation to PC-2, and runs about 10 times
faster. 4. When used as a preprocessing procedure be-
fore backtracking, ULT is shown to be 10 times more
effective then either DPC or PC-2.

Finally, our experimental evaluation is by no means
complete. We intend to conduct additional experi-
ments with wider range of parameters and larger prob-
lems.
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