
UNIVERSITY OF CALIFORNIA,
IRVINE

Advancing AND/OR Abstraction Sampling
and

AND/OR Search-Based Computational Protein Design

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Bobak Pezeshki

Dissertation Committee:
Prof. Rina Dechter, Co-Chair

Prof. Alexander Ihler, Co-Chair
Prof. Erik Sudderth

2024

All materials © 2024 Bobak Pezeshki

DEDICATION

To my mother who taught me the importance of following one’s heart
also with compassion for others.

In memory of Filjor Broka.

“. . . You can use logic to justify just about anything;
that’s its power and its flaw.”

– Rick Berman, 1995, Star Trek: Voyager

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE xii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1

2 Background 5
2.1 Probabilistic Graphical Models . 5

2.1.1 Discrete Graphical Models . 6
2.1.2 Notation . 7
2.1.3 Primal Graph . 9
2.1.4 Pseudo Trees . 10

2.2 Common Graphical Model Queries . 12
2.3 Paradigms for Answering Queries . 13

2.3.1 Elimination Methods . 13
2.3.1.1 The Variable Elimination Framework 13
2.3.1.2 Bucket Elimination . 15
2.3.1.3 Induced Width . 18
2.3.1.4 Mini-Bucket and Weighted Mini-Bucket Bounding Schemes 18
2.3.1.5 Weighted Mini-Bucket Elimination for Marginal MAP . . . 21

2.3.2 Search . 22
2.3.2.1 OR Search Spaces . 22
2.3.2.2 AND/OR Search Spaces . 24
2.3.2.3 Search Space Notation . 30
2.3.2.4 Important Search Space Quantities 31

2.3.3 Sampling . 34
2.3.3.1 Importance Sampling . 35
2.3.3.2 Stratified Importance Sampling 37

iii

3 Advancing Abstraction Sampling 39
3.1 Introduction . 39
3.2 Abstraction Sampling . 41

3.2.1 The General Scheme Through An Example 42
3.2.2 Algorithm ORAS on OR search Trees 44
3.2.3 Unbiasedness of ORAS . 47

3.3 Abstraction Sampling for AND/OR Search Trees 50
3.3.1 AND/OR node values and the partition function 50
3.3.2 Algorithm AOAS . 55
3.3.3 Unbiasedness of AOAS . 60
3.3.4 Additional Properties . 67
3.3.5 Complexity and scalability. 72

3.4 Candidate Abstractions . 76
3.4.1 Context-Based Abstractions . 76
3.4.2 Value-Based Abstractions . 78

3.4.2.1 Value-Based Abstraction Classes 79
3.4.2.2 Ordered Partitioning Schemes 80

3.4.3 Random-Only Abstractions . 85
3.5 Empirical Evaluation . 86

3.5.1 Setup . 87
3.5.2 Abstraction Sampling Algorithm Comparisons 90

3.5.2.1 Aggregated Results . 91
3.5.2.2 Representative Plots . 96

3.5.3 Abstraction Function Comparisons 98
3.5.3.1 Summary Comparison. 100
3.5.3.2 Results from 100 Samples with nAbs = 256. 102
3.5.3.3 Choice of Abstraction Granularity 103
3.5.3.4 Summary of Results. 106

3.6 Conclusion . 106

4 UFO: Underflow-Threshold Optimization 109
4.1 Introduction . 109
4.2 The General UFO Scheme . 110
4.3 UFO Variants . 112

4.3.1 UFO-GT: Global Threshold UFO . 112
4.3.2 UFO-RT: Relative-Threshold UFO 114
4.3.3 UFO-Sol: Solutions-based UFO . 115
4.3.4 UFO as an Anytime Scheme . 116

4.4 Empirical Evaluation of AOBB-UFO . 118
4.4.1 Setup . 119
4.4.2 Results . 121

4.5 Conclusion . 124

iv

5 AND/OR Search-Based Computational Protein Design 126
5.1 Introduction . 126
5.2 Background . 129

5.2.1 Suitable Objective Functions . 132
5.2.1.1 The GMEC Objective . 132
5.2.1.2 The K* Objective . 134

5.3 Graphical Model for K*MAP . 136
5.3.1 Formulation 1 (F1) . 137
5.3.2 Formulation 2 (F2) . 139
5.3.3 Resulting Pseudo Tree . 141
5.3.4 Subunit-Stability Thresholds . 142

5.4 wMBE-K* . 143
5.4.1 Domain-Partitioned MBE . 145

5.5 AOBB-K* . 146
5.5.1 Weighted Search for K* . 148

5.6 Boosting AOBB-K* . 149
5.6.1 Boosted wMBE-K* . 149
5.6.2 Tuning search . 151

5.7 Weighted Search . 151
5.8 Dynamic Heuristics . 152
5.9 Incorporating UFO . 154
5.10 Empirical Evaluation . 156

5.10.1 Experimental methodology . 156
5.10.2 Results . 157
5.10.3 Summary of Results . 164

5.11 Conclusion . 165

6 Conclusion 167
6.1 Summary . 167
6.2 Future Directions . 169

Bibliography 171

v

LIST OF FIGURES

Page

2.1 Running example primal graph. 10
2.2 Running example pseudo tree . 11
2.3 Example graph and associated bucket elimination process 16
2.4 Running example: OR search space . 23
2.5 Conditional independence in the OR search space 25
2.6 Running example: AND/OR search space 26
2.7 Representing partial and full configurations in an AND/OR tree 27
2.8 AND/OR search example . 28
2.9 OR search space expressed as an AND/OR space 30
2.10 AND/OR search tree notation illustrated . 32

3.1 Abstraction Sampling motivating example 42
3.2 Abstraction Sampling motivating example probe 42
3.3 Example of Abstraction Sampling probes . 46
3.4 Example AND/OR search tree and probes 57
3.5 Sample trace of AOAS . 58
3.6 Partially expanded AND/OR tree . 60
3.7 Invalid Abstraction Sampling sub-tree . 72
3.8 Proper abstraction grouping . 72
3.9 Proper abstraction probe . 73
3.10 Contrasting scalability . 75
3.11 Aggregated statistics . 92
3.12 Representative LARGE benchmark problems 97
3.13 Summary Comparison . 100
3.14 100-Sample Comparison . 102
3.15 Varying nAbs . 104
3.16 Plot varying nAbs for minVarQB . 104
3.17 Plot varying nAbs for equalDistQB4 . 105
3.18 Performance Matrix . 106

4.1 AOBB-UFO on UAI 2022 Competition Final Problems (3600s) 122
4.2 AOBB-UFO on UAI 2022 Competition Final Problems (cont’d) 123

5.1 Example protein subunit interaction schematic. 137
5.2 Illustration of CPD Formulation F1. 137
5.3 Illustration of CPD Formulation F2. 139
5.4 F2 graph with arcs and nodes labeled. 141
5.5 Schematic of resulting pseudo tree for CPD formulated as F1 or F2. 142

vi

LIST OF TABLES

Page

3.1 Exact Benchmark Statistics . 88
3.2 LARGE Benchmark Statistics . 89
3.3 Comparing AOAS and DIS estimates . 95

vii

List of Algorithms

Page

1 wMBE for Summation . 21
2 wMBE-MMAP . 22
3 ORAS . 45
4 AOAS . 54
5 ΨsimpleVB . 80
6 Ward’s Method . 82
7 ΨequalDistVB . 83
8 ΨrandVB . 85
9 ΨsimpleRand . 86
10 UFO-GT . 113
11 UFO-RT . 115
12 UFO-Sol . 115
13 UFO-GT+AI . 117
14 wMBE-K* . 144
15 AOBB-K* . 146
16 AOBB-K*-DH . 153
17 AOBB-K*-UFO . 155

viii

ACKNOWLEDGMENTS

First and foremost, I want to express my heartfelt thank you to Professor Rina Dechter.
Thank you for being such a great advisor and always kindly and patiently, yet sternly,
pushing me to grow. Thank you for recognizing my strengths and helping me improve on
my weaknesses, both in computer science and as a person. Your kindness, passion for your
work, and commitment —- including working late into the night ... many nights -— have
been deeply inspiring. We often joke that we hope to have as much passion for our careers
as you do for yours. I’m especially grateful for how involved you’ve been in me and all of
your students, and for always providing us genuine feedback. Your dedication, heart, and
wisdom have left a permanent mark on me.

I’m also deeply grateful to Professor Alexander Ihler. Thank you for patiently supporting
me while offering your unique and intuitive insights to complex concepts. You have a special
way of breaking things down that makes them more understandable (despite the fact that
it takes me a few tries to get it – thank you for being patient with me!) You’re always
encouraging the explorative side of my mind and expanding my motivation in meaningful
directions. Your dedication, support, and helpful advice have meant a lot to me throughout
this journey. I especially appreciate all the time you took out of your busy schedule to meet
with me in person; it truly means a lot to me.

I want to extend a special thank you to Junkyu Lee, for all your incredible support and
dedication. You’re always willing to help, always putting more on your shoulders to help
the rest of us. I’m amazed by how fast you respond to emails no matter what time it
is. Sometimes I wonder if you ever sleep! I’ll never forget the fun memories of taking the
generative models class together grinding on that last project together. I especially admire
how you manage to balance all your work while being a wonderful husband and dad. I am
forever grateful to you.

Another special thank you is to Filjor Broka. Thank you for believing that I can transfer my
personality and passion into my work and the hours you stayed late to explain concepts to
me. I’ll never forget the one time we spent hours on the white board discussing concepts of
probability, both from a mathematical and philosophical perspective. It really highlighted
your spirit and love. I’ll miss our chats.

I want to express so much gratitude to Radu Marinescu for working with me when I was still
learning the ropes. I can’t not say this: your code is written so clearly and organized so well!
I truly appreciate your willingness to join Zoom meetings late nights to guide me through
complex topics and making sure I was ok moving forward. Your positive and encouraging
attitude has always been energizing and motivating.

Special thanks to Professor Kalev Kask for guiding me on my academic journey and helping
me transition into my first research project with Abstraction Sampling. You were my first
AI instructor, and your class ignited my passion for AI and reinforced it for teaching. Your
insights and willingness to explain complex concepts has been so helpful. Thank you for

ix

your mentorship, both for specific research projects and for supporting my development as
a PhD student and future instructor.

I want to give a big thank you to Professor Erik Sudderth for being part of my defense
committee and also as a pillar of the AI/ML group. You’re always around to help and
answer questions, whether it’s supporting the department, AI group, or running seminars.
Also your Learning in Graphical Models class was one of the best classes that I’ve taken. I
also want to thank Professor Sameer Singh for always having your door open and constantly
working to improve our department. The PhD students see you as a warm and friendly
father figure thanks to your care for us.

I would like to acknowledge my partners (in crime?) in the lab, Nicholas Cohen and Annie
Raichev. Thank you Nick for always pushing our group to work together more. You paved
the way for our lunches, walks, and talks (research, philosophical, and otherwise), and always
have such interesting insights. I look forward to many more sessions to come! Thank you
Annie for being the burst of energy in our group. We can always expect to get a text from
you before long, and it’ll always have cat pics included. PS. I really admire the way you
give talks. You’re so good at breaking things down, showing examples, and just having good
flow. Inspiring.

Thank you, Rodrigo de Salvo Braz. Working with you two summers on symbolic probabilistic
languages at SRI was such a memorable experience. I was always so excited to work on our
project, and to come and discuss with you. Your calm and peaceful demeanor is so enjoyable
and motivating. There is a complex care I feel from you towards people? the world? that
is touching and inspiring. I really appreciate your mentorship and providing me my first
glimpse of insight into industry research. You made each day a learning experience.

Thank you, Shufeng Kong, Yasaman Razeghi, Jiapeng Zhao, and Sakshi Agarwal. You were
all so motivating and I truly valued the opportunity to interact with each of you. Our
discussions, even in the short time we had, were enjoyable and enriching. Yasaman, thank
you for pushing me to build confidence. Sakshi, thank you for your endless amount of happy
energy. Shufeng, thank you for the many late nights at DBH and words of wisdom as I
started my PhD. I hope that we can stay in touch. (And Jiapeng, I look forward to working
with you more in the Fall!)

I also want to acknowledge the professors who have offered enriching courses that I’ve taken.
In addition to the myriad of AI courses taught by Professors Dechter, Ihler, Sudderth,
and Kask, the courses by Professor Padhraic Smyth for Probabilistic Learning, Professor
Stephen Mandt for Deep Generative Models, Professor Weining Shen for Statistics, and Pro-
fessor Michael Dillencourt for Algorithms have been amazing. Your teachings have brought
excitement to my eductaion and have been fundamental in shaping my understanding and
skills in these areas.

Thank you to the professors whom I’ve TA’ed for and/or have helped me evolve instruc-
tionally: Professors Jennifer Wong-Ma, Raymond Klefstad, Bob Pelayo. Thank you also to

x

Professor Xiohui Xie for being part of my advancement committee.

I would like to acknowledge Bruce Donald and the members of his lab, as well as Thomas
Schiex and his group from the INRAE Centre, for their crucial role in jump-starting the
research on computational protein design.

To department staff – Kris, Naima, Mariko, Lumen, Majde, and many others! – thank you
for your support with logistics, paperwork, and various other tasks. We would all be in
shambles without your help.

Thank you the OIT Helpdesk for managing our computer cluster and always responding
immediately to aid requests. Your fast responses – sometimes even outside of normal hours!
– have been such a great help.

I would like to thank everyone in my cohort for experiencing parts of this journey with me
– Claudio, Kyu-Seon, Wonnie, Madina, Gabe, John, Akshay, AK, Nile, and Siwei. I look
forward to our next reunion. And to my late-night DBH study group – Ethel, Andrew, and
Momoko – thank you for all our late night (early morning?) study sessions.

Finally, I would like to extend my heartfelt thanks to my family and friends for being in my
life throughout all of its colors.

To Stephen, who is always checking in on me and making sure our group from high school
stays connected, you have a dear and permanent place in my heart. To Michael and Jerry,
thank you for making sure I did not go through these many years alone. Your visits, our
video chats, and your votes of confidence helped keep me grounded. Thank you, Debbie
Jih, for spending so many of your hours to keep me company through my work this heavy
summer. Your love, kindness, and positivity brightens my day.

To my mom, Mehrnaz Dadgar, you are the number one inspiration for whom I strive to be.
Its amazing that I grew up with my deepest best friend and only realized it until I got older.
I just hope you know how much you mean to me, and how much of you I am. Or at least
that I hope to be. Your endless love, and care of others, has been a guiding light in my life.

I am also deeply grateful to my dad and mom, Ardeshir and Shirin, my siblings, Amir,
Payam, Natasha, and Kristina, and to my niece and nephews, Kayden, Roman, Jackson
and Sienna, for their endless love and support. Thank you for pulling me out of my PhD
den from time to time, reminding me of the rest of life. You are always checking in on me,
supporting me to succeed (in your own ways ;), and I look up to each and every one of you.
I look forward to our future together as we continue to grow as a peaceful loving family.

To end, I would like to express sincere thanks for the funding sources that made my graduate
studies possible, including NSF grants IIS-2008516 and CNS-2321786, as well as travel funds
from the Department of Computer Science.

xi

CURRICULUM VITAE

Bobak Pezeshki

EDUCATION

Doctor of Philosophy in Computer Science 2024
University of California, Irvine Irvine, California

Master of Science in Computer Science 2022
University of California, Irvine Irvine, California

Department of Computer Information Systems 2017
De Anza College Cupertino, California

Bachelor of Science in Molecular and Cell Biology,
and Integrative Biology 2007
University of California, Berkeley Berkeley, California

ACADEMIC RESEARCH EXPERIENCE

Graduate Research Assistant 2017 – Present
University of California, Irvine Irvine, California

Research Assistant 2007 – 2008
University of California, San Francisco San Francisco, California

TEACHING EXPERIENCE

Teaching Assistant 2017 – Present
University of California, Irvine Irvine, California

AP Chemistry and Physics Teacher 2010 – 2016
Skyline High School Oakland, California

Chemistry-P Instructor 2006 – 2007
Summer Bridge Program, University of California, Berkeley Berkeley, California

Chemistry Study-Group Instructor 2002 – 2006
Student Learning Center, University of California, Berkeley Berkeley, California

xii

PROFESSIONAL RESEARCH EXPERIENCE

Symbolic Probabilistic Systems Intern 2018, 2019
Stanford Research Institute (SRI) International Menlo Park, California

Research Assistant 2009
Novartis Institutes for Biomedical Research Emeryville, California

PUBLICATIONS

Bobak Pezeshki, Kalev Kask, Alexander Ihler, and Rina Dechter. Value-based abstrac-
tion functions for abstraction sampling. In Proceedings of the Fortieth Conference on
Uncertainty in Artificial Intelligence (UAI), to appear in Proceedings of Machine Learning
Research (PMLR). PMLR, 2024.

Bobak Pezeshki, Radu Marinescu, Alexander Ihler, and Rina Dechter. Boosting
AND/OR-based computational protein design: dynamic heuristics and gen-
eralizable UFO. In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artifi-
cial Intelligence (UAI), volume 216 of Proceedings of Machine Learning Research (PMLR),
pages 1662–1672. PMLR, 2023.

Bobak Pezeshki, Radu Marinescu, Alexander Ihler, and Rina Dechter. AND/OR branch-
and-bound for computational protein design optimizing K*. In Proceedings of the
Thirty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI), volume 180 of
Proceedings of Machine Learning Research (PMLR), pages 1602–1612. PMLR, 2022.

Kalev Kask, Bobak Pezeshki, Filjor Broka, Alexander Ihler, and Rina Dechter. Scaling
up AND/OR abstraction sampling. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence (IJCAI), pages 4266–4274. International Joint
Conferences on Artificial Intelligence Organization, 2020.

Franz Gruswitz, Sarika Chaudhary, Joseph D Ho, Avner Schlessinger, Bobak Pezeshki, Chi-
Min Ho, Andrej Sali, Connie M Westhoff, and Robert M Stroud. Function of human rh
based on structure of rhcg at 2.1 Å. Proceedings of the National Academy of Sciences
of the United States of America (PNAS), 107(21):9638–43, May 25 2010. PMC2906887.

xiii

WORKSHOP PRESENTATIONS

Bobak Pezeshki, Radu Marinescu, Alexander Ihler, and Rina Dechter. Boosting
AND/OR-based computational protein design: dynamic heuristics and general-
izable UFO. In Workshop on Tractable Probabilistic Modeling (TPM) at the Thirty-Ninth
Conference on Uncertainty in Artificial Intelligence, 2023.

Bobak Pezeshki, Radu Marinescu, Alexander Ihler, and Rina Dechter. AND/OR branch-
and-bound for computational protein design optimizing K*. In Workshop on
Tractable Probabilistic Modeling (TPM) at the Thirty-Eighth Conference on Uncertainty in
Artificial Intelligence, 2022. Best paper award .

Bobak Pezeshki, Radu Marinescu, Alexander Ihler, and Rina Dechter. AND/OR branch-
and-bound for computational protein design optimizing K*. In Workshop on AI
to Accelerate Science and Engineering (AI2ASE) at the Thirty-Sixth AAAI Conference on
Artificial Intelligence, 2022.

xiv

ABSTRACT OF THE DISSERTATION

Advancing AND/OR Abstraction Sampling
and

AND/OR Search-Based Computational Protein Design

By

Bobak Pezeshki

Doctor of Philosophy in Computer Science

University of California, Irvine, 2024

Prof. Rina Dechter, Co-Chair
Prof. Alexander Ihler, Co-Chair

Graphical models are a powerful framework for efficiently representing and reasoning about

complex systems. They can be used to answer probabilistic queries, facilitate planning, and

enable automated design across various fields including in business, medicine, and physics.

Reasoning within graphical models typically involves optimization tasks, like finding the

most probable configuration, or summation tasks, like computing beliefs over variables, or a

combination of both, such as Marginal MAP where we maximize over a subset of variables

while summing over the rest. These tasks are computationally challenging, requiring the use

of approximation algorithms typically implemented through search, sampling, or variational

inference techniques.

This dissertation presents advances in graphical model schemes in two main directions:

Several advancements to a recently developed Monte Carlo sampling method called Abstrac-

tion Sampling are presented. Abstraction Sampling is an unbiased stratified importance

sampling-like scheme that leverages abstractions (similar to stratification) to solve summa-

xv

tion queries such as determining beliefs about random variables or calculating the probability

of evidence. This dissertation presents AOAS, an Abstraction Sampling algorithm tailored for

compact AND/OR search spaces, explores a diverse range of abstraction functions, provides

a theoretical analysis of the properties of Abstraction Sampling, and conducts an extensive

empirical evaluation demonstrating Abstraction Sampling’s superior performance compared

to well-known methods including Importance Sampling, Weighted Mini-Bucket Importance

Sampling, IJGP-SampleSearch, and Dynamic Importance Sampling.

Also presented is more applied research adapting graphical model frameworks for Compu-

tational Protein Design, specifically focusing on the automated redesign of proteins. This

redesign is formulated as an optimization problem to maximize K*, an approximation of

binding affinity. Included are two novel formulations of this task within a graphical model

framework, as well as introduction of wMBE-K*, a message-passing scheme based on weighted

Mini-Bucket Elimination for estimating and bounding K*. Additionally, a range of algo-

rithms derived from adapting Marginal MAP algorithms on AND/OR search spaces to ad-

dress the protein redesign problem is presented. Results, demonstrated on real protein

benchmarks, show superior performance compared to the state-of-the-art algorithm BBK*

for small and medium-sized problems. Finally, a technique for infusing determinism into

graphical models that emerged from this work, which significantly speeds up inference, is

presented.

xvi

Chapter 1

Introduction

Graphical models provide a robust framework for efficiently representing and reasoning about

complex systems. They are used within a wide variety of fields ranging from business, to

autonomous transportation, robotics, medicine, biology, chemistry, physics, and many more.

Graphical models are used to answer probabilistic queries such as to evaluate the probability

of an unusual event, for recognition and labeling of media such as annotating medical images,

in planning for example to map out robotic movements, to enable automated design such as

the creation of new molecules, and to infer about causal influences and the effects of inter-

ventions. Reasoning within graphical models often involves solving optimization problems

such as finding the most probable assignment to a set of variables, or performing summation

tasks such as computing “beliefs,” or posterior probabilities, over variables given observa-

tions. Sometimes, tasks may involve combining both approaches, so that we maximize over

a subset of variables while marginalizing (summing over) the remainder. These tasks can

be computationally demanding in large models and often require approximation algorithms,

which are usually implemented through search, sampling, or variational inference methods.

In the spirit of advancing graphical models research, this dissertation provides new graphical

model frameworks and algorithms for both general and domain-specific tasks.

We begin in Chapter 2 by providing some background on graphical models, reviewing com-

mon inference tasks for which they are typically used, and discuss paradigms for solving these

1

tasks. Then in Chapter 3, we explore a recently introduced Monte Carlo stratified impor-

tance sampling-like method called Abstraction Sampling for answering summation tasks over

graphical models. We analyze Abstraction Sampling’s theoretical properties, introduce sev-

eral powerful extensions, and demonstrate evidence of its compelling performance through

an extensive experimental evaluation. Next, Chapter 4 describes, analyzes, and demon-

strates the potential of a new framework called Underflow-threshold Optimization (UFO)

for infusing artificial determinism into models. We show the potential of the UFO frame-

work for empowering graphical model algorithms to take advantage of constraint processing

to increase their efficiency, analyzing its properties and demonstrating its effectiveness in

experiments comparing to state-of-the-art solvers. Finally, in Chapter 5 we focus on the

applied task of computational protein design, providing a graphical model framework and

accompanying algorithms for protein redesign to improve binding affinity. We demonstrate

our methods’ performance experimentally over real protein benchmarks.

We outline some of the novel contributions included in this dissertation, organized by chapter:

Chapter 3: Advancing Abstraction Sampling Contributions:

1. Based on work from Broka et al. [2018], we introduce algorithm ORAS for perform-

ing Abstraction Sampling on classical OR state space search trees.

2. Based on work from Broka et al. [2018], we give a theoretical analysis on OR

Abstraction Sampling properties, including variance reduction conditions and a

proof of unbiasedness of ORAS.

3. We propose a new Abstraction Sampling algorithm, AOAS, designed for compact

AND/OR search spaces. By freeing AOAS from upholding a restrictive property

known as “properness”, our new scheme significantly enhances the scalability and

performance of Abstraction Sampling for AND/OR spaces.

4. We give theoretical analysis on AND/OR Abstraction Sampling properties, in-

2

cluding variance reduction conditions and a proof of unbiasedness that lifts the

“properness” restriction.

5. We propose three classes of abstraction functions that guide Abstraction Sam-

pling’s stratification process. The first, based on work from Broka et al. [2018],

uses a graph notion of “context”; a second is based on partitioning nodes based on

positive real number values associated with them; and lastly a purely randomized

abstraction scheme is introduced. Overall, over twenty-four distinct abstraction

functions were tested, each with the ability to vary granularity of their abstrac-

tions.

6. We perform an extensive empirical evaluation on over 400 problems from five well

known summation benchmarks, comparing our Abstraction Sampling frameworks

against each other and to competing schemes. Our experiments illustrate the

properties of Abstraction Sampling, its strength at estimating summation queries,

and allow us to illuminate a few particularly powerful Abstraction Sampling set-

ups.

Chapter 4: UFO: Underflow-Threshold Optimization Contributions:

1. We propose a new scheme called UFO for infusing artificial determinism into graph-

ical models, which empowers graphical model algorithms to exploit constraint

processing for increased efficiency, for example by early pruning of inconsistent

branches within a search algorithm.

2. We derive theoretical properties of introducing such artificial determinism, includ-

ing boundedness for common graphical model tasks and tractable bounds on the

error for the well known MMAP task.

3. We evaluate UFO performance with a vanilla AND/OR branch-and-bound algo-

rithm empowered with constraint propagation on 100 problems used in the 2022

UAI Inference Competition. We compare the performance of UFO to the six

3

solvers used in the original competition, highlighting the UFO method’s poten-

tial.

Chapter 5: AND/OR Search-Based Computational Protein Design Contribu-

tions:

1. We give two formulations of the protein redesign problem as a graphical model

applied to the inference task of optimizing an objective called K*, which acts as

an approximation to the protein’s binding affinity.

2. We propose wMBE-K*, an adaptation of Weighted Mini-Bucket Elimination for use

in bounding K*. The method bounds the maximum K*, but in addition (and

more importantly) can be used to efficiently generate heuristics for search over

AND/OR search spaces.

3. We develop an array of AOBB-K* algorithms – specifically, anytime depth-first

branch-and-bound algorithms over AND/OR search spaces for protein redesign

maximizing K*. Variants include augmentation with weighted heuristic search,

the use of dynamic heuristics, and incorporating the UFO technique.

4. We provide empirical analysis on real protein benchmarks, comparing our schemes

to the state-of-the-art algorithm BBK* [Ojewole et al., 2018], which is used as part

of a long-standing computational protein design software called OSPREY [Hallen

et al., 2018]. Our methods show strong performance in our comparisons.

In Chapter 6, we conclude the thesis, highlighting some potential extensions of the thesis’

research topics as possible directions for future work.

4

Chapter 2

Background

2.1 Probabilistic Graphical Models

Graphical Models, such as Bayesian or Markov networks [Pearl, 1988, Darwiche, 2009,

Dechter, 2013], are mathematical tools for modeling complex systems, each composed of

a set of variables with defined domains and functions defined over subsets of the variables.

The functions capture local dependencies of the subset of variables over which they are de-

fined, known as the function’s scope. The functions of a graphical model often represent a

factorization of a global function over all the variables. An assignment to all of the variables

(referred to as a full configuration) represents a possible state of the modeled system.

Graphical models are constructed not only to model a system, but also to provide a means

of efficiently answering specific queries of interest via exploitation of the model’s structure.

Some common computational tasks are:

• determination of the partition function: a normalization constant necessary for com-

puting probabilistic quantities.

• determination of the MAP (maximum a posteriori): the most probable full con-

figuration of the model, sometimes given a partial configuration (assignments to a

5

subset of the variables) known as observations or evidence.

• determination of theMMAP (marginal maximum a posteriori) configuration: the

configuration of a target subset of variables that maximizes their marginal likelihood,

i.e., the probability of the configuration after summing over any variables that are not

in the target subset.

More details about common graphical model queries are provided in Section 2.2: Common

Graphical Model Queries.

2.1.1 Discrete Graphical Models

In this thesis, we mainly consider models defined over a discrete space. A discrete graphical

model can be defined as a 3-tupleM=⟨X,D,F ⟩, where:

• X is the set of variables over which the model is defined.

• D={DX : X∈X} is a set of finite domains, one for each X ∈ X, defining the possible

values each X can be assigned.

• Each fα ∈ F (sometimes denoted f ∈ F for simplicity) is a real-valued function

defined over a subset of the model’s variables α ⊆ X, known as the function’s scope,

for which the function defines local interactions. More concretely, if we let Dα denote

the Cartesian product of the domains of the variables in α, then fα : Dα→ R≥0. These

functions can be expressed as tables for which there is a non-negative real valued output

associated with every possible input dα ∈ Dα (i.e., every possible joint assignment –

or configuration – to all of the variables in α).

6

2.1.2 Notation

We use capital letters (X) to represent variables and lowercase letters (x) to represent their

values. Boldfaced capital letters (X) denote a collection of variables, |X| its cardinality, DX

their joint domains, and x a particular realization in that joint domain. Abusing notation

slightly, we denote operations on sets of variables
⊕

X (for example, summation
∑

X) to

indicate,

⊕
X

f(X) =
⊕
x∈DX

f(x)

=
⊕

x1∈DX1

⊕
x2∈DX2

...
⊕

x|X|∈DX|X|

f(x1, x2, . . . , x|X|)
(2.1)

Furthermore, given a function fα with scope α, a super-set of variables β s.t. α ⊆ β, a

particular configuration b of β, we define

fα(b) := fα(bα), (2.2)

where bα is the restriction of the assignments in b to those variables that are in set α.

Many of the algorithms we describe in the sequel operate sequentially along an ordering o

over the variables. Different types of orderings may be useful for different types of algorithms,

and are discussed further in the relevant sections. We say that j >o i if i comes earlier than

j in the ordering o.

A Simple Running Example. Consider a simple model that relates temperature and hu-

midity to the chance of rain, and temperature and elevation to the chance of oxygen levels.

We select binary variables X = {T,H,R,E,O} to represent these different levels and con-

struct a corresponding graphical modelM=⟨X,D,F ⟩ where:

7

• T has domain DT = {high, low} representing high and low temperature

• H has domain DH = {high, low} representing high and low humidity

• R has domain DR = {yes, no} representing the presence or absence of rain

• E has domain DE = {high, low} representing the high or low elevation

• O has domain DO = {high, low} representing the high or low oxygen levels.

Our model has five functions:

• fT (T) representing the probability of the temperature being high or low, p(T),

• fH(H) representing the probability of the humidity being high or low, p(H),

• fE(E) representing the probability of the elevation being high or low, p(E),

• fT,H,R(T,H,R) representing the conditional probability of rain given levels of humidity

and temperature, p(R |T,H),

• fT,E,O(T,E,O) representing the conditional probability of high vs. low oxygen concen-

trations given the temperature and elevation levels, p(O |T,E).

These functions are defined by the following tables, respectively:

T p(T)

high 0.40

low 0.60

H p(H)

high 0.25

low 0.75

E p(E)

high 0.20

low 0.80

8

T H R p(R |T,H)

high high yes 0.40

high high no 0.60

high low yes 0.05

high low no 0.95

low high yes 0.80

low high no 0.20

low low yes 0.10

low low no 0.90

T E O p(O |T,E)

high high high 0.20

high high low 0.80

high low high 0.40

high low low 0.60

low high high 0.25

low high low 0.75

low low high 0.70

low low low 0.30

and we make independence assumptions that allow the joint distribution P (T,H,R,E,O)

to factorize into the defined probability functions, i.e.,

p(T,H,E,R,O) = p(T) · p(H |T) · p(E |T,H) · p(R |T,H,E) · p(O |T,H,E,R)

= p(T) · p(H) · p(E) · p(R |T,H) · p(O |T,E) (due to independence assumptions)

= fT (T) · fH(H) · fE(E) · fT,H,R(T,H,R) · fT,E,O(T,E,O)

=
∏
fα∈F

fα(α) (2.3)

A possible ordering over these variables is o = (T,H,R,E,O), in which case (for example),

we see that R >o H.

2.1.3 Primal Graph

A primal graph G= ⟨X,E⟩ of a graphical modelM is a graph consisting of set of nodes,

each of which is uniquely associated with a variable of M, along with a set of undirected

edges e∈E that connect nodes whose variables both appear in the scope of the same local

function. To simplify, we abuse notation by using the same symbols to refer to both the

9

primal graph nodes and to their corresponding variables in M. (For those familiar, the

primal graph corresponds to the Markov Random Field graph representation of the model).

The primal graph is a useful tool that enables graphical model algorithms to exploit the

model’s local structure.

Running Example. Our running example model has the primal graph:

H T

R O

E

Figure 2.1: Running example primal graph.

We see that the primal graph consists of nodes corresponding to each variable, T , H, R, E

and O, and has edges between each pair of {T,H,R} since each pair appears together in at

least one function fα ∈ F, and similarly has edges between each pair of {T,E,O}. Variables

that do not appear in the same functions (e.g., E and H) are not directly connected.

2.1.4 Pseudo Trees

We can also construct a directed tree, called a pseudo tree T =(VT ,ET), relative to our

graphical modelM. Like the primal graph, the nodes of the pseudo tree correspond to each

variable inM, plus an additional “dummy root” node ∅, and we again abuse notation by

using the same symbols to refer to the pseudo tree nodes as to their corresponding variables.

Definition 2.1 (pseudo tree)

A pseudo tree of an undirected graph G = (V,E) is a directed rooted tree T = (V ∪{∅}, ET)

such that every arc of G not present in ET is a “back-arc” in T . (The edges in ET are not

required to be elements of E).

10

T

O

EH

R

Figure 2.2: An example pseudo tree for the model described in Section ??: ?? based on
ordering T,H,R,E,O. Here the dummy root node is explicitly shown, however it is typically
hidden for simplicity.

Furthermore, we say a pseudo tree is consistent with a variable order o if the following holds:

Definition 2.2 (pseudo tree variable ordering)

A pseudo tree T = (V ∪ {∅}, ET) of an undirected graph G = (V,E) is said to be consistent

with order o if every directed edge (i→ j) ∈ ET has j >o i in ordering o, and

j >o i and (i, j) ∈ E \ ET ⇒ i ∈ ancT (j),

connecting node j in T to one of its ancestors i in T .

We define Xi >o ∅ for all i, i.e., the dummy root node always comes first in a consistent

ordering for a pseudo tree.

In other words, the topological structure of the pseudo tree should respect the ordering o, so

that all descendants of a node in the tree should come after it in o. It should also respect the

structure ofG: the back-arc condition ensures that any branching in the pseudo tree indicates

a conditional independence relationship visible in the original graph: any dependence (edge)

(i, j) in G must connect back to an ancestor of j, and cannot connect “across” to a different

branch of the tree.

11

2.2 Common Graphical Model Queries

There are a plethora of inference queries that can be answered using the graphical model

framework. In the context of our work in computational protein re-design, we describe three

common and related tasks in particular: finding the maximum a posteriori (MAP) estimate;

determining the partition function, or normalizing constant of the model, denoted Z; and

the marginal maximum a posteriori (MMAP) estimate, which can be viewed as generalizing

the other tasks.

Definition 2.3 (Basic inference tasks)

Given a graphical modelM=(X,D,F), we define the computational tasks:

Maximum a posteriori value: MAP = max
X

∏
F

f(x); (2.4)

Partition function: Z =
∑
X

∏
F

f(x); (2.5)

Marginal MAP value: MMAP = max
Q⊂X

∑
S=X\Q

∏
F

f(q ∪ s) (2.6)

MAP finds the full configuration that maximizes the value of the model and returns the com-

puted value of that configuration. From a probabilistic model standpoint, this corresponds to

finding the assignment to the variables that are most likely under the model. Given evidence

(i.e., a given assignment to a subset of the variables), the MAP task corresponds to finding

the assignment to the rest of the variables that makes the evidence most likely to occur.

The partition function, Z, is mathematical quantity that characterizes the distribution of

the model’s values among a system’s possible configurations x. It is often used as a nor-

malization constant for interpreting the model values as (posterior) probabilities. MMAP

is similar to MAP with the exception that we attempt to maximize over only a subset of

12

variables, called the “query” variables Q, assigning each partial configuration a value equal

to the sum over all configurations of the remaining (“sum”) variables S; in a probabilistic

model, this value corresponds to the marginal probability of the query configuration.

2.3 Paradigms for Answering Queries

In this section, we will explore three methodologies for answering graphical model queries

and discuss several schemes that utilize these methodologies.

2.3.1 Elimination Methods

In this section we will discuss inference methods that are based on systematically processing

and removing (i.e., eliminating) variables of the model.

2.3.1.1 The Variable Elimination Framework

Many probabilistic graphical model queries can be solved by an inference framework known

as variable elimination (VE). Variable elimination involves an ordered computational

processing of the variables of a model, at each step removing the processed variable from

further computations (thus called an elimination step). Each elimination step corresponds

to inference, transferring the influence of information about the eliminated variables over

to the remaining variables (in practice, done by creating a new function, defined over the

remaining variables, to represent this information).

As an example, consider the query to find the mode of the distribution defined by our running

example. Formalizing this query, we want to solve the task:

max
t,h,e,r,o

p(t, h, e, r, o) (2.7)

13

which, based on Equations 2.3, in terms of our model is equivalent to

max
t,h,e,r,o

p(t, h, e, r, o) = max
t,h,e,r,o

(fT (t) · fH(h) · fE(e) · fT,H,R(t, h, r) · fT,E,O(t, e, o)) (2.8)

To use variable elimination to solve this query, we first select an elimination order –

a variable order in which to process and eliminate variables during variable elimination

inference. Suppose we select elimination order oelim = [r, o, e, h, t]. Then, given this ordering,

we express our query as

max
t

(max
h

(max
e

(max
o

(max
r

(fT (t) · fH(h) · fE(e) · fT,H,R(t, h, r) · fT,E,O(t, e, o))))))

(2.9)

where the query can then be solved inside-to-out, variable-by-variable, via computations

indicated by the parenthesis. The result from each step can be interpreted as the inference

performed over its corresponding variable.

One power of variable elimination is its ability to simplify computation leveraging mathe-

matical properties of the query. Note that in our example some of the model’s functions are

not dependent on the variable being immediately maximized over and so can be factored

out of the respective maximization. Doing so recursively, we can rewrite our query with the

same ordering instead as

max
t

(fT (t) ·max
e

(fE(e) ·max
o

(fT,E,O(t, e, o))) ·max
h

(fH(h) ·max
r

(fT,H,R(t, h, r))))

(2.10)

which reduces the size of the functions being maximized over, thus reducing complexity of

the computations. (More on this shortly).

14

2.3.1.2 Bucket Elimination

Bucket Elimination [Dechter, 1999], or BE, is a variable elimination scheme that can be

adapted for a myriad of graphical model tasks including those described in Section 2.2: Com-

mon Graphical Model Queries.

Bucket elimination performs variable elimination according to a given elimination order

by processing what are called buckets one-by-one, each corresponding to a variable in the

provided ordering. When reaching some variableXi in the ordering, all unprocessed functions

that contain Xi in their scope are placed in bucket Bi (this includes the model’s original

functions as well as messages generated during the bucket elimination process). The bucket

is then processed by applying an elimination operation (generically indicated by
⊕

) over

Xi to the combination of the bucket functions (generically indicated by
⊗

), resulting in a

bucket message denoted λi→j, or λi for short:

λi→j =
⊕
Xi

⊗
fα∈Bi

fα(α). (2.11)

More concretely, for the inference task of computing the partition function, this corresponds

to marginalizing Xi from the product of the functions,

λi→j =
∑
Xi

∏
fα∈Bi

fα(α); (2.12)

in the context of computing the MAP, we instead maximize the product of the functions

over Xi:

λi→j = max
Xi

∏
fα∈Bi

fα(α). (2.13)

The index i in λi→j refers to the bucket that generated the message, while j indicates the

bucket this message is sent to – specifically, the next variable in the elimination ordering

15

A" B"

C"D"

E"

F"

G"

(a) Example primal graph
of a graphical model with 7
variables and model functions
F = {fA(A), fA,B(A,B),
fA,D(A,D), fA,G(A,G),
fB,C(B,C), fB,D(B,D),
fB,E(B,E), fB,F (B,F),
fC,D(C,D), fC,E(C,E),
fF,G(F,G)}.

(b) Bucket elimination schematic following an elimination
order oelim = [D,E,G,C, F,B,A].

Figure 2.3: (a) A primal graph of a graphical model with 7 variables. (b) Illustration of
BE with an ordering A B C E D F G.

that is also in the scope of the message.

The processed buckets and messages can then be used to compute the result of the corre-

sponding query; in the case of computing the partition function or MAP, the result is simply

the combination of the final messages. Figure 2.3 shows a schematic of bucket elimination

on a graphical model with variables indexed from A to G and with pair-wise functions over

the pairs of variables that are connected by an edge in the underlying primal graph (Figure

2.3a), namely: F = {fA(A), fA,B(A,B), fA,D(A,D), fA,G(A,G), fB,C(B,C), fB,D(B,D),

fB,E(B,E), fB,F (B,F), fC,D(C,D), fC,E(C,E), fF,G(F,G)}.

Bucket elimination can be viewed as a message-passing procedure defined along the structure

of the bucket tree (Figure 2.3b). The nodes of the tree represent the different buckets. Each

bucket corresponds to a single variable, and contains a subset of the model’s functions, which

16

may depend on the chosen order of processing. There is an arc from bucket Bi to a “parent

bucket” Bj, if the function created at bucket Bi is placed in bucket Bj. Then, beginning

at the leaves, each bucket computes its message λi, and passes it to bucket Bi’s parent Bj;

once Bj has recieved all its children’s messages, it can compute its message λj.

In the context of optimization, bucket elimination is an example of the general framework of

dynamic programming, in which we solve large problems by first solving smaller subproblems

and saving their solutions, which can then be used efficiently when solving the larger problem.

Each bucket corresponds to a subproblem; by solving the subproblems at the leaves, we

simplify solving the optimization problem at their parents, and so on.

The complexity of bucket elimination depends on a quantity called a bucket width:

Definition 2.4 (bucket width)

The bucket width of a bucket B is equal to the number of variables involved in the functions

contained within a bucket prior to processing, |
⋃

fα∈B α|.

Complexity. Both the time and space complexity of bucket elimination are exponential

in the maximal bucket width, which is closely related to a graph parameter of the model

called the induced width [Dechter, 2019]. In particular, the induced width according

to a particular variable ordering is equal to the one less than the maximal bucket width

of Bucket Elimination operating on that same ordering. Given that Bucket Elimination

complexity is exponential in this width, Bucket Elimination becomes intractable for models

with high induced width, and thus approximation schemes have been developed in response

(see Section 2.3.1.4).

17

2.3.1.3 Induced Width

The time and space complexity of computing the message λi from a given bucket i depends on

the scope of the message: for discrete functions, λi is a table over all possible configurations

of its scope, and thus requires time and memory exponential in the size of the scope. In

general, the largest such scope dominates the computational complexity of the procedure,

which in turn depends on the elimination order being used; hence, this largest scope is

called the induced width of the ordering [Dechter, 2019]. Identifying the minimal width

over all possible elimination orderings can be framed as the graph-theoretic problem of

finding the tree-width of a primal graph G. While finding the tree-width of G is itself a

computationally difficult problem, there are many heuristic approaches for identifying good

elimination orderings that correspond to low induced widths [Dechter, 2019].

2.3.1.4 Mini-Bucket and Weighted Mini-Bucket Bounding Schemes

Bucket Elimination provides an efficient dynamic programming implementation of variable

elimination, but the processing of each bucket is still exponential in the number of variables

it contains. This makes Bucket Elimination computationally intractable for models with

high induced width.

Mini-Bucket Elimination [Dechter and Rish, 2002] addresses this via simple modification to

the Bucket Elimination scheme: whenever a bucket is encountered with width larger than

a provided i-bound (i.e., when the number of distinct variables in the bucket’s functions is

greater than the provided i-bound), the bucket is split into smaller mini-buckets. Consider

the computation of a bucket message by Bucket Elimination from a bucket processing variable

X to a next bucket Y

λX =
⊕
X

∏
fα∈BX

fα(α).

18

Let {B(1)
X , ..., B

(J)
X } be a particular partitioning of bucket BX so that no resulting Bj

X has

more than i variables. Then a processing according to this partitioning would yield

λ̂X =
∏

j∈1,...,J

⊕
X

∏
fα∈B(j)

X

fα(α).

When
⊕
∈ {max,min,

∑
}, the approximate result λ̂X provides a bound on the desired

bucket function λX – an upper bound for the max and sum operations, and a lower bound

for min. These bounds are called decomposition bounds since λ̂X is computed by break-

ing the bucket into several overlapping components, which are then treated independently

(“decomposed”).

Mini-Bucket elimination follows this intuition with one refinement: in the case of summation,

the algorithm uses
⊕

=
∑

for only one of the resulting mini-buckets, and uses
⊕

= max

for the rest. The decomposition upper bound still holds since

Proposition 2.1 (Decomposition bounds on summation)

For non-negative functions f ,

∑
X

f(x)g(x) ≤
∑
X

f(x) ·max
X

g(x) ≤
∑
X

f(x) ·
∑
X

g(x) (2.14)

and

∑
X

f(x)g(x) ≥
∑
X

f(x) ·min
X

g(x) (2.15)

which can yield tighter bounds. Furthermore, the above decomposition bounds allow for

a lower bounding of summations by mini-buckets by summing over one mini-bucket and

minimizing over the rest.

The Weighted Mini-Bucket Elimination scheme [Liu and Ihler, 2011b] improves on these

19

bounds further by leveraging Holder’s inequality [Hardy et al., 1988]:

Proposition 2.2 (Holder’s inequality)

Let the power sum of f(x) be defined as

w∑
x

f(x) =
(∑

x

f(x)
1
w

)w

(2.16)

Let fi(x), i = 1...r be a set of functions and w1, ..., wr be a set of positive weights, such that,

w =
∑r

i=1wi. Then,

w∑
x

r∏
i=1

fi(x) ≤
r∏

i=1

wi∑
x

fi(x) (2.17)

Using the notion from Holder’s inequality, we now define a power sum over a mini bucket

with the next two definitions:

Definition 2.5 (Consolidated Mini-Bucket Function)

Consider a mini-bucket B
(j)
X . We define its consolidated mini-bucket function as

f
B

(j)
X

:=
∏

f∈B(j)
X

f (2.18)

Definition 2.6 (Mini-Bucket Power Sum)

The power sum of a mini-bucket B
(t)
k is defined as

w∑
X

f
B

(j)
X

:=
(∑

X

(
f
B

(j)
X

) 1
w

)w

. (2.19)

In Weighted Mini-Bucket Elimination, when processing any bucket BX with width larger

than a provided i-bound (i.e., when the number of distinct variables in the bucket’s functions

is greater than the provided i-bound), a bounded approximation is made by partitioning the

bucket functions into J mini-buckets B
(j)
X and taking a power-sum over the bucket variable

20

in each. Algorithm 1 shows the Weigthed Mini-Bucket Elimination algorithm.

Algorithm 1: wMBE for Summation

Input: Graphical modelM; i-bound i;
elimination order oelim = [X1, ..., Xn]
Output: upper bound on Z: ubZ(M)

1 begin
2 Partition the functions f ∈ F into buckets B1, ..., Bn s.t. each function is placed in the bucket

corresponding to the lowest-index variable in its scope.
3 foreach k = 1...n do

4 Generate a mini-bucket partitioning of the bucket functions MBk = {MB
(1)
k , ...,MB

(T)
k } s.t.

|scope(f
MB

(t)
k

)| ≤ i, for all MB
(t)
k ∈MBk

5 if Xk ∈MAP then

6 foreach MB
(t)
k ∈MBk do

7 λ
(t)
k ← maxXk

f
MB

(t)
k

8 end

9 else
10 Select positive weights w = {w1, ..., wT } s.t.

∑
wt∈w wt = 1

11 foreach MB
(t)
k ∈MBk do

12 λ
(t)
k ←

∑wt

Xk
f
MB

(t)
k

13 end

14 end
15 Add each λt

k to the bucket of the lowest-index variable in its scope.

16 end
17 return λn = ubZ(M)

18 end

In both Mini-Bucket Elimination and Weighted Mini-Bucket Elimination schemes, estimates

can be improved by cost-shifting across functions of a bucket using Lagrange multipliers [Liu

and Ihler, 2011b, Ihler et al., 2012].

2.3.1.5 Weighted Mini-Bucket Elimination for Marginal MAP

Weighted Mini-Bucket Elimination can also be used to bound the Marginal MAP of a graph-

ical model [Marinescu et al., 2014]. The two key changes that are needed are: (1) the elim-

ination order needs to place variables that are to be marginalized before variables that are

to be maximized (this is sometimes referred to as a constrained elimination order), and (2)

buckets for variables that are to be maximized (these variables are called MAP variables)

should be processed using a maximization operation rather than a summation operation over

21

the bucket variable. Algorithm 2 shows the procedure for wMBE-MMAP, Weighted Mini-Bucket

Elimination for Marginal MAP.

Algorithm 2: wMBE-MMAP
Input: Graphical modelM; i-bound i;
constrained elimination order oelim = [X1, ..., Xn] placing MAP variables last
Output: upper bound on the MMAP: ubMMAP (M)

1 begin
2 Partition the functions f ∈ F into buckets B1, ..., Bn s.t. each function is placed in the bucket

corresponding to the lowest-index variable in its scope.
3 foreach k = 1...n do

4 Generate a mini-bucket partitioning of the bucket functions MBk = {MB
(1)
k , ...,MB

(T)
k } s.t.

|scope(f
MB

(t)
k

)| ≤ i, for all MB
(t)
k ∈MBk

5 if Xk ∈MAP then

6 foreach MB
(t)
k ∈MBk do

7 λ
(t)
k ← maxXk

f
MB

(t)
k

8 end

9 else
10 Select positive weights w = {w1, ..., wT } s.t.

∑
wt∈w wt = 1

11 foreach MB
(t)
k ∈MBk do

12 λ
(t)
k ←

∑wt

Xk
f
MB

(t)
k

13 end

14 end
15 Add each λt

k to the bucket of the lowest-index variable in its scope.

16 end
17 return λn = ubMMAP (M)

18 end

2.3.2 Search

In this section, we describe how a graphical model can be converted into a weighted search

space upon which a variety of search schemes can be used to solve inference tasks.

2.3.2.1 OR Search Spaces

A graphical model can be cast into a search space in order to explore different configurations

of the model. Figure 2.4 shows a classical search space (also known as an OR search space or

a State Tree) of our running example model, corresponding to a search order that explores

22

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

0

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

1

A

0.60 0.40

0.75 0.25

0.90 0.10 0.20 0.80 0.95 0.05

0.75 0.25

0.60 0.40

0.200.800.200.800.200.800.200.800.200.800.200.800.200.800.200.80

0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20

T:

H:

R:

E:

O:

Figure 2.4: Example classical OR search space for our running example graphical
model, corresponding to a search order that explores possible assignments to variable
T, then H, then R, then E, then O. For simplicity, we abbreviate domain values of low
or no instead with the value [0], and high or yes with [1].

possible assignments to variable T, then H, then R, then E, then O. (For compactness, we

abbreviate domain values of low or no instead with the value 0, and high or yes with 1).

As we follow a path down the tree, each successive level corresponds to an assignment to

the next variable in the ordering. Thus a path from the dummy root to a leaf corresponds

to a full configuration. Given that the search tree was built to represent a model and its

factorized global function (in this case a factorized probability distribution), the search tree

is constructed so that the arc into a node n associated with variable X has a cost c(n) equal

to the product of functions fα ∈ F such that the path to nX fully instantiates all X ′ ∈ α

and such that X ∈ α [Dechter and Mateescu, 2007]. In other words, c(n) equals the product

of functions fα ∈ F such that the variable represented by n is in f ’s scope, and the path

to n contains the assignment to every other variable in its scope. If no such functions exist,

the arc is vacuously assigned the multiplicative identity, i.e., the constant value one (1.00).

More formally:

Definition 2.7 (State Space Tree for a graphical model)

Given a graphical model M = ⟨X,D,F ⟩, where o = (X1, ..., XL) is an ordering of its

23

variables X having domains D = {D1, ..., DL}, a (weighted) state tree T = ((V,E), c : E →

R≥) is a directed tree s.t. any node np in V at depth p is labeled by a value in the domain

Dp. The child nodes of n in T are denoted ch(n). A path π from the root to np corresponds

to a partial assignment x̄p = (x1, ...xp). Each arc (np, np+1) is associated with a positive

cost c(np, np+1). The costs are extracted from F as described previously. A solution is a

path of length L denoting an assignment to all the variables x̄L = (x1, ..., xL) and its cost

C(x̄n) ∝
∏L−1

i=0 c(ni, ni+1). Since we will mostly deal with search trees, we will associate the

cost labeling each arc, denoted c(ni, ni+1), with its destination node, denoted c(ni+1).

The state tree represents a structured enumeration of all possible full configurations (the

leaves of the tree) and partial configurations respecting the ordering o (internal nodes), with

the model’s factors distributed over the edges of the tree via the arc costs c.

Unfortunately, the OR state tree representation does not capture many of the conditional

independence relationships inherent in the model’s graph structure. To better represent this

information, we can use a so-called AND/OR representation that can express subproblem

independence.

2.3.2.2 AND/OR Search Spaces

Often, assignments to earlier variables in the search ordering results in conditional inde-

pendencies between sets of variables searched at subsequent layers. For example, given our

running example model, conditioning on variable T (i.e., giving an assignment to T) causes

E and O to become independent of H and R. In the OR search space we can see the conse-

quences of this independence by noticing that the edge cost into and sub-tree under nodes

of E having the same assignment to T but different assignments to H and R are identical.

(Figure 2.5 shows this effect more explicitly.)

We can take advantage of such conditional independencies to construct a more compact

24

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

0 1

A

0.60 0.40

0.75 0.25

0.90 0.10 0.20 0.80

0.200.800.200.800.200.800.200.80

0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25

T:

H:

R:

E:

O:

Figure 2.5: Conditional independence of E and O from H and R given
assignment T = 0 is shown in the search space from Figure 2.4. Notice
that each distinct assignment to H and R leads to equivalent sub trees of
E and O (each highlighted in a different color for easy comparison).

search space known as an AND/OR search space [Dechter and Mateescu, 2007] and fa-

cilitates more effective algorithms [Marinescu and Dechter, 2009c]. Since such conditional

independencies are inherently captured by pseudo trees (Section 2.1.4: Pseudo Trees), we

can use a pseudo tree to guide the construction of the AND/OR search space.

Given a pseudo tree T of a primal graph G, the AND/OR search tree TT guided by T has

alternating levels of OR nodes corresponding to the variables, and AND nodes corresponding

to an assignment from the variables’ domains with edge costs extracted from the original

functions F in the same way as before[Dechter and Mateescu, 2007]. Let n be an AND

node in TT . So if n stands for x̄1..p = (X1 = x1, X2 = x2, ..., XP = xp), then var(n) = Xp.

Each AND node n has a cost c(n) defined to be the product of all factors fα ∈ F that are

instantiated at n but not before.

Figure 2.6 shows the AND/OR search space that results from using the pseudo tree from

25

0 1 0 1

0 1

0

0.250.75

0.90 0.10 0.20 0.80

T
0.6

H

R R

0 1 0 1

0 1

0.200.80

0.30 0.70 0.75 0.25

E

O O

0 1 0 1

0 1

1

0.250.75

0.95 0.05 0.60 0.40

H

R R

0 1 0 1

0 1

0.200.80

0.60 0.40 0.80 0.20

E

O O

0.4

T

O

EH

R

Figure 2.6: Example of an AND/OR search space for our runnin example
model, guided by the pseudo tree from Section 2.1.4: Pseudo Trees. For
simplicity, we abbreviate domain values of low or no instead with the value
[0], and high or yes with [1]. We see that the search tree is more compact
than that of the OR search tree in Figure 2.4.

Figure Figure 2.2 as a guide. In an AND/OR search space, each OR node (blue circles)

is associated with a variable in the model, and each AND node (yellow rectangle) with a

value (assignment) to its parent OR node’s variable. Branching in the guiding pseudo tree,

which represents conditional independence, is mirrored by branching in the AND/OR search

space: two or more OR node children under an AND node. In the example provided, we see

a branching under T in the guiding pseudo tree that captures the conditional independence

of H and R from E and O given assignment to T. In the corresponding AND/OR search

space, under each assignment of T (namely under each AND child node of T) we see branches

leading to distinct sub-trees – one for H and R, and one for E and O. By capturing the

subproblem independence, the search space is made far more compact.

Unlike in an OR search tree, in the AND/OR search tree a single path from some leaf to

26

0 1 0 1

0 1

0

0.250.75

0.90 0.10 0.20 0.80

T
0.6

H

R R

0 1 0 1

0 1

0.200.80

0.30 0.70 0.75 0.25

E

O O

0 1 0 1

0 1

1

0.250.75

0.95 0.05 0.60 0.40

H

R R

0 1 0 1

0 1

0.200.80

0.60 0.40 0.80 0.20

E

O O

0.4

T

O

EH

R

(a) Paths from root to leaves in AND/OR search spaces do not necessarily
correspond to full configurations. Here, the highlighted path captures partial
configuration T = 0, H = 1, R = 0, but omits assignments to E and O.

0 1 0 1

0 1

0

0.250.75

0.90 0.10 0.20 0.80

T
0.6

H

R R

0 1 0 1

0 1

0.200.80

0.30 0.70 0.75 0.25

E

O O

0 1 0 1

0 1

1

0.250.75

0.95 0.05 0.60 0.40

H

R R

0 1 0 1

0 1

0.200.80

0.60 0.40 0.80 0.20

E

O O

0.4

T

O

EH

R

(b) To capture a full configuration in an AND/OR search space, we must
capture all variables that branch from paths extended leading to a sub-tree of
the full search space that includes all variables of the model.

Figure 2.7: (a) An example AND/OR search space, in which a path corresponds
to only a partial configuration of the variables in the model. (b) A full configuration,
captured by a sub-tree over all variables.

27

Figure 2.8: For (a) a small (four binary-valued variable) graphical model, we show (b) a
pseudo-tree and (c) the AND/OR search tree associated with this pseudo-tree. Each OR
node is associated with a variable, and each AND node with a value of its parent OR node’s
variable. Also shown are the edge costs (black) and the value function at each node (red);
see main text for details.

the root in an AND/OR search space may not represent a full configuration. For exam-

ple, the path from root to leaf highlighted in Figure 2.7a captures a partial configuration

corresponding only to assignments T = 0, H = 1, R = 0, omitting assignments to E and O.

Definition 2.8 (Solution sub-tree)

A solution sub-tree S̃T (sometimes more simply called a solution tree) is a sub-tree of TT

satisfying: (1) it contains the root of TT ; (2) if an OR node is in S̃T , exactly one of its

AND child nodes is in S̃T ; (3) if an AND node is in S̃T then all its OR children are in S̃T .

The product of the node costs on any full solution sub-tree is the solution cost. It is equal to

the cost of a full configuration of the modelM defining the AND/OR tree TT [Dechter and

Mateescu, 2007].

Instead, a full configuration in an AND/OR tree corresponds to a sub-tree (for example, the

sub-tree indicated in Figure 2.7b for T = 0, H = 1, R = 0, E = 0, O = 1) with the property

28

that, at any OR node in the sub-tree, at least one child AND node is included in the sub-tree,

and at any included AND node at which branching occurs in the search tree, all child OR

nodes are included in the sub-tree. The cost of a full configuration in an AND/OR sub-tree

can be computed by applying the model’s combination operation (e.g., multiplication) to

the cost of each arc traversed.

Example 2.3.2.1

Figure 2.8a is a primal graph of 4 bi-valued variables and 4 binary factors of a graphical

model. Figure 2.8b shows one possible pseudo tree for the graph. Finally, Figure 2.8c displays

the AND/OR search tree guided by that pseudo tree. One possible solution sub-tree is (B =

1, A = 0, C = 1, D = 0), which has a cost of (1 · (3) · (4 · 6)) = 72.

When the pseudo tree is a chain (i.e., contains no branching), the AND/OR tree reduces to

the traditional OR tree representation (if we ignore the presence of the OR nodes), in which

each path to a leaf corresponds to a full variable configuration.

Definition 2.9 (chain pseudo tree)

A chain pseudo tree is a pseudo tree such that all variables are connected via a single directed

path, and thus the pseudo tree contains no branching.

For example, the OR search space from Figure 2.4 can be explicitly represented as the

AND/OR search space shown in Figure 2.9.

Complexity. The size of the AND/OR search tree, TT , is exponential in the height of

the pseudo tree T . It is possible to merge some sub-trees using a concept known as context

(defined in the sequel), which yields an AND/OR graph (as opposed to a tree) whose repre-

sentation is exponential in the tree-width of the primal graph [Dechter and Mateescu, 2007].

The function V (n) can be computed recursively from leaves to root by a depth-first search

scheme (see Figure 2.8, in which the values are annotated by each node in red).

29

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

0

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

1

0.60 0.40

0.75 0.25

0.90 0.10 0.20 0.80 0.95 0.05

0.75 0.25

0.60 0.40

0.200.800.200.800.200.800.200.800.200.800.200.800.200.800.200.80

0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20

T

HH

R R R R

E E E E E E E E

O O O O O O O O O O O O O O O O

E

O

R

H

T

Figure 2.9: The OR search space from Figure 2.4 expressed explicitly as an AND/OR
search space.

Since OR trees can be viewed as a special case of AND/OR trees, we can also use the

terminology of AND/OR trees to discuss OR trees.

2.3.2.3 Search Space Notation

We use T to refer to a weighted state-space tree. More specifically, TT refers to a state-space

tree constructed based on the pseudo-tree T . Within the context of search, we use n to

indicate a (generic) node in the search tree; the set ch(n) are the children of node n. To

index a specific node in an AND/OR tree, we can use its corresponding partial configuration.

For example, the OR node corresponding to the partial configuration {A=0, C=1} can be

identified as nA=0,C=1. Similarly, its parent AND node (at which C has not yet been assigned)

can be identified as nA=0,C , or (abusing notation slightly) CnA=0
. We use nX to refer to a

generic AND node associated with X; so, nC might be any of the nodes nA=a,C=c. Similarly,

Yn indicates the OR node associated with variable Y that is the child of AND node n.

30

For any node n, path(n) is the partial configuration given by assigning each variable its

corresponding value according to the assignments along the path from the root to node n.

For example, the highlighted node n in Figure 2.10b has path(n) = {A=0, C=1}. The set

varpath(n) consists of the variables to which path(n) provides a configuration. In Figure

2.10b, varpath(n) = {A,C}.

The cost of the arc to an AND node nX is

c(nX) =
∏

f∈{fα∈F | α⊆varpath(nX), X∈α}

f(path(nX)). (2.20)

or 1, vacuously. Letting anc(n) be the AND node ancestors of n in the search tree, the cost

of path(n) is g(n) =
∏

n′∈anc(n) c(n
′). In Figure 2.10b, g(n) = 10 · 5.

2.3.2.4 Important Search Space Quantities

We now define some important quantities involved in evaluating search spaces.

V (n). Each node n in TT (OR node or AND node) can be associated with a value, which is

the sum of the cost of all solution sub-trees rooted at n. For an AND node nX with children

OR nodes YnX
∈ ch(nX), V (nX) satisfies

V (nX) =
∏

YnX
∈ch(nX)

V (YnX
) (2.21)

such that for OR nodes YnX

V (YnX
) =

⊕
nY ∈ch(YnX

)

c(nY) · V (nY) (2.22)

31

(a)

A

B

0

C

0 1 0 1

B

1

C

0 1 0 1

10 20

1 4 2 5 10 20 5 10

D

0 1

2 3

D

0 1

5 10

D

0 1

10 20

D

0 1

15 5

Ancestor
Branching

Mass of

(b)

Figure 2.10: A full AND/OR tree representing 16 possible full configurations of binary
variables A,B,C, and D guided by the pseudo tree shown in subfigure (a) above. The
path cost for the highlighted node nA=0,C=1 at the end of the path →(A=0)→(C=1)
is g(nA=0,C=1) = 10 ·5. The value of the sub-tree under nA=0,C=1 is V (nA=0,C=1) =
2 ·1 + 3 ·1. Boxed in green is the ancestor branching sub-tree for nA=0,C=1 and it has
value R(nA=0,C=1) = 1·1 + 4·1. Thus, Q(nA=0,C=1) = (10·5)·(1·1 + 4·1)·(2·1 + 3·1).

where
⊕

is the appropriate elimination operator given the respective query (e.g.,
∑

when

computing the partition function, max when computing a MAP task), and with V (nX) = 1

in the case that nX has no children.

In the case of OR trees the value of a node coincides with the result of performing inference

on the modelM conditioned on the configuration corresponding to path(n). In the case of

AND/OR trees it captures the value restricted to a subset of the variables below it in the

32

pseudo-tree.

Note that given n∅ as the dummy root node of AND/OR tree T , V (n∅) is equal to the target

query value of the underlying modelM. We denote estimation of V (n) as V̂ (n). Heuristic

estimates of V (n) are more specifically denoted as h(n).

R(n). On the path from the root of an AND/OR tree T to some node nX , there may be

an intermediate node nY associated with branching variable Y in the guiding pseudo tree T .

Definition 2.10 (Psuedo Tree Branching Variable)

A variable in a pseudo tree T is branching variable if it has more than one child.

(In Figure 2.10b, on the path to the highlighted node nA=0,C=1, node nA=0 is traversed where

A is a branching variable in T of Figure 2.10a). When this happens, the remaining variables

of the model are split between different branches. Thus, the V (n) of any node down one of the

branches will necessarily omit the costs from the configurations of the variables included in

the other branch(es). R(nX), or the ancestor branching mass, captures these omitted costs.

(In Figure 2.10b, the green box shows the portion of T corresponding to R(nA=0,C=1)).

More formally, let br(nX) be the set of ancestor nodes nYi
of nX such that each Yi is a

branching variable ancestor of X in T . We then define R(nX) simply as:

R(nX) =
∏

nY ∈br(nX)

∏
WnY

∈ch(nY)

WnY
̸∈path(nX)

V (WnY
), (2.23)

(In Figure 2.10b, br(nA=0,C=1) = {nA=0}, A being the only branching variable ancestor of C

in T , and BnA=0
the only respective child OR node not not on the path to nA=0,C=1. Thus,

R(nA=0,C=1) = V (BnA=0
)). We denote approximations to R(n) as r(n).

33

Q(n). We can now concisely define a quantity Q(n) as the contribution to the value of the

root from all full configurations consistent with path(n). The quantity Q(n) obeys:

Q(n) = g(n)·R(n)·V (n). (2.24)

For the partition function task in particular, Q(n) is the unnormalized probability measure

of the partial configuration path(n), with P (path(n)) = Q(n)
Z

. Q(n) can also be thought of

as Z|path(n).

We denote approximations to Q(n) as ϱ(n).

Example 2.3.2.2

In the AND/OR tree in Figure 2.10b for computing the partition function, consider the path

from the root to the red node nA=0,C=1. Following nA=0 to our node, we see OR node BnA=0

branches off of the path. So,

Q(nA=0,C=1) = g(nA=0,C=1) ·R(nA=0,C=1) ·V (nA=0,C=1)

= g(nA=0,C=1) ·V (BnA=0) ·V (nA=0,C=1)

= (10·5) ·(1·1 + 4·1) ·(2·1 + 3·1)

2.3.3 Sampling

Monte Carlo methods are a statistical technique for estimating expectations (or more

generally, summation queries) using random sampling. The basic Monte Carlo estimator

uses an average over a collection of i.i.d. samples to approximate the expected value of some

function u(x) over a distribution p(x), i.e.,

Ep

[
u(x)] =

∑
x

p(x)u(x) ≈ 1

m

∑
j

u(x(j)) where {x(j) ∼ p(x), j = 1 . . .m}.

34

Unfortunately, in many applications, it may be difficult to sample from the distribution of

interest p(x); for example, p(x) may be represented only implicitly using a graphical model.

A technique called importance sampling lets us sidestep this difficulty.

2.3.3.1 Importance Sampling

Importance sampling [Rubinstein and Kroese, 2016, Liu et al., 2015, Gogate and Dechter,

2011] is a Monte Carlo sampling technique used to estimate properties of the distribution

p(x) using samples from a different, easier to sample distribution, q(x). The more convenient

distribution q(x) is called the proposal distribution. The key idea is to reweight these samples

to account for the difference between p(x) and q(x). Specifically, we can view the expectation

over p(x) as a related expectation over q(x), and apply the Monte Carlo estimator:

Ep

[
u(x)] =

∑
x

p(x)u(x) =
∑
x

q(x)
p(x)

q(x)
u(x) ≈ 1

m

∑
j

p(x(j))

q(x(j))
u(x(j)) where {x(j) ∼ q(x)}.

The right-hand estimator is thus a weighted average over samples from q(x), adjusted by

a weight given by the ratio p(x)/q(x). We say a proposal is valid for a query u(x) if its

distribution covers all relevant states:

Definition 2.11 (Valid Importance Sampling Proposal Distribution)

Given a distribution p(x), a proposal distribution q(x) is a valid importance sampling proposal

distribution for estimating Ep

[
u(x)] if

q(x)=0 =⇒ p(x)u(x)=0. (2.25)

A valid propsoal q(x) ensures that the importance sampling estimator is unbiased:

Definition 2.12 (Unbiased Estimator)

35

An estimator θ̂ of a quantity θ is said to be unbiased if

E[θ̂] = θ. (2.26)

Namely, that the expectation of the estimate equals the true value of the quantity being

predicted.

Even in settings where sampling from p(x) is feasible, using importance sampling with a

well-chosen proposal distribution q(x) may provide better (lower variance) estimates. In

particular, if u(x) ≥ 0 is a non-negative function and we can sample from q(x) ∝ p(x)u(x),

the resulting importance sampling estimate has zero variance (i.e., any sample from q(x)

gives an estimate equal to the true expected value) [Kahn and Marshall, 1953, Owen, 2013].

In addition to expectations, we can use importance sampling to estimate the partition func-

tion Z of a graphical model representing an unnormalized function f(x), by noting that

Z =
∑
x

f(x) =
∑
x

f(x)

q(x)
q(x) = Eq

[
f(x)

q(x)

]
≈ 1

m

m∑
j=1

f(x(j))

q(x(j))
, x(j)

iid∼ q.

Thus, an importance sampling estimator of Z draws independent samples from a proposal

q(x), then computes the ratio f(x)/q(x) and averages over the samples.

Given our use of search tree representations, it is useful to envision representing the sam-

pling process within a search tree. Since a single sample x(j) corresponds to a complete

configuration of the model, it can be represented by a path from a leaf to root in an OR

search tree, or a solution sub-tree of the AND/OR search tree. From this perspective, we

can choose to sample q(x) sequentially, by following the search order that defines the tree:

from the (dummy) root, we include all OR children, then for each associated variable, we

sample exactly one AND child (its value assignment), then add all OR children and repeat

the process.

36

2.3.3.2 Stratified Importance Sampling

Stratified Sampling is a variance reduction technique for Monte Carlo estimators that works

by first dividing the space of outcomes into disjoint strata [Rubinstein and Kroese, 2016]. In

Stratified Importance Sampling in particular, the sample space is first divided into k strata,

then representatives from each stratum are chosen and re-weighted to represent the omitted

members of their respective strata, and finally the representatives are combined together.

To estimate Z =
∑

X f(x) with standard importance sampling, we estimate Z by drawing

individual samples from q(X), giving estimate

ZI =
1

m

∑
j

f(x(j))

q(x(j))
.

With stratified importance sampling, we first partition the sample space X into k strata

X1, . . . , Xk. For each j ∈ {1, . . . , k}, we compute importance sampling estimators ẐI
j of

Zj =
∑

Xj

f(x)
qj(x)

qj(x) from samples drawn from the conditional distributions qj = q |Xj. The

stratified importance sampling estimator is ẐSI =
∑k

j=1 Ẑ
I
j . If X is partitioned so that∑

X1
q(x) = . . . =

∑
Xk
q(x), then it can be shown that

Theorem 2.3 (Rizzo [2007])

Let ẐSI be the stratified importance sampling estimator based on drawing m samples from

each of the k strata. Let ẐI be the basic importance sampling estimator from drawing

M = mk samples. Lastly, letting Zj =
∑

Xj
f(x) and ZK be a random variable defined

uniformly over {Z1, . . . , Zk}. Then the variance reduction achieved by moving from ẐI to

ẐSI is k
m
V ar(ZK), with equality if and only if Z1 = . . . = Zk.

Proof. With σ2 = V ar(f(x)
q(x)

), x ∼ q, the variance of our importance sampling estimator can

be expressed as

V ar(ẐI) =
σ2

mk
.

37

With σ2
j = V ar(f(x)

qj(x)
), x ∼ qj, the variance of our stratified importance sampling estimator

can be expressed as

V ar(ẐSI) =
∑
j

σ2
j

m

where σ2
j is the variance of the importance weight in strata j. Theorem 5.3 of Rizzo [2007]

(page 148) showed that:

σ2 − k
k∑

j=1

σ2
j = k2 · V ar(ZK) (2.27)

Substituting the definitions above into Equation 2.27 yields,

mkV ar(ẐI)− kmV ar(ẐSI) = k2 · V ar(ZK)

and dividing by mk gives,

V ar(ẐI)− V ar(ẐSI) =
k

m
· V ar(ZK)

This shows that stratified importance sampling estimates will always have equal or lower

variance than basic importance sampling when its k strata are formed such that
∑

X1
q(x) =

. . . =
∑

Xk
q(x). Furthermore, it suggests that increased stratification (higher k) should lead

to greater variance reduction, as well as selecting strata that minimize V ar(ZK).

38

Chapter 3

Advancing Abstraction Sampling

3.1 Introduction

In this chapter, we focus specifically on computing the partition function of a graphical model

M, whose state space’s AND/OR tree-width are intractably large, making exact computa-

tions such as variable elimination impossible. We thus need to resort to approximate schemes,

such as Monte Carlo methods. Classical Monte Carlo methods such as forward sampling and

importance sampling [Koller and Friedman, 2009] draw collections of independent samples,

each of which represents a single full configuration of the model; averages over these samples

are then used to estimate the quantity of interest. Abstraction sampling alters this paradigm

by instead sampling a probe, which represents multiple configurations simultaneously. Each

probe is represented as a sub-tree of a search tree for the model (OR tree or AND/OR tree),

allowing us to apply many of the advantages of search frameworks, including heuristic func-

tions and conditional independence information. Abstraction Sampling generates probes by

using an abstraction function to partition the nodes in a search tree into subsets of abstract

states under the intuition that nodes within the same abstract state are sufficiently similar

to be accurately summarized by stochastic sampling. We show that, for reasonably-chosen

abstractions, this procedure can give significantly more accurate estimates than standard

importance sampling.

39

Contributions. We introduce and extend the algorithmic framework of Abstraction Sam-

pling (first proposed in Broka et al. [2018]), that combines search with stratified importance

sampling to answer summation queries (e.g., computing the partition function) over graphical

models. The main contributions of this chapter include:

1. We introduce the algorithm ORAS for performing Abstraction Sampling on classical OR

state space search trees.

2. We give a theoretical analysis on OR Abstraction Sampling properties, including vari-

ance reduction conditions and a proof of unbiasedness of ORAS.

3. We propose a new Abstraction Sampling algorithm, AOAS, designed for compact AND/OR

search spaces. By freeing AOAS from upholding a restrictive property known as “proper-

ness” [Broka et al., 2018], our new scheme significantly enhances the scalability and

performance of Abstraction Sampling for AND/OR spaces.

4. We give theoretical analysis on AND/OR Abstraction Sampling properties, including

variance reduction conditions and a proof of unbiasedness that lifts the “properness”

restriction.

5. We propose three classes of abstraction functions to guide stratification: a context-

based approach from Broka et al. [2018], a method that partitions nodes by associated

positive real values, and a randomized abstraction scheme. We test and compare over

twenty-four distinct functions, each capable of varying abstraction granularity.

6. We perform an extensive empirical evaluation on over 480 problems from five well

known summation benchmarks, comparing our Abstraction Sampling frameworks against

each other and to competing schemes. Our experiments illustrate the properties of

Abstraction Sampling, demonstrate its strength at estimating summation queries, and

allow us to illuminate a few particularly powerful Abstraction Sampling set-ups.

40

3.2 Abstraction Sampling

Abstraction Sampling is inspired by the early work of Knuth [1975] and Chen [1992], who

proposed a method for estimating quantities that can be expressed as aggregates (e.g., sums)

of functions defined over the nodes in a graph. Our work extends this framework and applies

it to graphical model queries, such as computing the partition function of weighted state-

space trees (Definition 2.7).

Given an abstraction function over a weighted directed tree T , we build a sub-tree T̃ (called a

probe) level-by-level. At the current level i, we first expand all surviving leaf nodes, to yield a

frontier of nodes at level i+1. Then all current nodes at level i+1 are partitioned into abstract

states according to the (user selected) abstraction function, and a single representative node

n is stochastically selected from each abstract state. The unselected nodes are removed,

and each selected node n is assigned a weight w(n) to account for the removed mass of n’s

abstract state. The process repeats until all variables have been expanded and abstracted,

after which an estimate of Z can be computed on the resulting tree T̃ .

This probe generation process has elements of search in that the resulting probe is a sub-tree

of the full search tree, and of sampling due to the stochastic selection and reweighting of

representative nodes. As such, our Abstraction Sampling (AS) scheme aims to combine ideas

from statistics and search to exploit their respective strengths. Search works systematically

and deterministically to efficiently explore all configurations exactly once in a structured

manner. “It does not leave any stone unturned and does not turn any stone more than

once” [Pearl, 1984]. Sampling, on the other hand, explores a stochastic subset of the paths

that are used as a stand-in for the full space. By generating and searching a sub-tree in

a coordinated manner – exploring a subset of configurations – Abstraction Sampling re-

moves stochastic redundancy to reduce the variance of the sampled estimator compared to

independent sampling. By varying the size of the probe, Abstraction Sampling provides

41

Figure 3.1: Motivating Example; Z=126.

Figure 3.2: Motivating Example Tree

an interpolation between classical importance sampling and heuristic search; the abstrac-

tion function provides a notion of systematic exploration or determinism that can improve

sampling’s randomized exploration.

From a search perspective, abstractions can be viewed as a license to merge nodes that root

similar sub-trees, sampling one of the sub-trees, thus creating a more compact graph that can

be searched more efficiently. From a sampling perspective, an abstract state can be viewed

as a particular “stratum” within a stratified sampling scheme [Rubinstein and Kroese, 2007,

Rizzo, 2007], where the stratified sampling process is applied repeatedly, layer by layer. The

goal is to obtain variance reduction of the overall estimate, based on similar principles to

those of standard stratified sampling.

3.2.1 The General Scheme Through An Example

Our proposed Abstraction Sampling (AS) algorithm emulates stratified importance sampling

on partial configurations (represented by nodes in the search tree), iteratively layer by layer

(with each layer corresponding to a variable). To illustrate the process, consider the small

42

two dimensional function in Figure 3.1 over variables X1 and X2 with domains D1 = D2 =

{1, 2, 3, 4, 5} and with a partition function equal to Z = 126 (i.e., the sum of all entries in

the table). (The cell of row i and column j depicts the global function f(X1 = i,X2 = j).)

We define a search tree to explore all possible full configurations of (X1, X2); the root (no

assignment) is extended to nodes representing each possible configuration of X1; then each of

these is extended to nodes that represent the possible assignments of X2. For our abstraction

function, we partition nodes at the first layer (corresponding to assignments of X1) into two

abstract states: one for X1 ∈ {1, 2} (drawn as squares in the search tree) and the other for

X1 ∈ {3, 4, 5} (circles). Notice that this abstraction function places rows with roughly the

same total mass (sum of entries) into the same abstract state. At next level (for X2), nodes

are again abstracted into two states: X2 ∈ {1, 2} and X2 ∈ {3, 4, 5}, represented by triangles

and diamonds, respectively.

The Abstraction Sampling process is illustrated on the partial search tree in Figure 3.2.

Although any importance sampling proposal can be used, for simplicity we assume a uniform

proposal distribution over the states and stochastically select representatives. At each step,

we shade the nodes that are stochastically selected as that abstract state’s representative.

So, here we first select X1 = 1 and X1 = 3 as representatives of their respective abstract

states; they are assigned weights of 2 and 3, respectively, in attempt to compensate for

nodes not selected. (We have left out the details of the selection process and weighting for

simplicity). From the two selected representatives, all possible extensions by assignment to

X2 are generated, and the newly generated nodes inherit the weights of their parents (thus

accounting for the nodes that were absorbed via the previous abstraction processes). The

abstraction function then splits the newly extended nodes into their abstract states, and we

stochastically select a representative from each. Let’s assume that we stochastically select

(X1 = 1, X2 = 4) from the diamond abstract state of six nodes, and (X1 = 3, X2 = 2) from

the triangle abstract state of four nodes. The diamond node’s weight is updated to now

43

be 15 and the triangle node’s weight updated to be 10. We can now estimate the partition

function using their true values along with their weights as Ẑ = 5 · 15 + 7 · 10 = 145.

Notice that the abstraction sampling procedure generated a subtree with multiple configura-

tions that it used for its estimate, rather than a using only sample of a single configuration.

How much does the abstraction process help our Monte Carlo estimator on this simple ex-

ample? We compare the empirical variance of abstraction sampling to standard importance

sampling using the same proposal distribution over 100,000 trials. Experimentally, we find

that the variance is reduced from 2337 to 389, an almost 6 fold decrease, by using abstrac-

tion sampling. This illustrates the potential benefits of Abstraction Sampling schemes over

traditional importance sampling schemes.

For simplicity sake we will describe Abstraction Sampling for the regular OR search trees in

this section and will move to the more general AND/OR case in the following section.

3.2.2 Algorithm ORAS on OR search Trees

Abstraction Sampling algorithm is a Monte Carlo process that generates compact represen-

tatives T̃ of T , guided by an abstraction function.

Definition 3.1 (Layered Abstractions over search trees.)

Given a weighted OR tree T , an abstraction function, a : T → I+, where I+ are integers,

partitions the nodes in T , in each layer, layer by layer. Abstraction states are denoted by

{i} for an integer i.

Abstraction Sampling for OR trees (ORAS, Algorithm 3) builds a sub-tree T̃ of T , level-

by-level, in a breadth-first manner. The sub-tree is also called a probe. Starting from the

dummy root of T , at each iteration ORAS expands the nodes of the current frontier Fr,

these frontier nodes denoted nX , to their children nodes nY ∈ ch(nX) in T (lines 5-6). Note

44

Algorithm 3: ORAS
Input: Graphical modelM = (X,D,F), an ordering X1, ..., XN and a corresponding implicit OR

search tree T , an abstraction function a, and a heuristic function h. For any node n,
g(n) = its path cost, and w(n) = its importance weight. ∅ is a dummy variable whose
child in T is X1. ∅ is assigned a dummy value n∅. Fr is the frontier of the current
sampled tree, PROBE = T̂ .

Output: Ẑ, an estimate of the partition function ofM

1 begin
2 w(n∅) = 1, F r ← {n∅}, X ← D // initialize dummy root node

3 while X ̸= XN do
4 Y ← child of X
5 foreach nX ∈ Fr do // expand frontier to next variable

6 Fr′ ← Fr expanded from nX to all assignments of Y
7 foreach nY ∈ Fr′ do
8 w(nY)← w(nX) // weight inherited from parent

9 g(nY)← g(nX) · c(nY)

10 end

11 end
12 A← {Ai |Ai={nY ∈Fr′ | a(nY)= i}} // abstract newly generated frontier

13 foreach Ai ∈ A do
14 foreach n ∈ Ai do

15 q(n)← w(n)·g(n)·h(n)∑
m∈Ai

w(m)·g(m)·h(m)

16 end
17 nYi ∝q Ai // randomly select according to proposal q
18 w(nYi

)← w(nYi
)/q(nYi

) // update importance weight

19 Fr′ ← Fr′ \Ai ∪ {nYi
} // only keep reweighted representative

20 end
21 Fr ← Fr′, X ← Y

22 end

23 return Ẑ =
∑

n∈Fr w(n) · g(n)
24 end

that Y represents the the child vriable of X in the guiding pseudo tree T from which T is

based. Each new frontier node nY inherits the weight of its parent (line 8) accounting for

the estimated mass of all nodes previously abstracted into its path. The new frontier nodes

Fr′ are partitioned into abstract states according to abstraction function a (line 12). For

each abstract state, according to a proposal probability q (line 15), a representative node is

selected (line 17), reweighted to account for the rest of the nodes in its abstract state (line

17), and the rest of the nodes discarded (line 20). The process repeats until all variables in

T have been expanded, after which an estimate of the partition function can be computed

using the final frontier nodes of T̃ (line 23).

45

(a) Full OR search tree (b) Ex. OR Probe 1 (c) Ex. OR Probe 2

(d) Full AND/OR search tree (e) Ex. AND/OR Probe

Figure 3.3: Example of Abstraction Sampling probes.

The Sampling Proposal. As with any variant of importance sampling, the proposal dis-

tribution q(·) plays a critical role in the performance of the algorithm. As we show in the

sequel, our abstraction sampling algorithms are unbiased for any valid proposal distribution.

However, in our algorithms and implementation, we specifically use q(n) ∝ w(n) ·g(n) ·h(n),

where g(n) is the path cost to n, w(n) is the current abstraction sampling weight of n, and

h(n) is a heuristic function that provides an upper bound on the value V (n) of the sub-

problem rooted at n. This specific proposal often works well in practice, as it provides an

estimate of the contribution of this node to the overall estimate, if we were to proceed exactly

(fully expand the search tree) below node n. In fact, we show in the sequel (in Theorem 3.9:

exact proposal) that if our heuristic is exact, h(n) = V (n) for all n, the importance sampling

estimate has zero variance, and Ẑ = Z.

Example 3.2.2.1

Consider the OR search tree T in Figure 3.3a. The cost of each solution is obtained by a

46

product on its solution arcs. In Figure 3.3b we show a probe generated via an abstraction

function that puts all nodes that represent a single variable in a single abstract state. In

Figure 3.3c, we see a probe where each domain value of a variable corresponds to a different

abstract state, yielding 2 states per variable, and thus 2 nodes per level of the generated tree.

The estimate for Figure 3.3b is Ẑ = 20·8 = 160 and for Figure 3.3c is Ẑ = 15·4+24·4 = 156.

Of course the quality and variance of estimates produced by Abstraction Sampling de-

pend greatly on the abstraction function, which will be discussed in Section 3.4: Candidate

Abstractions.

3.2.3 Unbiasedness of ORAS

As noted earlier, a graphical model can be expressed by a directed weighted OR tree whose

queries (e.g., the partition function) can be computed by evaluating a value function defined

on its nodes [Dechter and Mateescu, 2007]. In the case of the partition function we can

define a value function,

Z = V =
∑

l∈leaves(T)

∏
n∈path(l)

c(n) (3.1)

It is easy to see that V can also be expressed recursively over the tree:

Proposition 3.1 (Value of an OR node)

Given a weighted directed state-space tree, having costs, c labeling its arcs or its nodes,

the value function V(n) corresponding to computation of the partition function, obeys the

recursive expression

V (n) =
∑

n′∈ch(n)

c(n′)V (n′) (3.2)

where for leaves, V (n) = 1. We assume that the root node is a dummy node n∅ with cost

c(n∅) = 1. The partition function can be computed as Z = V (n∅).

Theorem 3.2 (unbiasedness)

47

Given a weighted search tree T of a graphical model, a value function V (n) defined by Equa-

tion 3.2, and an abstraction a, the ORAS estimate V̂ (n∅) is an unbiased estimator of Z:

E[V̂ (n∅)] = V (n∅) = Z,

where n∅ the root of T as defined in Proposition 3.1: Value of an OR node.

Proof. At each step ORAS maintains a current, partially generated, sampled tree or probe

T̃ (t), where t indexes the most recent algorithm step that altered the composition of the

partial probe – namely, either expansion of its leaves (Equation 5) or stochastic selection

of a representative node from its representative abstract state (lines 17-20) in the currently

generated partial probe. The partial probe T̃ (t) is a stochastic sub-tree of T whose nodes

are assigned weights by the algorithm. We can define an intermediate estimator V̂ (t) of V

at step t of the algorithm by,

V̂ (t)(n) =

V (n) if n ∈ Fr∑

n′∈ch(n)

w(n′)

w(n)
c(n′)V̂ (t)(n′) if n ∈ T̃ (t) \ Fr

(3.3)

where Fr are the frontier nodes in T̃ (t). This is a recursive estimator combining information

from the sampled nodes and estimated weights in T̃ (t) with exact values V (n) used at the

nodes in the current frontier of T̃ (t) at time t. At t = 0, the frontier is simply the dummy root

node, r, so that V̂ (0)(n∅) = V (n∅) = Z by definition of V (n∅). At the final time step, t = L,

when the probe has been fully expanded, we have V̂ (L)(n∅) =
∑

n∈leaves(T̃ (L))w(n)g(n) = Ẑ,

the final estimate of Z of the probe produced by ORAS (line 23). To prove unbiasedness, we

show that each step of the algorithm preserves the expectation of the intermediate estimate,

E[V̂ (t+1)(n∅)− V̂ (t)(n∅)] = 0, so that E[Ẑ] = E[V̂ (L)(n∅)] = E[V̂ (0)(n∅)] = Z.

During abstraction sampling, there are two operations that alter the probe: expansion and

48

abstraction. The expansion operation is deterministic, expanding all surviving frontier nodes

n ∈ Fr to yield a new temporary frontier. Consider a node n that was in the frontier at step

t, with V̂ (t)(n) = V (n) by definition. After expansion, it is no longer in the frontier at step

t+ 1, but its children are; so its value is given by,

V̂ (t+1)(n) =
∑

n′∈ch(n)

w(n′)

w(n)
c(n′)V̂ (t)(n′) =

∑
n′∈ch(n)

w(n′)

w(n)
c(n′)V (n′) =

∑
n′∈ch(n)

c(n′)V (n′) = V (n),

since after expansion, w(n′) = w(n), and applying the recursive definition of the value V (n),

Equation 3.3. Thus, the value of each node n in the frontier at step t is preserved at step

t+ 1, and so are the values of all ancestors of those nodes, including the root.

The second operation that alters the probe is a stochastic abstraction step, in which a

representative node is selected and reweighted from each abstract state Ai, and all other

nodes in state Ai are discarded. We write the value at the root, V̂ (t)(n∅), in terms of a sum

over all nodes along the current frontier, which we partition into the contribution C(t)(Ai)

from each abstract state Ai:

V̂ (t)(n∅) =
∑
Ai∈A

C(t)(Ai), C(t)(Ai) =
∑
n∈Ai

w(t)(n) · g(n) · V (n). (3.4)

After a stochastic selection operation on the probe at step t, the probe is altered so that

at t + 1, only one of the nodes n′ ∈ Ai is retained from each Ai, randomly selected with

probability q(n′) (line 15). The weight of the retained node is then updated (line 18).

Therefore, at step t + 1, only the path to node n′ contributes from Ai to V̂
(t+1)(n∅); the

random selection does not affect any of the other paths outside Ai. The expectation of the

49

difference in estimates from step t to t+ 1 is therefore,

E[V̂ (t+1)(n∅)− V̂ (t)(n∅)] =
∑
n′∈Ai

q(n′)[w(t+1)(n′)g(n′)V (n′)− C(t)(Ai)]

=
∑
n′∈Ai

q(n′)
[w(t)(n′)

q(n′)
g(n′)V (n′)

]
−

∑
n∈Ai

w(t)(n) · g(n) · V (n)

= 0

(3.5)

3.3 Abstraction Sampling for AND/OR Search Trees

In search algorithms, representing a graphical model using an AND/OR search space [Dechter

and Mateescu, 2007] is significantly more compact and incorporates conditional independence

information, and so can facilitate more efficient algorithms [Marinescu and Dechter, 2009c].

In this section we extend abstraction sampling to AND/OR search spaces. We first extend

the recursive expression of a node’s value (e.g., Equation 3.2) to AND/OR trees, present an

Abstraction Sampling algorithm for AND/OR trees (AOAS) and study its properties.

3.3.1 AND/OR node values and the partition function

In the OR case, the value of a node n corresponds to the partition function restricted to

that node configuration, namely the sum of the cost of all full configurations consistent with

the assignments of path(n). In the case of AND/OR search trees the relationship is more

complex. Here we extend some notation from the OR search tree case to that of AND/OR

search trees.

Notation. As in Chapter 2, in an AND/OR search space, we use nX to refer to some AND

node associated with variable X, and YnX
to be the OR node associated with variable Y

50

that is the child of nX . The children of a node n are denoted ch(n), while path(n) is the

configuration of the variables defined by the assignments along the path from the root to

node n. The set of variables so assigned is denoted varpath(n). Each arc is associated with

a cost that captures the factors in F that are now fully resolved (all arguments assigned

values), so, the cost of the arc to an AND node nX is

c(nX) =
∏

f∈{fα∈F | α⊆varpath(nX), X∈α}

f(path(nX)). (3.6)

or 1, vacuously. Then, we define the cost g(n) of the path to n as g(n) =
∏

n′∈anc(n) c(n
′),

where anc(n) are the ancestors of n in the search tree.

Proposition 3.3 (Value of an AND/OR node)

Given an AND/OR search tree TT guided by pseudo tree T , the value function V (n) corre-

sponding to the computation of the partition function obeys the recursive expression:

V (nX) =
∏

YnX
∈ch(nX)

V (YnX
) (3.7)

where for YnX
- the OR node child of nX corresponding to variable Y in T - we have

V (YnX
) =

∑
nY ∈ch(YnX

)

c(nY) · V (nY) (3.8)

with V (nX) = 1 in the case nX has no children.

Combined into one expression, this becomes:

V (nX) =

1 if nX a leaf in T∏

YnX
∈ch(nX)

∑
nY ∈ch(YnX

)

c(nY) · V (nY) otherwise
(3.9)

With n∅ as the dummy root node of TT , V (n∅) = Z.

51

The value V (n) of a node n in TT is the sum cost of all solution sub-trees rooted at n.

V (nX) denotes the value of an AND node nX corresponding to variable X in T , and V (YnX
)

denotes the value of its OR child corresponding to variable Y in T .

In an OR search tree, our value function V (n) in Equation 3.2 represents the partition

function conditioned on the partial configuration corresponding to path(n), i.e., the unnor-

malized probability mass of that partial configuration. However, in the AND/OR case, while

the node root V (n∅) similarly equals Z, it is not necessarily true that for internal nodes n

that V (n) represents an unnormalized probability measure for the partial configuration of

path(n). Unlike when dealing with traditional OR search trees, when dealing with AND/OR

trees it is important to recognize that not all of the variables of a model can necessarily be

captured through a single path from the root. Notice that in the AND/OR tree in Figure

2.10 a full configuration consisting of assignments to all of A,B, and C cannot be captured

through any single path from root to leaf. For AND/OR trees, it is necessary to consider

variables that branch off of a path (corresponding to branchings in the guiding pseudo tree).

(See Section 2.3.2.4: R(n)). Thus, such branchings need to be considered when computing

the unnormalized likelihood measure for any partial configuration corresponding path(n).

Recall path(n) denotes the configuration of variables on the path from the root to n in

TT . We will refer to the unnormalized probability mass of the partial configuration path(n)

as Q(n). Q(n) is equal to the partition function Z restricted to configurations consistent

with path(n). Letting Out(path(n)) be the set of OR nodes (corresponding to variables)

emanating from path(n) which are OUTside path(n), then Z conditioned on path(n) can

be obtained by multiplying the cost of path(n), g(n), by V (n), and by the values of all the

OR nodes branching out of path(n) (the latter when combined together referred to as the

ancestor branching mass of n, or R(n); see Figure 2.10). Formally,

Definition 3.2 (Unnormalized probability mass of AND/OR path(n))

52

If T is an AND/OR search tree for a graphical modelM then,

Q(n) = g(n) · V (n) ·
∏

Yn′∈Out(path(n))

V (Yn′) (3.10)

where V (Yn′) is the value defined in Equation 3.8. It can also be written as

Q(n) = g(n) · V (n) ·R(n) (3.11)

where, R(n), called ancestral branching mass, is

R(n) =
∏

Yn′∈Out(path(n))

V (Yn′). (3.12)

Letting br(nX) be the set of ancestor nodes nYi
of nX such that each Yi is a branching variable

ancestor of X in the guiding pseudo tree, R(n) can equivalently be expressed as

R(n) =
∏

nY ∈br(nX)

∏
WnY

∈ch(nY)

WnY
̸∈path(nX)

V (WnY
). (3.13)

In the vacuous setting, we define R(n) = 1.

Lemma 3.4

Q(n) = Z|path(n) =
∑

X′=X\varpath(n)

∏
f∈F

f(x′, path(n)) (3.14)

Proof. Q(n) is V (n∅)|path(n) = Z|path(n) when n∅ is the root. Using the recursive definition

in Equation 3.9 yields the claim.

53

Algorithm 4: AOAS
Input: Graphical modelM = (X,D,F), a pseudo tree T forM rooted at a dummy singleton

variable D, an abstraction function a, heuristic function h. For any node n, g(n) = its path
cost, w(n) = its importance weight, and V̂ (n) = its estimated value (initialized to h(n)).

Output: Ẑ, an estimate of the partition function ofM

1 Function AOAS(T , h, a)
2 begin
3 (Initialization)

4 PROBE ← n∅, g(n∅), w(n∅), r(n∅), V̂ (n∅)←1
5 STACK ← push(empty stack, D)
6 (DFS Traversal of T)
7 while STACK is not empty do
8 X ← top(STACK)
9 if X has unvisited children in T then

10 (DFS Forward Step)
11 Y ← the next unvisited child of X
12 foreach nX ∈ PROBE do // expand frontier to next variable

13 PROBE ← PROBE expanded from nX to its nY descendants
14 F ′

Y ← newly generated nodes nY

15 foreach nY ∈ F ′
Y do

16 w(nY)← w(nX) // inherit weight from parent AND node

17 g(nY)← g(nX) · c(nY)

18 r(nY)← r(nX) ·
∏

{S ̸=Y ∈chT (X)} V̂ (SnX
) // compute estimate of R(nY)

19 end

20 end
21 (Perform Abstractions)
22 A← {Ai |Ai={nY ∈PROBE | a(n)= i}} // abstract newly generated nodes

23 foreach Ai ∈ A do
24 foreach n ∈ Ai do

25 q(n)← w(n)·g(n)·h(n)·r(n)∑
m∈Ai

w(m)·g(m)·h(m)·r(m)

26 end
27 nYi ∝q Ai // randomly select according to proposal q

28 w(nYi
)← w(nYi

)/q(nYi
) // update importance weight

29 V̂ (nYi)← 1 // dummy initialization of node value

30 PROBE ← PROBE \Ai ∪ {nYi
} // only keep reweighted representative

31 end
32 push(STACK, Y)

33 else
34 (DFS Backtracking Step)
35 pop(STACK), W ← top(STACK)
36 PROBE ← PROBE s.t. all nW without nX descendants are pruned

// prune paths abstracted into other nodes

37 foreach nW in PROBE do
38 (update node value)

39 V̂ (nW)← V̂ (nW) ·
∑

nX=child(nW) V̂ (nX) · c(nX) · w(nX)
w(nW)

40 end

41 end

42 end

43 return Ẑ = V̂ (n∅)

44 end

54

3.3.2 Algorithm AOAS

We now present AOAS (AND/OR Abstraction Sampling), a scalable Abstraction Sampling

algorithm for AND/OR search spaces. Original attempts to adapt Abstraction Sampling

ran into scalability issues that will be discussed. Nevertheless these issues were overcome in

AOAS which, similar to ORAS, allows for a variable-by-variable expansion of an Abstraction

Sampling probe – in this case over an AND/OR space – to be used to estimate the partition

function.

As input, AOAS (Algorithm 4) takes a pseudo tree T of a graphical model M = (X,D,F)

rooted at a dummy variable ∅, a heuristic function h(n) providing upper bound on V (n), and

an abstraction function a, AOAS traverses the pseudo tree T variable-by-variable in a depth-

first manner using the traversal to guide the generation of the Abstraction Sampling probe,

which is a sampled partial search tree of the full search tree TT . As it progresses forward in the

traversal of T , it expands the corresponding nodes at the frontier of the partially generated

probe and stochastically selects a subset to remain in the frontier using the abstraction

function. Since the pseudo-tree - which may have branching variables (Definition 2.10) -

is explored in a depth-first manner, the algorithm backtracks when it reaches the end of a

particular branch in T , during which the algorithm updates values of nodes returned to.

More specifically, in the forward step (lines 11-32), PROBE (which refers to the probe being

generated) is extended from all current leaf AND nodes nX of variable X to AND nodes

nY (lines 12-13), where Y is the next child of X in T when traversing T in a breadth-first

manner. The newly added AND nodes nY become new leaves in PROBE. Each newly

generated node nY inherits the weight of the AND node nX from which it was descended

(line 16) and has a path cost g(nY) = g(nX) · c(nY) assigned (line 17). r(nY), an estimate

of R(nY) in Definition 3.2: Unnormalized probability mass of AND/OR path(n), is also

computed (line 18). Note that r(n) is simply inherited from r(nX) if the parent variable

55

X is not a branching variable. Otherwise, the r(nX) from its parent is multiplied by the

estimated values contributed by its sibling branches, yielding an r(nY) which bounds the

ancestor branching value for the new frontier node nY .

Once nodes are expanded, we perform abstractions (lines 22-31). Nodes are partitioned into

abstract states according to the abstraction function a (line 22), and for each abstract state,

proposals are generated (line 25) from which a representative node is stochastically selected

(line 27). Although the proposal function used can be any valid distribution over the nodes,

we choose a particular proposal which is proportional to the quantity w(n)·g(n)·h(n)· r(n),

which is an estimate for Q(n) upweighted to account for all the nodes abstracted into the

path to n. The portion g(n) · h(n) ·r(n) estimates Q(n) (see Definition 3.2: Unnormalized

probability mass of AND/OR path(n)), where V (n) is approximated by h(n), and R(n) is

estimated by r(n). We multiply by w(n) to account for nodes previously abstracted into the

path leading to n.

When backtracking to a variable W from variable X (lines 35-40), we prune any nW that

has no descendant nX (line 36), thus preventing the creation of invalid probes.

Definition 3.3 (Valid and Invalid Probes)

A valid probe is a probe that contains at least one full solution tree (Definition 2.8). Probes

that do not contain a full solution tree are called invalid (e.g., Figure 3.4c).

For the surviving nodes, we back up the estimated values from their children from which we

have backtracked (line 39). Once the algorithm backtracks to the dummy node, the value of

the dummy node, V̂ (n∅), equals the Abstraction Sampling estimate of the model’s partition

function, Ẑ, which is returned.

Example 3.3.2.1 (AOAS Trace)

Figure 3.5 shows a step-by-step trace of AOAS on the same model M, pseudo-tree T , and

AND/OR search tree TT from Figure 2.8. We follow a DFS traversal of T (order B,A,C,D),

56

B

A

0

C

0 1 0 1

A

1

C

0 1 0 1

D

0 1

D

0 1

D

0 1

D

0 1

(a) Full AND/OR tree

B

A

0

C

0 1 0

A

1

C

0 1 0 1

D

0 1

D

0

D

1

(b) pAOAS probe

B

A

0

0 1

1

C

0 1

D

0

D

1

C

(c) invalid probe

B

A

0

C

0 1 0 1

D

1

D

0

(d) AOAS probe

Figure 3.4: An AND/OR search tree and possible probes generated by abstraction sam-
pling. Nodes are abstracted based on having the same domain value (denoted by having the
same color). (a) A full AND/OR tree, representing all 16 possible solutions, (b) A probe
generated by pAOAS – a non-scalable original attempt at AND/OR Abstraction Sampling –
containing 8 solutions, (c) An invalid probe containing 4 partial configurations, and no full
solutions, (d) A valid probe generated by AOAS, containing 4 solutions.

57

B

0 1

A C

0 1 0 1

A C

0 1 0 1

D

0 1

D

0 1

D

0 1

D

0 1

(a)

B

A

0

C

0 1

A

1

C

0 1

D

0 1

D

0 1

D

0 1

D

0 1

0 10 1

(b)

B

A

0

C

0 1 0 1

A

1

C

0 1

X

D

0 1

D

0 1

D

0 1

D

0 1

(c)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(d)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(e)

B

A

0

C

0 1 0 1

D

1

D

0

(f)

Figure 3.5: A sample trace of AOAS based on the AND/OR tree in Figure 3.4a. Nodes with
the same domain values are abstracted (also indicated by node color). A red “X” indicates
pruning. Transparent nodes indicate portions of the tree not pruned and yet to be explored.

58

sampling a sub-tree of TT to estimate the partition function. For this example, we use an

abstraction function that groups nodes corresponding to the same domain value together (also

indicated by the color of the nodes). At each stage, we also group nodes being abstracted in

gray. A red “X” marks a pruned sub-tree.

Starting with variable B (Figure 3.5a), each node belongs to a different abstraction and so

are both retained. We next expand to A and abstract across its nodes (Figure 3.5b). Note

that we partition across all nodes of A, regardless of whether they are descended from nB=0

or nB=1. We find two nodes in each abstract state (colored red and blue). We calculate their

respective proposals according to line 25. Notice that the proposal of each node n relies on

r(n) (line 18), which estimates their ancestor branching mass – i.e., the values of nodes in

their Out(path(n)). In this case, r(nB=0,A=0) and r(nB=0,A=1) were estimates of V (CnB=0
),

and r(nB=1,A=0) and r(nB=1,A=1) were estimates of V (CnB=1
) Since the nodes of C have

not yet been expanded, we use their heuristic values as an approximation to V (·). We then

stochastically choose a representative from each abstract state (line 27). We happen to select

both red and blue representatives from under nB=0 (Figure 3.5c). Since A has no descendant,

we backtrack to B, updating its node values (line 39) and performing a pruning step (line

36). The pruning removes AND nodes of B that do not extend to AND nodes of A – in

this example, nB=1. The pruning is shown by the red “X” in Figure 3.5c). Pruning ensures

that the resulting AND/OR probes remain valid. Finally, we expand and abstract C and

D (Figures 3.5d-3.5f). Backtracking recursively from D, we arrive at the dummy root node

(not shown) with no further pruning. The result is the valid probe in Figure 3.5f, which

contains four full configurations: (B=0, A=0, C =0, D=0), (B=0, A=0, C =1, D=1),

(B=0, A=1, C=0, D=0), and (B=0, A=1, C=1, D=1). The estimate of the partition function

is Ẑ = V̂ (B).

59

(a) Primal graph and truncated pseudo tree.

(b) Partially expanded AND/OR tree with values.

Figure 3.6: Partially expanded AND/OR tree with values and corresponding truncated
pseudo tree.

3.3.3 Unbiasedness of AOAS

To facilitate the proof of AOAS unbiasedness, we will use the notation TT ′ to refer to a partially

expanded AND/OR search tree that is being guided by the pseudo tree T , but has only been

expanded up through a subset of T ’s variables, indicated by T ′. Namely, T ′ – which we call

a truncated pseudo tree – is the sub-tree of T that has been traversed so far, and through

which the probe TT ′ has been expanded. Figure 3.6 shows an example of a truncated pseudo

tree that has been traversed only through variables A and C and a corresponding partially

expanded AND/OR tree.

We first show that as we expand TT ′ variable-by-variable according to a traversal of T , we

60

can express Z = V (n∅) through just the nodes of TT ′ .

Then, we define an intermediate value function V̂ for which V̂ (n∅) = Z during probe initial-

ization, and such that V̂ (n∅) = Ẑ – the final estimate produced by by AOAS. We show that

each expansion, abstraction, and pruning of the AOAS probe keeps E[V̂ (n∅)] of the probe un-

changed, thus showing that when the probe is fully expanded, E[V̂ (n∅)] = Z which implies

E[Ẑ] = Z.

A useful property of V is that, as we expand a partial AND/OR search tree TT ′ , we can

express Z = V (n∅) through just the nodes of the truncated tree TT ′ . Letting the leaves of

the truncated TT ′ be represented by FrT ′ and abusing notation to use T ′ to also indicate

the variables of the truncated tree T ′, we can write:

VT ′(nX) =

V (nX), nX ∈ FrT ′∏

Y ′∈chT (X)\T ′

V (Y ′
nX

) ·
∏

Y ′∈chT ′ (X)

∑
nY ∈ch(YnX

)

c(nY) · VT ′(nY), nX /∈ FrT ′

(3.15)

from which we can immediately see that,

Lemma 3.5

VT ′(nX) = V (nX) for any nX ∈ TT ′.

Proof. We can arrive to the claim by unrolling the expression in Equation 3.15 after substi-

tuting with Equation 3.7 and Equation 3.8.

The most important consequence, of course, is equality at the root:

Corollary 3.6

VT ′(n∅) = V (n∅) = Z.

We can alternatively express V (n∅) in terms of only the frontier nodes of TT ′ corresponding

61

to a particular variable X ∈ T ′:

Lemma 3.7

Let frontier AND nodes nX of TT ′ corresponding to a particular leaf variable X ∈ T ′ be

represented as FrX . Then,

Z = V (n∅) =
∑

nX∈FrX

g(nX) ·R(nX) · V (nX) (3.16)

Proof. We can compute Z by summing over sub-spaces of configurations that are exclusive

and exhaustive, such as by enumerating over all frontier nodes of a single variable. Since

(from Section 2.3.2.4) we have that Q(n) = Z|path(n), we can write:

Z =
∑

nX∈FrX

Q(nX).

Substituting for Q(n) from Equation 3.11 we get

Z =
∑

nX∈FrX

g(nX) · V (nX) ·R(nX)

An example may help to clarify these relationships:

Example 3.3.3.1

Consider a truncation of the pseudo tree seen in Figure 3.6a that includes A → C but

excludes B and D, and its corresponding truncated AND/OR tree Figure 3.6b. Using only

62

the frontier nodes nC ∈ FC we can compute Z using Equation 3.7 as:

Z =
∑

nC∈FC

g(nC) ·R(nC) · V (nC)

= g(nA=0,C=0) ·R(nA=0,C=0) · V (nA=0,C=0)

+ g(nA=0,C=1) ·R(nA=0,C=1) · V (nA=0,C=1)

+ g(nA=1,C=0) ·R(nA=1,C=0) · V (nA=1,C=0)

+ g(nA=1,C=1) ·R(nA=1,C=1) · V (nA=1,C=1)

= (20)·(5)·(15) + (50)·(5)·(5) + (100)·(30)·(30) + (200)·(30)·(20)

= 212750

We can now show our main claim.

Theorem 3.8 (unbiasedness)

Given a weighted directed AND/OR search tree T of a graphical model, a value function

V (n) defined by Equation 3.9, and an abstraction a, V̂ (n∅) computed by AOAS is an unbiased

estimate of V (n∅), so that E[V̂ (n∅)] = V (n∅) = Z.

Proof. At each step, AOAS maintains a current partially sampled AND/OR tree, T̃ (t), where

t indexes algorithm steps immediately after an operation altering T̃ (t) – namely, either after

an expansion step (lines 12-13), abstraction step for a single abstract state (lines 24-30), or

pruning step (line 36). The partial tree T̃ (t) corresponds to the current (stochastic) partial

AND/OR sub-tree of T after step t, with node weights assigned by the algorithm, that is

being generated as a probe. Note that T̃ (t) is an AND/OR tree along a truncated pseudo-

tree, T ′, for AOAS T ’ being generated along a depth-first traversal of T . The frontier nodes

of T̃ (t) are represented by Fr, where FrX are frontier nodes associated with a leaf variable

X in T ′. Abusing notation, variables in T ′ are also referred to as T ’.

63

We define an intermediate estimator of V (nX) over T̃
(t) as follows:

V̂ (t)(nX) =

V (nX), if nX ∈ Fr∏

Y ∈chT (X)\T ′

V (YnX
) ·

∏
Y ′∈chT ′ (X)

∑
nY ′∈chY ′ (nX)

w(t)(nY ′)

w(t)(nX)
c(nY ′) V̂ (t)(nY ′), otherwise

(3.17)

This recursive estimator combines information from the sampled nodes and estimated weights

in T̃ (t) with exact values of V for the current frontier Fr and for non-expanded OR nodes

that are child of AND nodes in T̃ (t) that correspond to branching variables in T .

The truncated AND/OR tree T̃ (t) is well defined AND/OR tree whose node costs are c̃(nY) =

w(t)(nY)

w(t)(nX)
c(nY) for node nY ∈ chY (nX). Expressing Equation 3.17 in terms of OR nodes we

get

V̂ (t)(YnX
) =

∑
nY ∈chY (nX)

w(t)(nY)

w(t)(nX)
c(nY) V̂

(t)(nY). (3.18)

We also define an ancestral branching value estimator as

R̂(t)(nX) =

{ ∏
Yn′∈Out(n′∈path(nX))

V̂ (t)(Yn′) (3.19)

or vacuously R̂(t)(nX) = 1.

At t = 0, since Fr = {r}, we have V̂ (0)(n∅) = V (n∅) = Z. At the last step t = L, all

variables have been expanded and abstracted, and all pruning completed, and V̂ (L)(n∅) is

equivalent to the estimate generated by the final AOAS probe. This can be seen by noting that

when all variables have been expanded, the estimator defined in Equation 3.17 is equivalent

to the estimator used by AOAS (line 39).

64

Thus, we need to show that E[V̂ (L)(n∅)] = Z, which is equivalent to showing E[V̂ (L)(n∅)] =

V̂ (0)(n∅). We derive this identity by showing that at each step t, the intermediate estimator

on r, V̂ (t)(n∅) does not change in expectation from any step t to t + 1. In other words, we

show that E[V̂ (t+1)(n∅)− V̂ (t)(n∅)] = 0

The proof is based on the simple observation implied immediately from Lemma 3.7 that

V̂ (t)(n∅), for any leaf X in T ′ unfolds to the expression:

V̂ (t)(n∅) =
∑

nX∈FrX

w(t)(n) R̂(t)(nX) g(nX) V (nX). (3.20)

In other words, since T̃ (t) is an AND/OR tree, it obeys the conditions of Lemma 3.7 relative

to its frontier FrX . In this case, the cost of a path to a node n is g(n) · w(n), yielding the

expression.

There are three AOAS operations that change the composition of T̃ (t). The first is deter-

ministic, involving expanding all surviving frontier nodes to one of their child variable OR

nodes and then their corresponding AND child nodes (lines 12-13), yielding a new frontier.

Since each node is fully expanded with respect to the next variable, the new expression for

V̂ (t+1)(n) is just the recursively expanded expression according to Equation 3.17. Namely,

if nX was a frontier node having value V̂ (t)(nX) at step t, then after expanding T̃ (t) from

nX towards one child variable of X in T its new value will remain the same since in expres-

sion Equation 3.17, all the V̂ (t+1) quantities for the new nodes are exact and inherit their

weight from nX . Thus the expansion step does not change the value of nodes in T̃ (t), and so

V̂ (t+1)(n∅) = V̂ (t)(n∅) =⇒ E[V̂ (t+1)(n∅)− V̂ (t)(n∅)] = 0.

The next operation is the abstraction step for an abstract state (lines 24-30), which is

stochastic. The algorithm picks a set of nodes Ai having the same abstract state i from the

frontier FrX at time t, where here X is the variable being abstracted across. As implied by

65

Lemma 3.7, we can express the contribution of Ai to V̂
(t)(n∅) by

C(t)(Ai) =
∑
n∈Ai

w(t)(n) R̂(t)(n) g(n) V (n) (3.21)

where V̂ (t)(n∅) =
∑

Ai∈AC
(t)(Ai). At step t + 1 only one of these nodes in Ai is kept (line

30), denoted n′, according to random selection with probability q (line 27) and the weight of

the kept node is updated (line 28). Therefore only the path to n′ and its ancestral branching

value contributes to V̂ (t+1)(n∅). The random selection does not affect its ancestral branching

value nor any of the other paths outside Ai. The expectation of the difference in estimates

from step t to t+ 1 therefore,

E[V̂ (t+1)(n∅)− V̂ (t)(n∅)] = (3.22)

∑
n′∈Ai

q(n′)[w(t+1)(n′) R̂(t)(n′) g(n′) V (n′)− C(t)(Ai)] =

(since C(t) is not dependent on n′)

=
∑
n′∈Ai

q(n′)[
w(t)(n′)

q(n′)
R̂(t)(n′) g(n′) V (n′)]−

∑
n∈Ai

w(t)(n) R̂(t)(n) · g(n) · V (n) = 0

Finally, the last operation in question is the deterministic pruning of nodes which will never

be part of a full solution tree (line 36). This occurs when OR nodes along a path are missing

all of their AND children. (An example can be found in Figure 3.5c of our sample AOAS

trace). Based on our estimator, the value of the parent AND node of our OR-node-without-

children is in part based on the product of a summation over the OR node’s children (see

Equation 3.17). But the OR nodes has no children and so the sum evaluates vacuously

to zero. Thus the parent AND node’s value will also be zero. Since the zero-value AND

node does not contribute to the overall estimate, removing these nodes does not change the

66

estimate and we get that V̂ (t+1)(n′) = V̂ (t)(n′) =⇒ E[V̂ (t+1)(n∅)− V̂ (t)(n∅)] = 0.

This shows that for all operations of AOAS that change the composition of the probe,

E[V̂ (t+1)(n∅)− V̂ (t)(n∅)] = 0 and so the expected estimate of the final probe E[Ẑ] =

E[V̂ (L)(n∅)] = E[V̂ (0)(n∅)] = Z.

3.3.4 Additional Properties

Impact of the proposal. It is easy to see that the proof of unbiasedness works for any

sampling distribution q. However, in practice we also propose to select the specific proposal,

q(n) :=
w(n) · g(n) · h(n) · r(n)∑

m∈Ai
w(m) · g(m) · h(m) · r(m)

, (3.23)

to reduce variance of our estimate. In particular, we can see that if the heuristic h is exact,

then using this proposal, AOAS’s estimate of the partition function is also exact.

Theorem 3.9 (exact proposal)

If the proposal q in AS algorithm is based on an exact heuristic h(n) = V (n), namely if

q(n) = w(n′)g(n′)V (n′)r(n′)∑
n∈Ai

w(t)(n)·g(n)·V (n)r(n)
, then V̂ is exact after one probe for any abstraction a.

Proof. We need to show that V̂ (n∅) = V (n∅) = Z after a single probe. We use the same

strategy as in the proof of unbiasedness. The only difference is that now we show that the

estimate V̂ (t)(n∅) is preserved not only in expectation but also in the stochastic step (when

any n′ is chosen from an abstract state Ai).

We first note that the denominator of q is just C(t) from Equation 3.21, namely, q =

67

w(n′)g(n′)V (n′)r(n′)

C(t)(Ai)
. By definition,

V̂ (t+1)(n∅)− V̂ (t)(n∅) = w(t+1)(n′)R̂(t+1)(n′)g(n′)V (n′)− C(t)(Ai)

=
w(t)(n′)

q(n′)
R̂(t+1)(n′)g(n′)V (n′)− C(t)(Ai)

Substituting for q(n′) we get

V̂ (t+1)(n∅)− V̂ (t)(n∅) = w(t)(n′)g(n′)V (n′)R̂(t+1)(n′)
C(t)(Ai)

w(t)(n′)g(n′)V (n′)r(n′)
− C(t)(Ai)

Since R̂(n′) is not affected by the process, we know R̂(t+1)(n′) = R̂(t)(n′) and, substituting,

we get

V̂ (t+1)(n∅)− V̂ (t)(n∅) = w(t)(n′)g(n′)V (n′)R̂(t)(n′)
C(t)(Ai)

w(t)(n′)g(n′)V (n′)r(n′)
− C(t)(Ai)

With an exact heuristic (namely h(n) = V (n)), the expression for r(n′) in AOAS equals that

of R̂(n′), and so substituting we get

V̂ (t+1)(n∅)− V̂ (t)(n∅) = w(t)(n′)g(n′)V (n′)r(n′)
C(t)(Ai)

w(t)(n′)g(n′)V (n′)r(n′)
− C(t)(Ai)

= C(t)(Ai)− C(t)(Ai) = 0

Impact of the abstraction. Any function over the nodes in the search space, and in partic-

ular a heuristic function, can be used as an abstraction function. Abstractions can facilitate

the transition between search and sampling, and so between determinism and stochasticity.

On one hand, we want abstractions with low cardinality in order to bound the probe’s size.

On the other, we want more accurate estimates, namely to sample with as small a variance

68

as possible. In the spirit of this trade-off, we can compare abstractions using a notion of

refinement.

Definition 3.4 (abstraction refinement hierarchy)

We say that an abstraction a1 is a refinement of a2 iff for any two nodes ni, nj, a1(ni) =

a1(nj) =⇒ a2(ni) = a2(nj).

Definition 3.5 (abstraction refinement of functions)

We say that an abstraction a is a refinement of a function Γ iff for any two nodes ni, nj, a(ni) =

a(nj) =⇒ Γ(ni) = Γ(nj).

The abstraction that maps all nodes associated with a single variable to the same abstract

state is referred to as the Knuth abstraction. The abstraction that maps every node to

itself is called the trivial abstraction. Clearly, the Knuth abstraction is the coarsest relevant

abstraction and corresponds to standard importance sampling, while the trivial abstraction

is the most refined abstraction, and corresponds to exact search. We explore a variety of

abstractions with tunable levels of refinement, that can range between the Knuth and the

trivial abstraction.

Definition 3.6 (Value-exact abstraction)

We say that an abstraction a is exact if a is a refinement of V , namely a(n) = a(n′) ⇒

V (n) = V (n′).

Lemma 3.10 (Conditions for value-exact abstraction leading to exact estimates)

Assuming we use the proposal in algorithm AOAS, if the abstraction a is a refinement of both

V and h on a search space guided by a chain pseudo tree (i.e., corresponding to a classical

OR search space), then V̂ (n∅) is exact (i.e. V̂ = V = Z).

Proof. In a search space guided by a chain pseudo tree (corresponding to a classical OR

search space), there are no branching variables and so R = r = 1.

69

As before, for an abstraction step at step t yielding the probe at t+ 1 we have

V̂ (t+1)(n∅)− V̂ (t)(n∅)

= w(t+1)(n′) · R̂(t+1)(n′) · g(n′) · V (n′)−
∑
n∈Ai

w(t)(n) · R̂(t)(n) · g(n) · V (n)

Substituting w(t+1)(n′) = w(t)(n′)
q(n′)

(AOAS, line 28) we get

=
w(t)(n′)

q(n′)
· R̂(t+1)(n′) · g(n′) · V (n′)−

∑
n∈Ai

w(t)(n) · R̂(t)(n) · g(n) · V (n)

Recall that R̂(t)(n′) is based on the ancestors of n′ and thus not affected by the abstraction

process. Therefore we know R̂(t)(n′) = R̂(t+1)(n′), when substituting giving

=
w(t)(n′)

q(n′)
R̂(t)(n′) · g(n′) · V (n′)−

∑
n∈Ai

w(t)(n) · R̂(t)(n) · g(n) · V (n)

Substituting for q(n′) based on AOAS, line 25 gives,

= w(t)(n′) · R̂(t)(n′) · g(n′) · V (n′)

∑
n∈Ai

w(t)(n) · r(n) · g(n) · h(n)
w(t)(n′) · r(n′) · g(n′) · h(n′)

−
∑
n∈Ai

w(t)(n) · R̂(t)(n) · g(n) · V (n)

=
V (n′) · R̂(t)(n′)

h(n′) · r(n′)

∑
n∈Ai

w(t)(n) · r(n) · g(n) · h(n)−
∑
n∈Ai

w(t)(n) · R̂(t)(n) · g(n) · V (n) (3.24)

Since the pseudo tree is a chain, we substitute R = r = 1.

=
V (n′)

h(n′)

∑
n∈Ai

w(t)(n) · g(n) · h(n)−
∑
n∈Ai

w(t)(n) · g(n) · V (n) (3.25)

Since the abstraction function is a refinement of V and h, V (n) = Vi, a constant over Ai and

70

so is h, we get that h cancels out yielding

= Vi
∑
n∈Ai

w(t)(n) · g(n)− Vi
∑
n∈Ai

w(t)(n) · g(n) = 0 (3.26)

Note that the proof relies on removing R, R̂, and r in the transition from step 3.24 to 3.25.

For AND/OR trees guided by a branching pseudo tree, it is no longer the case that each of

these values must equal 1, and the proof no longer holds.

Let AOAS(a, h) denotes a particular execution of AOAS with abstraction a and heuristic h.

With this notation AOAS(1, h) is identical to importance sampling using h in the proposal

function. As we will show next, if a is a refinement of hr then the heuristic will have no

impact on the proposal.

Theorem 3.11

If a is a refinement of hr, then AOAS(a, h) = AOAS(a, 1)

Proof. In line 19 of AOAS the proposal q is defined by q(n)← w(n)·g(n)·h(n)·r(n)∑
m∈Ai

w(m)·g(m)·h(m)·r(m)
. Since

a is a refinement of hr, hr is constant within each Ai and we get q(n)← w(n)·g(n)∑
m∈Ai

w(m)·g(m)
.

Corollary 3.12

If an abstraction a is a refinement of h, then when abstracting over a search space guided by

a chain pseudo tree, AOAS(a, h) = AOAS(a, 1)

Finally, we hypothesize that:

Proposition 3.13

If a and b are abstractions such that a is more refined than b, then the variance of the estimate

using a is smaller than the variance using b, regardless of the proposal function, or h.

71

B

A

0

0 1

1

C

0 1

D

0

D

1

C

Figure 3.7: A sub-tree that could possible result from unrestricted abstraction across
nodes of the variables. We consider such a tree as invalid as it does not capture any full
configurations of the variables.

B

A

0

C

0 1 0 1

A

1

C

0 1 0 1

D

0 1

D

0 1

D

0 1

D

0 1

Figure 3.8: Grouping of nodes that pAOAS would allowed to be abstracted into the same
abstract states via proper abstractions.

3.3.5 Complexity and scalability.

It is easy to see that ORAS and AOAS probe sizes will not be larger than O(m · n), where n is

the number of variables and m bounds the number of abstract states per variable.

pAOAS. An earlier version of AND/OR Abstraction sampling extendedORAS to AND/OR

search spaces in a straightforward manner by extending probes according to a traversal of

the pseudo-tree T in a depth-first or breadth-first manner, but employed strict restrictions

72

B

A

0

C

0 1 0

A

1

C

0 1 0 1

D

0 1

D

0

D

1

Figure 3.9: An example of a probe that could be produced by pAOAS employing proper
abstractions.

regarding which nodes of a variable were allowed to be abstracted together. Since naively

applying abstractions across all nodes of a variable in an AND/OR search space may leave

partial (invalid) configurations (for example, Figure 3.7), such abstractions were prohibited.

An algorithm called Proper AOAS, or pAOAS [Broka et al., 2018], avoided such probes by only

allowing abstractions across nodes of a variable that were under the same AND node of the

most recent branching variable ancestor in the AND/OR tree (see Figure 3.8). This ensures

expansion to only valid probes. These restricted abstractions were called proper abstractions

[Broka et al., 2018].

Definition 3.7 (Proper Abstractions)

Consider abstracting frontier nodes of variable X, FX . Let br∗(nX) be the most recent an-

cestor node nY of nX such that Y is a branching variable in T . Now let

pA = {pAi |
⋃
i

pAi = FX ;
⋂
i

pAi = ∅;n, n′ ∈ Ai =⇒ br∗(n) = br∗(n′)}.

Proper abstractions over X are the set of abstractions that are equivalent to or refine pA.

A possible probe resulting from a proper abstraction is illustrated in Figure 3.9. Since B was

a branching variable and both of its AND node nB=0 and nB=1 were kept after abstraction,

73

subsequent abstractions are constrained underneath their respective sub-trees resulting in a

relatively large probe being generated.

Unfortunately, properness limits the diversity of generated probes and ability to control

the size of the sampled AND/OR trees as it constrains the set of AND nodes that can be

abstracted together into the same abstract state. In particular, instead of the probe size

(number of AND nodes) being bounded by O(nm), as in ORAS, we find that the number of

AND nodes constructed via a proper abstraction can grow as quickly as O(n ·mb+1), where n

is the number of variables, b bounds the number of branching variables along any path, and

m bounds the maximum number of abstract states per variable. This means that proper

AND/OR abstraction schemes are not scalable whenever b >> 0, unless m = 1, in effect

limiting us to basic Importance Sampling. Various ad hoc schemes were used in Broka et al.

[2018] to control the probe sizes produced by proper abstractions. For more details of the

algorithm and its analysis see Broka et al. [2018]. We illustrate the trade-off between OR

abstraction and these two variants of AND/OR abstractions in an example, as well as via

an analysis in the empirical evaluations (Section 5.10.

Contrasting Scalability. Figures 3.10b, 3.10c, and 3.10d show probes generated by AOAS,

ORAS, and pAOAS, respectively, sampling over a search tree guided by the pseudo tree in

Figure 3.10a. AND nodes are abstracted together according to their domain value. White

nodes indicate nodes that were generated but discarded by the abstraction process. Faded

yellow nodes are selected representatives from their respective abstract states that were later

pruned, as indicated by a red “X”. Yellow nodes constitute the final probe. In this example,

ORAS generates 26 nodes, eight of which are retained in the final probe, which represents

only two full configurations: (X, Y, Z, T,R, L=0,M=0) and (X, Y, Z, T,R, L=0,M=1). This

is the smallest probe that can be generated by ORAS given the abstraction function used. In

contrast, pAOAS has no choice but to expand and keep the entire AND/OR search tree of

42 nodes. This is a consequence of every variable being a branching variable in the pseudo-

74

X

T R L M

ZY

(a) Guiding pseudo tree.

R

0 1

T

0 1

M

0 1

L

0 1

L

0 1

T

0 1

Z

0 1
X

Y

0 1

Y

0 1
X

X
0 1

X

(b) AOAS Probe [11 nodes, 16 solutions].

10

10 10

X

X

10 10

10 10

10 10

10 10

10 10

X

X

X

X

X

T

R

L

M

Z

Y

(c) ORAS Probe
[8 nodes, 2 solutions].

R

0 1

T

0 1

R

0 1

T

0 1

M

0 1

L

0 1

M

0 1

L

0 1

R

0 1

T

0 1

R

0 1

T

0 1

M

0 1

L

0 1

M

0 1

L

0 1

Z

0 1

Y

0 1

Z

0 1

Y

0 1

X
0 1

(d) pAOAS Probe [42 nodes, 128 solutions].

Figure 3.10: Contrasting scalability of various Abstraction Sampling schemes.

tree, and that no proper abstraction can span across these branches: for example, once our

abstraction has retained (X = 0) and (X = 1), no subsequent abstraction step can merge or

prune either of the sub-trees, causing the probe to grow uncontrollably. On the other hand,

the resulting 42-node tree corresponds to the full space of 128 full configurations, thanks to

the compactness of the AND/OR representation. Finally, AOAS gives both compactness and

scale control. The illustrated probe has 11 nodes and had generated only 20 nodes during

its construction, and represents 16 full configurations of the model, far more than ORAS.

AOAS probes can vary in their size and representation, but always have as much or more

representation as ORAS, while avoiding the uncontrolled growth of pAOAS probes.

Reducing Probe Size via Exact Heuristic Estimates. Using the Weighted Mini-Bucket

heuristic, it is possible to identify when we reach a node for which the heuristic is exact (i.e.

h(n) = h∗(n) = V (n)). When this occurs, there is no longer a need to extend the probe

75

below the node as the value of the node - i.e., the Z value of the sub-tree it roots - is known

exactly. This occurs for nodes whose variable, and all variable descendants in the guiding

pseudo tree, have induced-width bounded by the i-bound i used by the weighted mini-bucket

that generated the heuristic.

3.4 Candidate Abstractions

Since Abstraction Sampling is a type of stratified importance sampling, we drew inspiration

from the stratified importance sampling domain, such as from Theorem 2.3: Rizzo [2007]

which suggests several approaches in attempts to achieve variance reduction. One approach

is to use abstractions that partition nodes into equal-mass abstract states under the proposal,

mimicking the theorem’s condition of equal-probability strata. An alternative approach is to

try to minimize the variance of the true underlying mass within abstract states (thus maxi-

mizing variance of the total masses of the abstract states). The theorem’s variance reduction

expression is proportional to this quantity. A third approach is to employ more refined ab-

stractions, with more abstract states per layer. At the same time, our search perspective

suggests to always unify nodes that root identical sub-trees, whenever such information is

available. One way to group nodes with identical subtrees is by using a graph notion called

context, leading to what are called Context-based abstractions, described next.

3.4.1 Context-Based Abstractions

In Context-based abstractions, nodes are grouped into abstract states based on a graph

notion of context. The context of a variable X in a pseudo-tree T identifies a subset C(X)

of its ancestor variables whose assignment uniquely determines the AND/OR sub-tree below

the node [Dechter and Mateescu, 2007]. Therefore, if two nodes corresponding to variable X

in the search tree that have the same context (namely, the same assignment to their context

76

variables), and represent the same value X = x, then they root identical sub-trees. With

this, we can say

Corollary 3.14

When the abstraction function is context-isomorphic, namely, a(n) = a(n′) ⇐⇒ C(n) =

C(n′), and if h is a mini-bucket heuristic, then the partition function estimate Ẑ is exact for

ORAS (or equivalently, for AOAS on a chain pseudo tree). This comes from the fact that the

Mini-Bucket heuristic estimate is the same for nodes sharing the same full context (and so

a also refines h in this case), and then follows directly from Lemma 3.10.

This provides us intuition that the context is useful for abstracting nodes togeher and forms

the rationale behind two possible families of abstraction functions: relaxed context-based and

randomized context-based abstractions.

Definition 3.8 (Relaxed Context-based abstractions)

Let C(X) be the context of X according to pseudo-tree T . An abstraction a at X is relaxed

context-based relative to a subset CRel, CRel ⊆ C(X) ∪ X, iff for every n1 and n2 having

var(n1) = var(n2) = X, we have: a(n1) = a(n2) ⇐⇒ πCRel
(n1) = πCRel

(n2), where

πCRel
(n) is the projection of path(n) onto CRel (namely, the assignments corresponding to

the relaxed context, CRel). If |CRel| = j we say that we use a j-level relaxed context-based

abstraction. In particular, 0-level abstractions puts all the nodes of a variable in a single

abstract state.

When abstracting nodes of a variables according to j-level relaxed context-based abstractions,

the number of abstract states is bounded by kj, where k bounds the domain sizes of the

relaxed-context variables.

The second family of context-based abstractions introduces randomness into the actual way

the abstraction depends on the context. This can facilitate the generation of many different

77

abstractions in an automated manner and potentially lead to tighter estimates. In what are

called Randomized Context-Based abstraction, nodes are assined into abstract states based

on the assignment to a variables full context and the value of a random hash function. The

scheme ensures that nodes that share the same full context are placed into the same abstract

state.

Definition 3.9 (randomized context-based abstraction)

Let k ∈ I+ and d ∈ I+ be parameters. Let N be the number of variables in the model and

K = {1, 2, .., k}. We assume that all domains Di of the variables are subsets of the posi-

tive integers. We construct an abstraction a, by first sampling a vector κ = (κ1, κ2, ..., κN)

uniformly at random from KN that will be used for hashing. Given a node nX with par-

tial assignment path(nXj
) = (x1, x2, x3, ..., xj), we compute its hash value hash(nXj

) =∑j
i=1 κixi1C(Xj)∪X(Xi), where 1 is the indicator function. We define its abstraction func-

tion value a(nXj
) = hash(nXj

) mod nAbs. The parameter nAbs determines the number of

abstract states for each layer of the tree.

3.4.2 Value-Based Abstractions

We now introduce a new way to form abstractions that we call Value-Based Abstractions.

They are defined by (1) a positive real-valued function µ : DX → R+, where DX is a set of

configurations for the variables X, and by (2) a partitioning scheme ψµ that assigns nodes

to abstract states based on their µ value and in an order-consistent manner as defined next.

Definition 3.10 (Value-Ordered Partitioning)

Given a parameter nAbs bounding the number of abstract states and a function µ : DX → R+,

a partitioning function ψµ : DX → {A1, A2, ...AnAbs}, is order-consistent with µ if for any

n1 ∈ Ai and n2 ∈ Aj, i < j ⇔ µ(n1) ≤ µ(n2).

78

3.4.2.1 Value-Based Abstraction Classes

We introduce three Value-Based Abstraction classes, each characterized by a unique value

function µ that signifies a notion of similarity between nodes.

Unlike partial or hashed contexts as used by the context-based abstraction schemes, heuristic

estimates of V (n) can often provide quantitative insight into potential similarities of V (n)

values. In particular, this intuition holds when using heuristics that provide bounds on V (n)

such as those via Weighted Mini-Bucket Elimination (wMBE) [Dechter and Rish, 2003, Liu

and Ihler, 2011a]. Heuristic-Based (HB) Abstractions leverage this notion of similarity:

Definition 3.11 (Heuristic-Based Abstractions)

A Heuristic-Based (HB) abstraction uses µ(n) = h(n), where h(n) is a heuristic estimate of

V (n).

However, recall that within AND/OR trees guided by a branching pseudo tree, the ancestor

branching mass R(n) plays an important role. Thus another intuition is to capture both

V (n) and R(n) in our grouping of nodes. However, without access to V (n) or R(n) we

cannot evaluate this product directly. Instead we can use the intuition that grouping based

on estimated values of h(n)r(n) may result in sets of nodes also with similar V (n)R(n). This

is captured by Heuristic and Ancestral Branching-Based (HRB) abstractions:

Definition 3.12 (Heuristic and Ancestral Branching-Based Abstractions)

Heuristic and Ancestral Branching-Based (HRB) abstractions use µ(n) = h(n)r(n), where

h(n) is a heuristic estimate of V (n) and r(n) is an estimate of R(n).

A third intuition for generating abstractions is to group nodes by their estimated contribution

to the overall partition function as estimated by w(n)ϱ(n) = w(n)g(n)h(n)r(n). Q-Based

abstractions aim to capture this:

79

Algorithm 5: ΨsimpleVB

1 baseCardinality ← ⌊ |n|
nAbs⌋

2 extras← |n| mod nAbs
3 n∗ ← SORT (n, µ, low-to-high)
4 jbegin ← 1
5 foreach i← 1, ..., nAbs do
6 if extras > 0 then
7 jend ← jbegin + baseCardinality
8 extras← extras− 1

9 else
10 jend ← jbegin + baseCardinality − 1
11 Ai ← {n∗

jbegin
, ..., n∗

jend
}

12 jbegin ← jend + 1

13 end

14 A← ∪nAbs
i=1 Ai

15 return A

Definition 3.13 (Q-Based Abstractions)

Q-Based (QB) abstractions use µ(n) = w(n)ϱ(n) = w(n)g(n)h(n)r(n), where w(n) is the

importance weight assigned to node n, ϱ(n) is the estimate of Q(n), g(n) is the path cost

from the root to n, h(n) is a heuristic estimate of V (n), and r(n) is an estimate of R(n).

3.4.2.2 Ordered Partitioning Schemes

Next we describe seven partitioning schemes ψ to be used with µ to partition the nodes

into abstract states. Together, the value function µ and partitioning method ψ define a

value-based abstraction function.

Example 3.4.2.1 (Running Node Partitioning Example)

Assume we have eight nodes with the following µ(n):

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100 (3.27)

and want to partition the nodes into nAbs = 4 abstract states. As we describe each parti-

tioning scheme, we also illustrate how the scheme would partition these nodes.

80

For all of the partitioning schemes described below, if the number of nodes to be partitioned

|n| ≤ nAbs, then each node n ∈ n is placed into its own abstract state.

We now present seven value-based node partitioning strategies.

1. simpleVB. The simpleVB (simple value-based) scheme groups nodes having similar

µ(n) into the same state by: 1) nodes are ordered by µ(n) (low to high), and 2) nodes are

partitioned into abstract states aiming towards (approximately]) equal size abstractions.

Running Example:

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
simpleV B−−−−−−→ {1.0, 1.1}, {1.2, 1.3}, {1.4, 1.5}, {10, 100}.

This method leverages speed while still aiming to roughly group nodes with similar µ(n)

together.

2. minVarVB. minVarVB uses Ward’s Minimum Variance Hierarchical Clustering, also

known as Ward’s Method [Ward, 1963] (Algorithm 6), to cluster nodes into nAbs abstract

states. More specifically, minVarVB partitions n into abstract states A = {A1, ...,AnAbs}

according to

min
A

(V arµ(A1) + ...+ V arµ(AnAbs)). (3.28)

Ward’s Method can be combined with Lance-Williams linear distance updates [Lance and

Williams, 1967] to increase efficiency.

Running Example:

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
minV arV B−−−−−−→ {1.0, 1.1, 1.2}, {1.3, 1.4, 1.5}, {10}, {100}.

In contrast to simpleVB, minVarVB takes more time due to Ward’s Method’s complexity,

nevertheless provably forms abstractions that minimize the total within variance of µ(n)

81

Algorithm 6: Ward’s Method
1. Initialization: Treat each data point as an individual cluster. Assign each cluster a label.

2. Compute Pairwise Distances: Calculate the pairwise distances between all clusters. Various
distance metrics can be used, such as Euclidean distance.

3. Cluster Merging Iteration:

(a) Identify the pair of clusters Ci and Cj that, when merged into a new cluster Cij , results in the
smallest increase in the overall within-cluster variance. This is determined using the formula:

∆V ar = V ar(Cij)− (V ar(Ci) + V ar(Cj))

where V ar(Cij) is the variance of the merged cluster, and V ar(Ci) and V ar(Cj) are the
variances of clusters Ci and Cj , respectively.

(b) Update distance measures between the newly merged cluster and all other clusters.

4. Repeat: Repeat steps 2-3 until the desired number of clusters is achieved.

among the abstract states.

3. equalDistVB. In attempt to combine the intuition from minVarVB and the speed of

simpleVB, equalDistVB greedily adds nodes in order of µ (low to high) into an abstract state

Ai until

µ(A1,...,i)=
i∑

j=1

∑
n∈Aj

µ(n) ≥ Qi=
i ·

∑
n′∈n µ(n

′)

nAbs
, (3.29)

i.e., until the total sum of node values from A1, ...,Ai reaches or exceeds
i

nAbs
of the total

across all of the nodes being partitioned. When paired with Q-based abstractions, equalD-

istVB aims to partition nodes into equal mass states under the proposal, motivated by Rizzo

[2007].

Running Example:

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
equalDistV B−−−−−−−→ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100}, {}, {}, {}

Although equalDistVB hopes to strike a balance between efficiency and low variance of µ(n)

within each abstract state, from the running example we can see it may yield undesirable

partitionings for skewed distributions of µ(·) values. In the example, all of the nodes need to

82

Algorithm 7: ΨequalDistVB

1 n∗ ← SORT (n, µ, low-to-high)
2 j ← 1
3 foreach i← 1, ..., nAbs do
4 Ai ← {}
5 while µ(A1,...,i) < Qi do
6 Ai ← Ai ∪ {n∗

j}
7 j ← j + 1

8 end

9 end

10 A← ∪nAbs
i=1 Ai

11 return A

be placed into the first of four abstract states before the sum of their values reaches/exceeds

1
4
of the total of all nodes being partitioned. Thus, the remaining abstract states end up

empty.

4. equalDistVB2. A second version of the equalDist scheme, equalDistVB2 uses a re-

versed sort ordering in attempt to mitigate overfilling of abstract states. Modifying the sort

order from low-to-high to high-to-low in Line 1 of Algorithm 7 converts equalDistVB to

equalDistVB2.

Running Example:

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
equalDistV B2−−−−−−−−→ {100}, {}, {}, {10, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0}

We see that equalDistVB2 can still over-pack abstract states. The next two variants aim to

mitigate this issue further.

5. equalDistVB3. In order to further lessen over-packing and ensure abstract states are

not left empty, equalDistVB3 modifies equalDistVB2 so that, after processing each abstract

state, the next state always has a node added to it by default before checking the abstract

state fill condition. In Algorithm 7, modifying the sort order from low-to-high to high-to-

low in line 1 and Ai ← {} to Ai ← {n∗
j}; j ← j + 1; in line 4 converts equalDistVB to

equalDistVB3.

83

Running Example:

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
equalDistV B3−−−−−−−−→ {100}, {10}, {1.5}, {1.4, 1.3, 1.2, 1.1, 1.0}.

While still very efficient, equalDistVB3 ensures that the provided nAbs granularity is hon-

ored, allowing users better control of the search vs. sampling interpolation possible with

Abstraction Sampling.

6. equalDistVB4. The final equalDist variant, equalDistVB4, aims for more even partition-

ing. Before processing each abstract state Ai, a new cut-off is determined based the remain-

ing nodes nrmi
= n \

⋃
j∈{1,...,i−1}Aj and remaining abstract states nAbsrmi

= nAbs− i+1:

Q̂i =

∑
n∈n\

⋃
j∈{1,...,i−1} Aj

µ(n)

nAbs− i+ 1

=

∑
n∈nrmi

µ(n)

nAbsrmi

.

(3.30)

Starting from i = 1, nodes are added to abstract state Ai while µ(Ai) < Q̂i. Modifying the

sort order from low-to-high to high-to-low in Line 1 and µ(A1,...,i) < Qi to µ(Ai) < Q̂i in

Line 5 of Algorithm 7 converts equalDistVB to equalDistVB4.

Running Example:

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
equalDistV B4−−−−−−−−→ {100}, {10}, {1.5, 1.4, 1.3}, {1.2, 1.1, 1.0}.

Still computationally efficient, equalDistVB4 spreads nodes with small values more evenly

across abstract states.

7. randVB. It can be beneficial to rely on randomness to ensure a diverse sampling of

abstractions. randVB does this by sampling nAbs−1 partition points uniformly at random

and without replacement from between nodes sorted according to µ(·), and then partitions

the nodes accordingly. The resulting abstract states ensure that nodes are still grouped

according to µ(·), but the sizes of those groups vary.

84

Algorithm 8: ΨrandVB

1 s ∼ Unif({M ⊆ {1, ..., |n| − 1} | |M | = nAbs− 1})
2 s∗ ← SORT (s)
3 n∗ ← SORT (n, µ,high-to-low)
4 j ← 1
5 foreach i← 1, ..., nAbs−1 do
6 Ai ← {n∗

j , ..., n
∗
s∗i
}

7 j ← s∗i + 1

8 end
9 AnAbs = {n∗

j , ..., n
∗
|n∗|}

10 A← ∪nAbs
i=1 Ai

11 return A

Running Example:

ex1: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
randV B−−−−→ {100, 10}, {1.5}, {1.4, 1.3, 1.2}, {1.1, 1.0};

ex2: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
randV B−−−−→ {100}, {10, 1.5, 1.4, 1.3}, {1.2, 1.1}, {1.0};

etc.

Complexity. Assuming µ(·) is O(1), each of the proposed partitioning schemes have time

complexity O(|n| log |n|) and space complexity O(|n|), with the exception of minVarVB,

which requires O(|n|2) for both.

3.4.3 Random-Only Abstractions

Another approach is to use purely randomized abstraction schemes. At first glance, one may

not expect such schemes to perform well, but randomization in concert with an informative

heuristic and proposal may be beneficial.

Intuition. With a good proposal function, stochastic selection of a representative node

within each abstract state favors nodes with greater mass. Random node assignments to ab-

stract states then increase the chances of selecting nodes that might otherwise be overlooked,

promoting a more diverse probe distribution.

85

Algorithm. More concisely referred to as RAND, the simpleRand scheme partitions nodes

by: 1) first shuffling nodes to create a uniformly random permutation, and then 2) parti-

tioning the nodes into nAbs number of abstract states of (approximately) equal size.

Algorithm 9: ΨsimpleRand

1 baseCardinality ← ⌊ |n|
nAbs⌋

2 extras← |n| mod nAbs
3 n∗ ← RANDOM SHUFFLE(n)
4 jbegin ← 1
5 foreach i← 1, ..., nAbs do
6 if extras > 0 then
7 jend ← jbegin + baseCardinality
8 extras← extras− 1

9 else
10 jend ← jbegin + baseCardinality − 1
11 Ai ← {n∗

jbegin
, ..., n∗

jend
}

12 jbegin ← jend + 1

13 end

14 A← ∪nAbs
i=1 Ai

15 return A

Running Example:

ex1: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
simpleRand−−−−−−−→ {1.4, 1.1}, {1.2, 10}, {1.0, 1.3}, {100, 1.5};

ex2: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100
simpleRand−−−−−−−→ {1.0, 10}, {100, 1.5}, {1.4, 1.2}, {1.1, 1.3};

etc.

Complexity. Both time and space are O(|n|).

3.5 Empirical Evaluation

We performed empirical evaluations to compare the various abstraction sampling algorithms

as well as different abstraction functions. Main objectives were to observe properties of the

algorithms and abstractions functions in practice, compare performance of various setups,

and ultimately propose an expected best performing setup.

86

3.5.1 Setup

Benchmarks. High-throughput experiments were performed on over 480 problems from

five well known partition function benchmarks: DBN, Grids, Linkage-Type4, Pedigree, and

Promedas.

DBN. Deep Boltzmann Networks (DBNs) are a class of probabilistic graphical models

composed of multiple layers of hidden units with undirected connections. They extend

Restricted Boltzmann Machines (RBMs) by stacking several RBMs on top of each other,

enabling the network to model complex data distributions. In DBNs, the lower layers capture

low-level features, while the higher layers capture more abstract representations. DBNs are

useful in unsupervised learning for tasks such as feature learning, dimensionality reduction,

and generative modeling.

Grids. Grid probabilistic graphical models have a grid-like graph structure and are com-

monly used to represent spatial relationships. They are particularly useful in applications

like image processing where pixels can be represented as nodes in a grid.

Pedigree and Linkage-Type4. Pedigree graphical models are probabilistic frameworks

used to represent family relationships and inheritance patterns, particularly for genetic traits.

These models consist of directed acyclic graphs where nodes denote individuals and edges

represent parent-child connections. They incorporate Mendelian genetics to assess the trans-

mission of traits and genetic disorders across generations. Pedigree models are essential in

genetic counseling and medical research, as they help analyze the inheritance of traits and

identify carriers of genetic conditions. The Linkage-Type4 benchmark is a particularly large

version of such models, each consisting of over 5000 variables, more than triple that of many

other large benchmarks used. We introduce this benchmark to challenge our algorithms and

better demonstrate their performance.

87

Table 3.1: Exact Benchmark Statistics. Average statistics for Exact problems. N:
number of instances, |X|: average number of variables, k: average of problems’ largest
domain sizes, w*: average induced tree-width, d: average T depth.

Benchmark N |X| k w* d

DBN 66 67 2 29 30
Grids 8 250 2 22 49
Pedigree 25 690 5 25 89
Promedas 65 612 2 21 62

Promedas. Promedas, short for PRObabilistic MEdical Diagnostic Advisory System, is a

probabilistic graphical model designed for medical diagnostics. It integrates a large database

of medical knowledge, consisting of thousands of diagnoses and symptoms, and models the

relationships between them. The system uses a Bayesian network framework, allowing it

to calculate the probability of various diagnoses given a patient’s symptoms. Graphical

model inference algorithms can be used on Promedas instances to suggest possible medical

conditions based on observed clinical data [Wemmenhove et al., 2007].

The benchmarks were split into two groups based on difficulty:

Exact: problems for which partition function solutions are tractable to compute exactly

and for which exact solutions are known.

LARGE: problems for which partition function solutions are not tractable to compute

exactly and for which exact solutions are not known.

Statistics for the Exact benchmarks are shown in table 3.1, and those for the LARGE

benchmarks shown in table 3.2.

Implementation and Compute. All algorithms were implemented in C++. All experi-

ments were run on a 2.66 GHz processor.

Heuristic. To inform the sampling proposal, we use Weighted Mini-Bucket Elimination

(wMBE) Section 2.3.1.4 as the heuristic function. WMBE is known to pair well with both OR

88

Table 3.2: LARGE Benchmark Statistics. Average statistics for LARGE prob-
lems. N: number of instances, |X|: average number of variables, k: average of problems’
largest domain sizes, w*: average induced tree-width, d: average T depth.

Benchmark N |X| k w* d

DBN 48 216 2 78 78
Grids 19 3432 2 117 220
Linkage-Type4 82 6550 5 45 761
Promedas 173 1194 2 72 114

and AND/OR search [Mateescu and Dechter, 2005]. The i-bound (iB) parameter controls

the strength of the wMBE heuristic; higher i-bounds generally lead to stronger heuristics, and

thus better proposals, at the expense of requiring more time and memory to compute. We

standardize our experiments by using the same i-bound when comparing across algorithms.

Variable Order. Every problem instance is associated with a particular variable ordering

that all algorithms use. The ordering selection process attempts to minimize the resulting

induced width and thus determines the structure of the pseudo-tree and the effectiveness of

the heuristic. The statistics shown in table 3.1 and table 3.2 are computed based on these

orderings.

Competing Schemes. The Abstraction Sampling algorithms were compared against Im-

portance Sampling (IS) and state-of-the-art Dynamic Importance Sampling (DIS) [Lou et al.,

2019] using an “equal-time” policy, which produces probabilistic bounds as well as estimates

in an anytime manner. Additionally, the work of Broka et al. [2018] showed favorable perfor-

mance of ORAS and pAOAS using context-based abstractions against Weighted Mini-Bucket

Importance Sampling (wMBIS) [Liu et al., 2015] and IJGP-SampleSearch (IJGP-ss) [Gogate

and Dechter, 2011], and thus by comparing here AOAS performance with ORAS and pAOAS,

we also implicitly compare against these wMBIS and IJGP-ss as well.

89

3.5.2 Abstraction Sampling Algorithm Comparisons

In order to compare properties and performance of various Abstraction Sampling algorithms,

a first set of experiments were run on three classes of AS algorithms: AOAS, pAOAS, and

ORAS, each using a depth-first ordering of the same pseudo tree per problem to guide the

construction of the search space.

Abstraction Functions. To compare the various abstraction sampling schemes, we used

Relaxed Context-Based (RelCB) and Randomized Context-Based (RandCB) abstraction

functions with varying abstraction granularities. For RelCB, we used relaxed context sizes

ranging from 0 to 8. AOAS and ORAS using RelCB with Abs of 0 abstract all nodes of a

variable into a single abstract state and correspond to standard Importance Sampling of

their respective trees. We bounded the number of abstract states RandCB will form per

variable to either 16 or 128. Note that for a model containing only binary variables, RelCB

with a relaxed context size of j (denoted RelCB-j) bounds the number of abstract states per

level to 2j.

Additional Setup Details. All experiments were run for one hour on each instance, using an

8 GB memory limit (increased to 24 GB for the larger Linkage-Type4 benchmark problems).

Performance Measure. To evaluate the performance of the various algorithms, we calcu-

late error as: error = log10 Ẑ − log10 Z
∗, where log10 Ẑ is the log10 of the experimentally

obtained Z estimate, and log10 Z
∗ is the reference log10 Z value. When the exact Z value

is unknown, an empirical estimate based on an average over 100 × 1hr of abstraction sam-

pling is used as the reference. We verified that 98% of these estimates fell within the 95%

probabilistic bounds determined by the DIS scheme.

We also count the number of problems an algorithm is able to produce a non-zero estimate

for. We refer to this count as the “number of problems solved”. It’s important to recognize

90

that “solving” more complex problems can lead to less accurate estimates. However, even a

less accurate estimate is preferable to not having any estimate at all. Therefore, the number

of problems solved remains an important factor to consider.

Primary Questions of Interest. Our empirical evaluations aim to address the following

key points/questions:

1. Scalability : How well can the probe size be controlled across the various algorithms?

A good Abstraction Sampling algorithm will allow users the ability to control probe

sizes according to their time/memory constraints.

2. OR vs AND/OR: What is the effect of using the more compact AND/OR search

space? Can AND/OR schemes control probe sizes and scale well, and also provide

better estimates?

3. Accuracy : How does the performances of AOAS, pAOAS, and ORAS compare to each

other, and how do they compare to that of other state-of-the-art schemes?

3.5.2.1 Aggregated Results

Figure 3.11 shows experimental results averaged across instances of LARGE DBN, Grids,

Linkage-Type4, and Promedas benchmarks separately. Experiments were performed using

AOAS, pAOAS, and ORAS, each run with with RelCB and RandCB abstraction functions using

different abstraction granularities (Abs). In the table, (n*) are the number of problems for

which a non-zero estimate was found, (log(err)) is the average log10 Z error, (error distr.)

counts the number of problems solved within the error threshold shown, (#probes) is the

average number of probes generated, and (#nodes/probe) is the average size of a probe.

Color bars act as visual aids for quickly observing relative magnitudes of values. Red n*

cells indicate an algorithm’s inability to solve relatively many problems. Lines in bold

91

(a) DBN (b) Grids

(c) Linkage-Type4 (d) Promedas

Figure 3.11: Aggregated statistics. Aggregated results are shown for AOAS, pAOAS,
and ORAS (using a depth-first ordering of T) with RelCB and RandCB on problem in-
stances of the LARGE DBN, Grids, Linkage-Type4, and Promedas benchmarks using
different abstraction granularities (Abs). For RelCB, the abstraction granularities cor-
respond to the size of relaxed context to be used. For RandCB the granularity bounds
the number of abstract states per level. Displayed are the number of problems for which
a non-zero estimate was found (n*), average log10 Z error (log(err)), count of problems
solved within an error threshold (error distr.), average number of probes (#probes),
and average size of a probe (#nodes/probe). Color bars visually show the magnitude of
the values, and darker colors show greater values. Red n* cells indicate an algorithm’s
inability to solve relatively many problems. Lines in bold indicate the best performing
algorithms. Each benchmark also displays the average number of nodes (n), domain
size (d), tree-width (w), and AND/OR and OR search tree height (h) of its problems.
Also shown in red text at the top of the table is competing state-of-the-art scheme DIS’s
average results on the instances of each benchmark.

92

indicate the best performing algorithms. Each benchmark also displays the average number

of nodes (n), domain size (d), the maximum bucket width encountered by the heuristic (w),

and AND/OR and OR search tree height (h) for the problems. Also shown in red text

at the top of the table is competing state-of-the-art scheme DIS’s average results on the

instances of each benchmark. The results from the Pedigree benchmark are omitted as its

problem instances were easy for all algorithms and no significant results were observed. In

the following paragraph we will look more closely at how probe size scales with increased

granularity of abstractions, specifically focusing on how AOAS and pAOAS can control probe

sizes.

Size of Probes. One of the hallmarks of the new AOAS algorithm is its ability to circumvent

the properness requirement of pAOAS while still remaining an unbiased estimator. This

provides a significant advantage in graphs whose pseudo-tree branches to capture useful

conditional independence relationships: by giving finer-grain control over the abstraction

state sizes, we can better control the size of each probe and draw samples more quickly.

Examining the probe sizes of AOAS across each problem type in the aggregation tables we

see that as the context size increases (the column “Abs” in each table), the size of the AOAS

probes grow more slowly than pAOAS, allowing AOAS to better regulate its probe size. For

example, within the Linkage-Type4 results we see the average probe size for pAOAS using

RelCB go from 829 to 463468 when increasing granularity from 0 to 8, whereas for pAOAS

the average size jumps from 759 to 34177733 just going from granularity 0 to 4.

Notabley, AOAS probes were often smaller than those of ORAS for the same abstraction schema

with larger granularities. For example, for RandCB-256 on the Grids problems, AOAS’s probes

averaged 66376 nodes per probe, where as ORAS’s probes were significantly larger averaging

786178 nodes per probe.

93

AOAS Performance. An important goal of our empirical analysis is to identify which

scheme, if any, stands out as being the most competitive. In order to capture relative

performance, we look at two statistics: (i) the number of problems solved for each benchmark,

and (ii) the average error for those problems.

AOAS is always among the algorithms that solve the greatest number of problems within each

benchmark - solving 48 problems for DBN, 19 for grids, and 173 for Promedas - and was

the only scheme able to solve 41 problems within the Linkage-Type4 benchmark, with the

runner up being ORAS which was only able to solve 16 instances.

Furthermore, AOAS’s average error across the benchmarks is always among the smallest,

sometimes much smaller than that of the other schemes. For example, in the Linkage-Type4

benchmark AOAS with RelCB-8 had an average error of −11.090 whereas the next smallest

error from any other scheme was −18.971 by ORAS also with RelCB-8. However, AOAS did not

always have the overall smallest average error. For example, for DBN ORAS with RandCB-

128 had a somewhat smaller average error of −2.821 as compared to AOAS with RandCB-128

which did slightly worse with an average error of −3.531).

In comparison with pAOAS, AOAS’s better overall performance is likely in part due to being

able to form more flexible abstractions which can allow for more diverse probes and more

advantageous grouping of nodes. In comparison with ORAS, AOAS’s better performance is

likely in part due to its probes being able to take advantage of the AND/OR search space

which captures more configurations given comparable probe sizes. Furthermore, we explained

earlier that sometimes AOAS can produce smaller probes simply because of being able to take

advantage of an exact heuristic more often, which can lead to more samples being drawn (as

can be seen by the #probes column).

Comparing with Other Non Abstraction Sampling Schemes. For all LARGE bench-

marks, both ORAS and AOAS with RelCB-0 (i.e., basic Importance Sampling) were outper-

94

Problem Size Total ∈Bnds AOAS≥ AOAS>

DBN
Exact 66 62 57 47

LARGE 48 40 38 35

Grids
Exact 8 5 5 2

LARGE 19 7 7 6

Linkage∗ LARGE 82 82 82 82

Pedigree Exact 24 24 24 19

Promedas
Exact 65 58 49 29

LARGE 173 165 141 113

Table 3.3: How often AOAS estimates: fall within DIS probabilistic bounds (∈Bnds), were
comparable/better than DIS’s (AOAS ≥), and were strictly better than DIS’s (AOAS >)

formed by Abstraction Sampling with positive granularities indicating Abstraction Sampling

superiority over basic importance sampling. For example, for LARGE DBN, ORAS and AOAS

with RelCB-0 resulted in average errors of −3.632 and −3.251, respectively, but ORAS, pAOAS,

and AOAS, each with RandCB-16, produced average errors ranging from −2.704-to2.328. At

the top of each aggregation table in red we see the average error from DIS’s estimates.

With the exception of the Grids benchmarks, the average error by the Abstraction Sampling

schemes were far better than that of DIS. For for example, for DBN the average error by

the Abstraction Sampling schemes is roughly between −5 and −2, whereas DIS’s average

error was −39.463. Furthermore, in Broka et al. [2018] we showed that ORAS and pAOAS are

highly competitive against Weighted Mini-Bucket Importance Sampling [Liu et al., 2015]

and IJGP-SampleSearch [Gogate and Dechter, 2011]. By improving over the performance of

ORAS and pAOAS, we also demonstrate competitiveness of AOAS to these other non-Abstraction

Sampling state-of-the-art schemes.

We also performed a more detailed analysis with respect to DIS. Table 3.3 compares AOAS

with RandCB-256 abstractions to DIS. For each benchmark partitioned into Exact and

LARGE instances, we display the total number of instances (shown under Total), we count

how often AOAS’s Z estimates: (i) fall within DIS 95% probabilistic bounds (∈ Bnds), (ii)

95

were comparable or better than DIS’s estimates† (AOAS ≥), or (iii) were strictly better

than DIS’s estimates (AOAS >). Note that in order to compare Abstraction Sampling to

DIS fairly, we selected only a single set of Abstraction Sampling parameters - namely AOAS

RandCB-256 - that had been observed to perform generally well across all benchmarks.

We see that in most cases AOAS estimates fall within the 95% confidence bounds produced

by DIS, indicating a general quality of AOAS’s estimates. For example for LARGE Promedas

problems, we see AOAS estimates for 165 out of the 173 problems falling within DIS’s 95%

confidence bounds. AOAS estimates are also often comparable or better than that of DIS.

This is particularly true of hard problems. For example, for the 173 LARGE Promedas

problems, AOAS’s estimates were comparable or better than that of DIS for 141 of the in-

stances, and strictly better than DIS’s estimate for 113 of the instances. We also note that

unlike AS algorithms (AOAS in particular), DIS was unable to generate estimates for Linkage-

Type4 problems. AOAS’s performance notwithstanding, it is important to remember that DIS

produces bounds while the current Abstraction Sampling schemes do not.

Differences Across Problem Types. A side observation made during our experimentation

is that RelCB and RandCB seem to behave differently for different types of problems. We see

that for DBN, Pedigree, and Promedas problems, RandCB abstractions generally perform

better than RelCB with RandCB variants generally achieving smaller errors. In contrast,

for Grids and Linkage-Type4 problems, RelCB abstractions perform better and especially

for larger context sizes.

3.5.2.2 Representative Plots

Figure 3.12 shows plots of AOAS, ORAS, pAOAS, and DIS performance on a representative

LARGE Grid and LARGE Linkage-Type4 problem, respectively. Under the problem name

†comparable means falling within ±0.1 or ±0.5 of the DIS log10 Z value, for Exact and LARGE problems
respectively

96

(a) Plots for a representative large Grid problem.

(b) Plots for a representative Linkage-Type4 problem. Note that DIS is omitted as it was unable
to produce estimates for these problems.

Figure 3.12: Plots of AOAS, ORAS, pAOAS, and DIS on representative LARGE bench-
mark problems. The dashed line marks the reference log10 Z value. The legend marks
the abstraction function and granularity used, number of probes (#p), average size of
a probe (#n/p), and log10 Z error (est. error).

we see the number of variables (N), the number of functions (cliques), the minimum domain

size (K(min)), the maximum domain size (K(max)), the average domain size (K(avg)), the

maximum function scope size (Scope Size (max)), and the maximum function table size

(Fxn Size (max)). Underneath, each of the three subplots are labeled with the Abstraction

Sampling algorithm used. Underneath each Abstraction Sampling scheme name we see the

i-bound used, the maximum bucket width encountered by the heuristic (w), the AND/OR or

OR search tree height (h), and the heuristic upper bound on log10 Z (upB). Each algorithm’s

97

progressive log10 Z estimates are shown on the (empirical log(Z) value) axis, with the (time

(sec)) axis capturing the elapsed time. The dashed plot line marks the reference log10 Z
∗

value. The legend includes the abstraction function with the granularity used, number of

probes (#p) generated, average size of a probe (#n/p), and final log10 Z error (est. error)

for each algorithm. A DIS plot is also overlaid onto each subplot for the Grid problem for

comparison. (A DIS overlay is omitted for Linkage-Type4 because DIS was unable to provide

a non-zero estimate).

Although plots vary between benchmarks and problem instances, here we show plots that

captures the overall trends of our data, especially highlighting that AOAS tends to converge

towards the reference Z value faster, and has overall better performance than both ORAS

and pAOAS. This was also true of AOAS compared to DIS in many cases, including for Grids

as we wee in the plots with AOAS’s estimates growing closer to the reference Z value than

DIS’s. We can also see the anytime nature of the algorithms in these plots as they continue

to converge towards the reference Z value over time.

3.5.3 Abstraction Function Comparisons

In order to compare properties and performance of the various abstraction functions de-

veloped, a second array of experiments were run on three classes of abstraction functions:

Context-Based abstractions (CTX), Value-Based Abstractions (VB), and a completely ran-

domized abstraction scheme (RAND), each run with AOAS using a depth-first ordering of

the same pseudo tree per problem to guide the construction of the search space.

Abstraction Functions. The context-based schemes (displayed as CTX) were tested with

Relaxed Context-Based (rel) and Randomized Context-Based (rand) abstractions. The

value-based schemes were tested heuristic-only-based abstractions (HB), heuristic-and-r-

based abstractions (HRB), and with q-based abstractions (QB). Each function was tested

98

with each of the seven partitioning schemes: simpleVB (simple), minVarVB (minVar), the

four equalDistVB variants (equalDist[,2,3,4]), and randVB (rand). So, overall we exper-

imented with twenty-one value-based abstractions. The variant of a purely randomized

scheme described in Section 3.4.3 was also tested (RAND). With the exception of RelCB,

each abstraction function uses a hyper parameter, nAbs, which bounds the number of ab-

stract states at any level. RelCB instead uses an nCtx parameter that limits the number

of context variables used in assigning abstract states. To facilitate comparison, we report

RelCB’s nCtx parameter instead as an equivalent nAbs parameter assuming a domain size

of 2. Ex. for nCtx = 6, we instead display nAbs = 26.

Additional Setup Details. When experimenting on Exact problems, algorithms use a small

i-bound of 5 (weakening the heuristic estimates) and were given a limited time of 300sec to

increase difficulty. For LARGE problems, an i-bound of 10 and time limit of 1200sec are

used.

Primary Questions of Interest. Our empirical evaluations aim to address the following

key questions:

1. Empirical Comparison Between Context-based vs. Value-based vs. Purely Randomized

Schemes : How does AOAS performance using each of the three classes of abstractions

compare with each other?

2. Quality of Abstractions : Ignoring the time it takes to process abstractions, which

scheme generates the highest quality abstractions?

3. Best Abstraction To Use in Practice: What abstraction function and granularity is

best to use overall?

99

Class Scheme nAbs Fail nAbs Fail nAbs Fail nAbs Fail
simple 2048 0 0.440 1024 0 2.202 2048 0 0.150 1024 0 0.575
minVar 1 0 1.361 16 0 3.251 64 0 0.422 16 2 2.509

equalDist 1 0 1.365 2048 0 10.854 1024 0 0.303 1024 0 2.332
equalDist2 1 0 1.570 512 0 8.050 1024 0 0.315 64 0 2.123
equalDist3 1 0 1.489 2048 0 2.764 1024 0 0.279 256 0 2.196
equalDist4 1024 0 2.819 64 0 6.029 512 0 0.214 2048 0 1.355

rand 256 0 0.496 2048 0 2.248 2048 0 0.185 2048 0 0.752
simple 2048 0 0.491 4 0 9.667 256 0 0.225 2048 0 0.705
minVar 1 0 1.500 64 0 2.319 256 0 0.309 16 1 2.801

equalDist 1 0 1.305 256 0 10.635 1024 0 0.638 16 4 4.055
equalDist2 1 0 1.549 2048 0 6.790 16 0 0.457 16 2 3.445
equalDist3 1 0 1.405 1024 0 2.292 16 0 0.537 16 2 2.656
equalDist4 1 0 1.511 512 0 1.829 64 0 0.483 2048 0 2.024

rand 2048 0 0.451 4 0 6.122 64 0 0.666 1024 1 2.165
simple 1 0 1.469 16 0 10.076 256 0 0.297 256 1 3.164
minVar 2048 0 0.050 1024 0 1.566 64 0 0.210 64 1 1.062

equalDist 4 0 1.174 2048 0 8.134 2048 0 0.144 2048 0 0.583
equalDist2 2048 0 0.736 2048 0 4.405 1024 0 0.145 2048 0 0.539

equalDist3 2048 0 0.042 2048 0 1.771 512 0 0.148 2048 0 0.412
equalDist4 2048 0 0.130 512 0 1.754 512 0 0.134 512 0 0.437

rand 1 0 1.295 256 0 6.048 16 0 0.740 16 2 5.988
rand 4 0 1.381 4 0 5.030 16 0 0.540 1024 1 2.442
rel 1 0 1.472 64 0 4.021 64 0 0.424 64 6 4.349

RAND rand 2048 0 0.104 1024 0 1.501 1024 0 0.143 1024 0 0.513

HRB

QB

CTX

Avg. Error

HB

DBN GridsiB-5, t-300sec, Exact Promedas
Avg. Error

Pedigree
Avg. ErrorAvg. Error

(a)

Class Scheme nAbs Fail nAbs Fail nAbs Fail nAbs Fail
simple 1 0 6.540 16 0 197.931 2048 13 48.681 4 34 11.919
minVar 2048 0 1.837 1024 0 28.423 256 31 93.058 16 13 5.403

equalDist 512 0 5.423 2048 0 118.547 2048 22 46.196 512 15 5.960
equalDist2 2048 0 3.813 2048 0 91.994 1024 21 40.310 2048 12 4.982

equalDist3 2048 0 1.645 2048 0 19.277 1024 20 37.490 256 5 2.560
equalDist4 2048 0 1.643 2048 0 18.866 2048 16 30.512 512 5 2.476

rand 4 0 6.292 16 0 163.973 256 17 156.992 4 28 11.532
rand 64 0 5.710 512 0 111.104 2048 53 194.741 256 0 3.222
rel 1 0 6.267 1024 0 80.633 1024 37 129.189 16 34 11.247

RAND rand 2048 0 2.123 2048 0 19.053 1024 19 33.804 1024 10 3.936

QB

CTX

iB-10, t-1200sec, LARGE DBN Grids Linkage-Type4 Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

(b)

Figure 3.13: Summary Comparison. Each table shows the Abstraction Class
(Class), Partitioning Scheme (Scheme), bound on the number of abstract states per
level (nAbs), number of problems for which a positive solution could not be estimated
(Fail), and average log10 Z error (Avg. Error) across Exact problems (subtable (a)) and
LARGE problems (subtable (b)) in each benchmark. Color bars visualize error magni-
tudes. We hightliht the best performing algorithms: those for which: (1) difference in
total average error (summed across the benchmarks) with respect to the best such total
was less than 15% of the best, and (2) within each individual benchmark, the difference
in average error with respect to the best average error was less than 35% of the best.
(An exception to the latter criterion was granted to Exact DBN, on which the best
average error from equalDistQB3 was unusually low).

3.5.3.1 Summary Comparison.

We tested each algorithm with a range of nAbs∈ {1, 4, 16, 64, 256, 512, 1024, 2048}. For each

nAbs and benchmark, we calculated the average error across each benchmark and identified

100

the nAbs that showed the lowest average error. Table 3.13a focuses on Exact problems and

shows this lowest average error and corresponding nAbs for each algorithm. Table 3.13b

shows the corresponding results for LARGE problems on the better performing QB and

RAND classes, and the CTX class for comparison. Each table shows the Abstraction Class

(Class), Partitioning Scheme (Scheme), bound on the number of abstract states per level

(nAbs), number of problems for which a positive estimate could not be produced (Fail), and

average log10 Z error (Avg. Error). If an algorithm was unable to produce a positive Monte

Carlo Z estimate for a problem (i.e., it ”Failed” on the problem), the wMBE heuristic bound

was used as its Z estimate and error computed accordingly. Color bars help visualize error

magnitudes and we highlight the best performing algorithms.

Comparison with Context-Based Schemes. We see that there is always a partitioning

scheme for HB and HRB that can outperform the best CTX scheme on Exact problems.

For example, the best performing CTX scheme for DBN was randCB (denoted CTX, rand)

using nAbs = 4 resulting in an average error of 1.381, but HB and HRB using simple

partitioning with nAbs = 2048 had average errors of only 0.440 and 0.491, respectively. QB

with minVar, equalDist3, and equalDist4 partitioning outperform the CTX schemes across

all benchmarks always producing lower average errors. RAND also consistently outperforms

the CTX schemes. Results on LARGE problems agree, with the exception of on Promedas

where QB with minVar and RAND (having average errors of 5.403 and 3.936, respectively)

have slightly greater error than randCB (with average error of 3.222) and never ”Failing”.

Comparison with Purely Randomized Abstractions. RAND is a particularly well per-

forming scheme across all benchmarks, consistently having relatively low – and sometimes

the lowest – average error among the schemes. (For example, its error for Exact Grids, 1.501,

is the lowest of any of the other schemes). Nevertheless, the QB class using the equalDist3

and equalDist4 partitioning strategies is consistently comparable or better than the purely

101

randomized scheme. No other scheme does as well.

Comparison with Non Abstraction Sampling Schemes. We saw earlier that Abstraction

Sampling using CTX based abstractions was competitive against several powerful schemes

such as Importance Sampling (IS), Weighted Mini-Bucket Importance Sampling (wMBIS)

[Liu et al., 2015], IJGP-SampleSearch (IJGP-ss) [Gogate and Dechter, 2011], and Dynamic

Importance Sampling [Lou et al., 2019]. Since the QB scheme with equalDist3 and equalDist4

partitioning strategies and the RAND scheme show superior performance in comparison to

the CTX schemes, this also implicitly indicates competitiveness against the these other non-

Abstraction Sampling methods.

3.5.3.2 Results from 100 Samples with nAbs = 256.

Class Scheme nAbs Fail Fail Fail Fail

simpleQB 256 0 5.350 0 17.406 0 1.059 14 9.659

minVarQB 256 0 0.111 0 1.911 0 0.223 1 1.634
equalDist 256 0 5.619 0 15.533 1 0.858 13 5.420

equalDist2 256 0 2.319 0 11.220 0 0.563 6 3.479

equalDist3 256 0 0.173 0 3.615 0 0.206 1 1.473

equalDist4 256 0 0.277 0 2.305 0 0.180 1 1.373

randQB 256 0 4.982 0 12.653 0 3.211 13 19.441

rand 256 0 3.587 0 9.568 2 4.695 3 14.386

rel 256 0 5.265 0 8.013 0 1.097 36 10.845

RAND rand 256 0 0.288 0 2.464 0 0.325 3 2.570

CTX

Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

QB

iB-5, m-100, Exact DBN Grids Pedigree

Figure 3.14: 100-Sample Comparison. For abstraction granularity of nAbs = 256,
aggregated statistics (as described for Table 3.13) for Exact problems of each benchmark
with each algorithm allotted 100 samples.

To assess the quality of abstraction functions in an implementation-agnostic manner and

irrespective of resulting probe-sizes or speed of generating abstractions, we conducted ex-

periments using a one-hundred sample limit (m-100) rather than using a time limit. Table

3.14 shows these results on Exact problems for the better performing QB and Rand classes

using nAbs = 256. nAbs = 256 was chosen as (1) it is an intermediate granularity and (2) all

102

schemes produced 100 samples in a reasonable time. We again highlight the best performing

schemes.

As with the previous results, we again see QB with equalDist3 and equalDist4, and RAND,

performing the best with few to no ”Fails” and low average errors. A key difference is that,

now, QB with minVar, which had showed slightly worse performance under a time limit,

performs as well or even better. For example, for the Promedas problems QB with minVar

only had one ”Fail” where RAND had 3, and for Grids it has an average error of 1.911

where the best of the other schemes (in this case QB with equalDist4) had an error of 2.305.

This indicates that minimizing the within variance of q(n) values of nodes leads to favorable

abstractions. This in part explains the success of QB equalDist3 and equalDist4, which end

up roughly emulating QB minVar while using faster greedy strategies.

minVar ’s worse performance under a time limit can be explained by the fact that the for-

mation of its abstractions are computationally intensive (using Ward’s Minimum Variance

Hierarchical Clustering), which results in slow probe generation and thus fewer samples.

3.5.3.3 Choice of Abstraction Granularity

Table 3.15 shows average error for nAbs∈{4, 64, 1024} on Exact problems of each benchmark.

We focus on the better performing variants of QB: minVarQB, equalDistQB3, equalDistQB4;

the purely randomized scheme RAND; and the context-based schemes (CTX) for comparison.

In Figure 3.16 and Figure 3.17, we also show average error across a wider array of nAbs for

minVarQB and equalDistQB4, respectively, the latter also acting as a representative for the

profile of equalDistQB3 and RAND which share the same profile (omitted for brevity).

From Table 3.15 we see that for the well performing QB equalDist3 and equalDist4 schemes

and for the RAND scheme there is a trend that greater nAbs improves performance. For

example, for QB with equalDist4 on Grids problems, we see that progressively increasing

103

Class Scheme nAbs Fail Fail Fail Fail
4 0 1.684 0 3.622 0 1.434 2 2.518

64 0 0.180 0 1.897 0 0.210 1 1.062
1024 0 0.060 0 1.566 0 0.479 2 1.837

4 0 1.594 0 5.861 0 1.668 1 1.804
64 0 0.236 0 2.570 0 0.221 0 0.570

1024 0 0.051 0 1.844 0 0.155 0 0.462
4 0 1.371 0 5.988 0 1.648 1 1.678

64 0 0.215 0 2.438 0 0.231 0 0.596
1024 0 0.150 0 1.891 0 0.150 0 0.455

4 0 1.381 0 5.030 0 1.852 7 4.643
64 0 1.763 0 5.950 0 0.598 1 2.659

1024 0 2.007 0 5.513 0 1.114 1 2.442
4 0 1.850 0 5.933 0 1.332 10 5.729

64 0 3.510 0 4.021 0 0.424 6 4.349
1024 0 5.086 0 5.136 0 1.041 15 6.688

4 0 1.018 0 4.329 0 1.705 2 2.947
64 0 0.418 0 2.094 0 0.212 0 0.757

1024 0 0.120 0 1.501 0 0.143 0 0.513
RAND rand

DBN
Avg. Error

QB

minVar

equalDist3

equalDist4

Grids
Avg. Error Avg. Error Avg. Error

Pedigree PromedasiB-5, t-300sec, Exact

CTX

rand

rel

Figure 3.15: Varying nAbs. Average error when using nAbs ∈ {4, 64, 1024} for
minVarQB, equalDistQB3, equalDistQB4, the CTX based algorithms, and RAND, each
with iB-5 and time limit of 300 sec.

Figure 3.16: Varying nAbs for minVarQB. Average error on Exact problems using
iB-5 and time limit 300 sec for each benchmark at various abstraction granularities (in
log2).

104

Figure 3.17: Varying nAbs for equalDistQB4. Average error on Exact problems
using iB-5 and time limit 300 sec for each benchmark at various abstraction granularities
(in log2).

nAbs from 4 to 64 to 1024 progressively reduces average error from 5.988 to 2.438 to 1.891.

Figure 3.17 further supports this for QB with equalDist4 with average error progressively

decreasing with greater nAbs for all benchmarks. However in Figure 3.16 and Table 3.15

we see that for minVar error begins to increase when nAbs becomes too high. This can be

explained by the higher computational cost of forming minVar abstractions (which is more

time consuming), leaving less time for probe generation.

105

3.5.3.4 Summary of Results.

HB HRB QB
simple 2.75 1.12 0.72
minVar 1.05 1.13 2.95

equalDist 0.75 0.59 1.16
equalDist2 0.84 0.75 1.82
equalDist3 1.20 1.01 4.05
equalDist4 0.87 1.14 3.90

rand 2.41 0.93 0.60

Figure 3.18: Performance
Matrix. Relative average
performance of value-based
schemes vs. existing context-
based abstractions. Values >
1.00 indicate superior perfor-
mance.

Overall, our experiments show that the QB scheme

with equalDist3 or equalDistQB4 and RAND perform

the best among the newly proposed abstraction func-

tions, and they significantly outperform the former

state-of-the-art context-based schemes (Figure 3.18).

These schemes tend to improve as the abstraction

granularity nAbs increases up to a point, past which

we see little difference in performance. Thus, our

study suggests that these three abstraction schemes

should be the first choice when using AOAS, and be

used with the largest nAbs feasible.

3.6 Conclusion

We introduced Abstraction Sampling, a stratified-importance-sampling-like scheme that can

be used for computing the partition function of discrete probabilistic graphical models. These

schemes are based on dividing the nodes of the search tree into equivalence classes using

an abstraction function, and randomly selecting one representative for each class by using

probabilities derived from a heuristic evaluation function. The estimate is computed on the

sampled tree generated by this procedure. Abstraction sampling is inspired by the early

work of Knuth and Chen [Knuth, 1975, Chen, 1992], work that had been extended in the

context of predicting the size of search trees in heuristic search [Lelis et al., 2013] and for

search algorithms in graphical models [Lelis et al., 2014].

We introduced ORAS, an Abstraction Sampling algorithm for classic OR search spaces. We

106

then presented Abstraction Sampling algorithm AOAS designed for working with compact

AND/OR search spaces. In particular, we discuss that AOAS, unlike it’s predecessor pAOAS,is

free of handicapping restriction of properness and yielding a far more scalable algorithm. We

illustrated that, like previous AND/OR AS schemes, AOAS maintains the ability to exploit

the decomposition expressed in AND/OR search spaces, yet it also has far better control of

probe-size thus making it uniquely scalable. This gives AOAS the power to more smoothly

interpolate between (stochastic) sampling and (systematic) search [Broka et al., 2018]. We

prove unbiasedness of the estimators and other properties of the algorithms. Our empiri-

cal evaluation shows that the abstraction function size, or refinement level, can impact the

accuracy of the estimate significantly; and we saw that in most instances higher level ab-

stractions outperforms 0-level abstraction, the latter which can be viewed as the baseline

scheme equivalent to basic importance sampling.

Also presented is an exploration of an array of abstraction functions for use with AND/OR

Abstraction Sampling. This exploration features comparison of abstractions based on a

notion of variable context as well as those based on a value-based abstraction framework

from three classes: heuristic-only based, hr-based, and and q-based, each defined by real-

valued functions that aim to capture informative elements from search and sampling to

guide abstractions and improve Abstraction Sampling performance. Each of the value-based

classes were tested with each of seven node partitioning schemes to form twenty-one value-

based abstraction functions. Additionally, a purely randomized abstraction scheme, RAND,

was presented and compared.

Results from an extensive empirical evaluation on over 400 benchmark problems show that

two of the QB based schemes (equalDistQB3, and equalDistQB4) and the RAND scheme hav-

ing superior performance consistently and throughout all benchmarks when used with AOAS.

In particular, performance was significantly improved relative to context-based abstractions,

and thus also implicitly against Importance Sampling, Weighted Mini-Bucket Importance

107

Sampling, IJGP-SampleSearch, and Dynamic Importance Sampling to which the context-

based abstraction functions with Abstraction Sampling were originally compared.

Based on this study, we believe that AOAS is one of the best schemes for estimating the

partition function to date, in particular when used with the (equalDistQB3, equalDistQB4),

or RAND abstraction schemes.

108

Chapter 4

UFO: Underflow-Threshold Optimization

4.1 Introduction

Search algorithms that can exploit determinism by pruning invalid partial configurations

have the potential of greatly speeding up their search on problems with lots of determin-

ism. A simple and common mechanism is to use constraint propagation (CP), which applies

a bounded-complexity inference process to identify invalid patterns that arise from con-

junctions of the problem’s original constraints [Dechter, 2019, Mateescu and Dechter, 2008,

Dechter, 2019]. Similar ideas have been explored in mixed integer programming [Danna

et al., 2005]. In this chapter, we explore the idea of underflowing small function values –

namely replacing them with 0.0 – turning them into hard constraints to empower constraint

propagation in helping search algorithms to prune their search space. We present a general

scheme called underflow-threshold optimization, or UFO for short, as a general method

for choosing how to perform these underflows. We then provide several specific algorithms

for employing UFO. Next we summarize the contributions in this chapter:

Contributions:

1. We propose a general framework called UFO for infusing artificial determinism into

graphical models, in order to empower graphical model search algorithms to exploit

109

constraint processing for increased search efficiency. In particular, this facilitate early

pruning of small cost branches during search.

2. We present several algorithms that employ the UFO and analyze their strengths and

weaknesses.

3. We provide theoretical analysis of the scheme impact including boundedness and

tractability. In particular we provide bounds for the marginal MAPp task.

4. We evaluate UFO performance with a vanilla AND/OR branch-and-bound algorithm

empowered with constraint propagation on 100 problems used in the 2022 UAI Infer-

ence Competition, and compare performance against six competitive solvers used in

the competition to highlight the potential of UFO.

4.2 The General UFO Scheme

We will start with a few key definitions and precisely define an underflow-threshold,

which determine when to replace function values with 0.0. We will define what it means

to apply underflow-thresholds to graphical models, and then we will present a general UFO

methodology for choosing underflow-thresholds.

Definition 4.1 (τ -underflow of f , fτ)

Let f be a non-negative function and τ ∈ R+ be a user-selected threshold value. The τ -

underflow of f is then,

fτ (x) =

f(x) if f(x) ≥ τ

0 otherwise.

We call the action of performing this operation as applying (τ -underflow) thresholds, or more

simply as thresholding.

110

Definition 4.2 (τ -underflow ofM,Mτ)

For a graphical modelM=⟨X,D,F⟩, we define the τ -underflow ofM to beMτ = ⟨X,D,Fτ ⟩,

where Fτ = {fτ | f ∈ F }. Mτ is referred to as a (τ -)underflowed or thresholded model.

Definition 4.3 (Inconsistent Model)

A model is said to be inconsistent if ∀x ∈ DX ,
∏

f∈F f(x) = 0, i.e., there are no possible

joint configurations x with positive value / probability.

The idea of underflow thresholding is simple: larger thresholds τ induce more determinism

into the thresholded model Mτ . This reduces the number of valid non-zero configurations

and can constrain the portion of the search space that include valid configurations. These

constraints can then be exploited by search, for example by applying constraint propagation

before or during search, to make exploration of the (reduced, or “pruned”) search space more

efficient.

Choosing a larger underflow-threshold τ leads to more determinism, and facilitate more

aggressive pruning. Clearly, if the threshold is too high, the resulting model may become

too inaccurate, excluding configurations that are important to the original model’s solution,

and may even make the model inconsistent, pruning all its configurations. Therefore, a

critical component of this scheme is to identify a threshold that provides the right balance

between accuracy and efficiency. In particular, we can aim at a threshold that is as high as

possible yet still results in a consistent model.

Note that inference tasks on an underflowed model can lead to can return bounds on the

true solution. In particular:

Proposition 4.1 (Lower-bounds from τ -underflows)

∀task ∈ {Z,MAP,MMAP},∀M, task(Mτ) ≤ task(M)

111

UFO algorithms. By UFO algorithms we refer to schemes that given a graphical model,

M generate a threshold τ to be used in creatingMτ for subsequent processing. Thus, our

UFO (UnderFlow-threshold Optimization) scheme, provide a methodology for choosing an

underflow-threshold. It typically employs a search procedure that seeks a largest threshold

(or thresholds) that are consistent and perhaps obey some other desirable requirements (e.g.,

ensuring the includion of specific configurations). Subsequently, the algorithm can decrease

the threshold using a hyper-parameter δ to enable a wider array of solutions.

UFO algorithms operates under the assumption that satisfiability of a model can be deter-

mined quickly. Although this is not true in general, we find that the satisfiability sub-task

underlying many optimization problems is often relatively easy. Otherwise, satisfiability

can be approximated by constraint propagation schemes or other approximation methods

[Dechter, 2003].

4.3 UFO Variants

In this section we will present several different algorithms that employ UFO in different ways

for determining the underflow-threshold(s) to use when underflowing a graphical model.

4.3.1 UFO-GT: Global Threshold UFO

In many problem domains, function scale and semantics are uniform and thus there can

exist an intuitive threshold that makes sense to underflow with across all cost functions. An

example of this is problems where functions model molecular interaction energetics. In many

problems of this form, energetics that correspond to very unfavorable conformations are so

extreme that no amount of positive interaction can offset them. Thus, in effect, these bad

conformations act as hard constraints and thus it makes sense to encode them as such by

underflowing such values to zero.

112

Algorithm 10: UFO-GT
Input: Graphical modelM = ⟨X,D,F ⟩; SAT solving algorithm, SAT (.) ; time limit for binary

search; a deflation factor 0 < δ ≤ 1
Output: A proposed global underflow-threshold τ to use

1 begin
2 if SAT (M) = False then
3 return FAILURE
4 τmin = 0; τmax = maxF ,X f(x)

5 τ = τmax+τmin

2
6 while time remains for τ binary search do
7 if SAT (Mτ) = False then
8 τmax = τ

9 else
10 τmin = τ

11 τ = τmax+τmin

2

12 end
13 τ = τmin · δ
14 return τ

15 end

Algorithm 10: UFO-GT (UnderFlow-Threshold Optimization with Global Thresholds) de-

scribes an iterative method for choosing a global underflow-threshold - a single threshold that

is used to underflow all functions of the model. Given a model,M, it employs binary search

on numbers between 0 and the largest function value of the model to find the largest global

underflow-threshold τ that still results in a satisfiable model (lines 6-12). During the binary

search, in order to determine whether to raise or lower the value of the proposed threshold

τ , a consistency check is done on Mτ where a provided satisfiability solver SAT (·) checks

to see if the underflowed model is consistent. If consistent, it raises the proposed threshold,

if not, it lowers it. Once time runs out, the algorithm takes the largest threshold that still

resulted in a satisfiable underflowed model and then decreases it using a hyper-parameter δ

(line 13) to enable a wider array of solutions.

Intuition. In many problem domains, function scale and semantics are uniform and thus

there can exist an intuitive threshold that makes sense to underflow with across all cost

functions. An example of this is problems where functions model molecular interaction

energetics. In many problems of this form, energetics that correspond to very unfavorable

113

conformations are so extreme that no amount of positive interaction can offset them. Thus,

in effect, these bad conformations act as hard constraints and thus it makes sense to encode

them as such by underflowing such values to zero.

Algorithm UFO-GT is the simplest variant choosing only a single global threshold that is

applied to all functions of a model. This makes it fast, however, when the functions of a

model are on different scales and capture different semantics, applying a single threshold to

all of them may not be desirable. We address this issue in our next variant which can use a

different threshold for each function.

4.3.2 UFO-RT: Relative-Threshold UFO

Although in some problem domains functions share the same semantics and scale, this is

not always the case. When not so, the effectiveness of UFO-GT can become greatly limited

as it has no way of adjusting to each function’s scale. UFO-RT mitigates this by applying

thresholded-underflows relative to each function’s values, thus taking into account varying

scales across a problem’s functions. The idea is very simple. We just want to determine a

constant fraction θ which will be applied to the maximum value of each function to determine

its threshold. Thus, the task now is to determine the global relative constant θ that will

yield this varied function thresholds. Like earlier, we seek θ which is as high as possible to

yield a consistent model, and then we iteratively reduce it in a binary search, in a manner

similar to the earlier scheme.

Definition 4.4 (Relative Underflow-Threshold)

Let fmax be the maximum function value for a given function, and let θ be a constant between

0 and 1, Then we define the relative underflow threshold for the given function to be τf =

θ · fmax.

Algorithm UFO-RT uses binary search to find the largest θ that, when used to determine rel-

114

Algorithm 11: UFO-RT
Input: Graphical modelM = ⟨X,D,F ⟩; SAT solving algorithm, SAT (.) ; time limit for binary

search; a deflation factor 0 < δ ≤ 1
Output: A proposed function-relative thresholding-factor θ to use

1 begin
2 if SAT (M) = False then
3 return FAILURE
4 θmin = 0.0; θmax = 1.0

5 θ = θmax+θmin

2
6 τ⃗ = [θ ·max(f) | f ∈ F] // a vector of underflow-thresholds for each function

7 while time remains for τ binary search do
8 if SAT (Mτ) = False then
9 θmax = θ

10 else
11 θmin = θ

12 θ = τmax+τmin

2
13 τ⃗ = [θ ·max(f) | f ∈ F]

14 end
15 θ = θmin · δ
16 return θ

17 end

ative underflow thresholds for each function (lines 6,13), still results in the resulting under-

flowed model being consistent satisfiable (lines 7-14). Then UFO-RT decreases the threshold

using a hyper-parameter δ (line 15) to enable a wider array of solutions.

4.3.3 UFO-Sol: Solutions-based UFO

Algorithm 12: UFO-Sol
Input: Graphical modelM = ⟨X,D,F ⟩; SAT solving algorithm, SAT (.) ; time limit for binary

search; a deflation factor 0 < δ ≤ 1; a set of m full configurations ζ = x0,x1, ...,xm

Output: A vector τ⃗ of length |F | consisting of underflow-thresholds for each of the model’s
functions

1 begin
2 τ⃗ = [minx∈ζ f(x) | f ∈ F] // a vector of underflow-thresholds for each function

3 τ⃗ = τ⃗ · δ
4 return τ⃗

5 end

In many scenarios, a set of good solutions may be known or found quickly, and the task thus

becomes to find better solutions. Thus, it can be beneficial to assign thresholds such that

the known good solutions remain valid, using them to ensure a minimum quality of valid

115

solutions that are present in the underflowed model. This is what UFO-Sol aims to achieve.

Therefore, UFO-Sol Algorithm (UnderFlow-threshold Optimization using Solutions, Algo-

rithm 12) takes the following approach. It takes known good solutions as input (provided

as a set ζ of full configurations of the model) and use it to guide the underflow-thresholds.

It does this by looking at each of the model’s functions f one-by-one and, for each, chooses

an underflow-threshold that satisfies τ = minx∈ζ f(x) (lines 2). This ensures satisfiability of

each x ∈ ζ. As before, the thresholds are then decreased according to a hyper-parameter δ

(line 3) to enable a wider array of solutions.

Unlinke the previous algorithms, UFO-Sol is non iterative and does not rely on satisfiability

checks. However, it depends on having a known set of solutions. The resulting thresholds

depends on the specific solutions used.

4.3.4 UFO as an Anytime Scheme

Up to now we described the UFO schemes as stand alone algorithms that determine a

threshold, with the understanding that once a threshold is generated an inference scheme

will take over to find an answer over theMτ . model. In the anytime version we interleave the

UFO scheme with the solving scheme in order to generate a solution that can be improved

in anytime fashion.

In Algorithm 13: UFO-GT+AI (UFO-GT + Anytime Inference), a modified version of UFO-GT

is used to determine an initial underflow-threshold during the first phase of the algorithm

(called its UFO Phase), and then in the second phase (called the Evaluation Phase) an

inference algorithm iteratively solves the respective underflowed problem and then decreases

the threshold before iterating, iterations keeping track of the best solution found.

Specifically, after an initialization (lines 1-8), the UFO Phase begins where UFO-GT+AI em-

116

Algorithm 13: UFO-GT+AI
Input: Graphical modelM=⟨X,D,F ⟩; algorithm for solving the problem represented byM,

Solve(.). It may use a lower bound solution value lb to enhance performance; approximate
algorithm for solving the problem represented byM, Approx(.). It may use a lower bound
solution value lb to enhance performance; SAT solving algorithm, SAT (.); time limit for
binary search; flag, prelimSolutions, for whether to look for preliminary solutions during τ
binary search; policy to reduce τ during evaluation phase, decreaseThreshold(.); time
limit for evaluation phase

Output: lower bound on Solve(M) and the corresponding variable assignments
1 begin

// Check that original problem is satisfiable

2 if SAT (M) = False then
3 return FAILURE

// initialization

4 τmax = fmax

5 τmin = 0
6 τ = fmax // initial underflow-threshold will underflow all function values to zero

7 lb = −inf
8 bestAssignment = None

// UFO Phase - binary search to find a largest underflow threshold that still

results in a satisfiable problem

9 while time remains for τ binary search do
10 if SAT (Mτ) = False then

// τ results in an unsatisfiable problem - reduce τ and continue

11 τmax = τ

12 else
// problem satisfiable given τ - solve and record solution (if asked to do

so), increase τ, and continue

13 if prelimSolutions = True then
14 assignment = Approx(Mτ , lb)
15 if value(assignment) > lb then
16 lb = value(assignment)
17 bestAssignment = assignment

18 τmin = τ

19 τ = τmax+τmin

2

20 end

// Evaluation phase - repeatedly perform Solve(Mτ), decreasing τ after each

iteration

21 τ = τmin

22 while time remains for the evaluation phase do
23 assignment = Solve(Mτ , lb)
24 lb = value(assignment)
25 bestAssignment = assignment
26 τ = decreaseThreshold(τ)

27 end
28 return lb, bestAssignment

29 end

117

ploys UFO-GT with the modification that, whenever a new satisfiable underflow-threshold is

found, the algorithm can be asked to use a provided approximate inference algorithm to

quickly extract a sub-optimal solution from the respective underflowed model. These sub-

optimal solutions can be leveraged by some inference schemes (such as branch-and-bound

search algorithms) to enhance their performance. As the modified UFO-GT binary search

continues, the best sub-optimal solution and its corresponding solution value are kept as

bestAssignment and lb, respectively (lines 13-17). (We assume an optimization task so so-

lutions having larger values are better, and we use lb (lower-bound) to store sub-optimal

solution values). When the allotted time for the UFO Phase runs out, the final threshold τ

found is then used in the Evaluation Phase.

In the Evaluation Phase, the algorithm uses a provided inference algorithm to solve the τ -

underflowed problem, possibly using the current best-found lower bound to empower it (line

23). Lower bounds and corresponding best assignments to the variables are updated and

the threshold decreased, before repeating (lines 24-26). When time runs out, the algorithm

returns the best-found solution and corresponding assignment.

4.4 Empirical Evaluation of AOBB-UFO

In order to test the potential of UFO we selected a basic AND/OR branch-and-bound scheme

for solving marginal MAP [Marinescu et al., 2018b] with constraint processing (via MiniSAT

Eén and Sörensson [2004] and UFO-GT. We then tested this combined algorithm, referred to

as AOBB-UFO, on the 2022 UAI Inference Competition final problem set, comparing results

with state-of-the-art solvers that run as part of that competition.

118

4.4.1 Setup

Benchmarks. We chose one hundred problems that were used for the final UAI 2022 In-

ference Competition, which were selected from twelve different domains including computa-

tional biology, decision making, medical diagnosis, and image processing, among others.

Heuristic. To guide branch-and-bound search, we use Weighted Mini-Bucket Elimination

(wMBE) since it is known to work well with both OR and AND/OR search. The i-bound,

which controls the strength of the wMBE heuristic, was picked automatically according to an

estimate of the largest i-bound possible while still ensuring wMBE would not exceed a given

memory limits.

Variable Order. A variable ordering was automatically determined for each problem using

the greedy min-fill heuristic [Dechter, 2019] which tries to minimize the resulting induced

width of the graph.

UFO. UFO binary search was performed over log space for two seconds. The resulting

threshold was used without being decreased (i.e., we used δ = 1.0).

Competing Schemes.

BRAOBB: an anytime depth-first AND/OR search scheme that rotates through differ-

ent subproblems in a round-robin manner improving anytime performance of AOBB

[Marinescu et al., 2018b, Otten and Dechter, 2011].

DAOOPT-lh: depth-first AND/OR search scheme for optimization that performs look-

ahead selectively intensifying search where the heuristic error is high Lam et al. [2017],

Otten and Dechter [2011].

119

DAOOPT: depth-first AND/OR search scheme for combinatorial optimization Otten

and Dechter [2011].

lbp: a residual-scheduled loopy belief propagation on the factor graph representation of

the model.

toulbar2-vns: a metaheuristic called variable neighborhood search that uses (partial)

tree search inside its local neighborhood exploration [Ouali et al., 2020, Givry, 2023].

toulbar2-vacint: a hybrid best-first search method utilizing an initial upper bound by

the INCOP solver [Neveu and Trombettoni, 2003] and using virtual arc consistency

[Givry, 2023].

toulbar2-ipr: an iterative algorithm based on toulbar2-vns with an increasing precision

followed by toulbar2-vacint approach with full precision [Givry, 2023].

uai14: an amalgam belief propagation based solver created for the UAI-2014 competition

by Alex Ihler including a combination loopy belief propagation and cutset conditioning

schemes.

Implementation and Compute. AOBB-UFO was implemented in C++. All experiments

were run on a 2.66 GHz processor for 1 hr using an 8 GB memory limit. All competing

solvers were run via Docker’ized implementations [Merkel, 2014] on the same system.

Performance Measure. The performance measure used is log10Z(M|XMAP = xMAP)

where xMAP is the algorithm’s best-found assignment to the Marginal MAP query variables

XMAP . Better solutions result in greater log10Z(M|XMAP = xMAP). For AOBB-UFO, Mτ

is used instead of M, and so its solutions represent a lower-bound on the true value of its

returned best-found assignment XMAP = xMAP

120

Primary Questions of Interest.

1. Speed : How fast does AOBB-UFO find solutions and terminate?

2. Quality : How good are the solutions returned by AOBB-UFO?

4.4.2 Results

Table 4.1-4.2 presents results of AOBB-UFO and compare against competing solvers over the

UAI 2022 Inference Challenge final problem set for the Marginal MAP task.

Table Keys. |X| and |F | are the number of variables and functions in the model, respec-

tively. w∗ is the induced width of the model according to the variable ordering used by

AOBB-UFO. k is the maximum domain size of the model’s variables. Anytime is the time it

took AOBB-UFO to find its final solution. T ime is the time it took AOBB-UFO to terminate or

the actual time the algorithm was cut off. Solution is The log10Z(M|XMAP = xMAP) of

AOBB-UFO’s best found solution XMAP = xMAP . The log10Z(M|XMAP = xMAP) of the

best found solution for each of the competing solvers is also shown in their own columns.

The tables include the following three highlightings:

1. In blue we see problems where AOBB-UFO’s solution was as good or better than at least

four competing solvers.

2. Bordered in magenta is when AOBB-UFO produced a solution strictly better than

ALL other solvers.

3. In green we see when AOBB-UFO found its returned non-zero solution in less than 120

seconds.

121

While not claiming the AOBB-UFO algorithm is a superior all-around algorithm, we aim show

that augmentation of relatively simple schemes with UFO can occasionally produce better

results than top-performing solvers, and that it can be fast, making it suitable for quick

approximations. Although simple UFO variants may not be reliable as a primary method,

they may be valuable for initial searches to potentially uncover solutions that more complex

algorithms might miss.

Specifically for AOBB-UFO on the 100 problems experimented on, AOBB-UFO produced a so-

lution value that was equal to or better than three-to-four of the competing solvers on

average. This includes instances where AOBB-UFO was able to find a non-zero solution and

other algorithms were not. In particular, for the first fifteen problems we see AOBB-UFO able

Figure 4.1: AOBB-UFO on UAI 2022 Competition Final Problems (3600s)

122

Figure 4.2: AOBB-UFO on UAI 2022 Competition Final Problems (cont’d)

123

to produce a solution for all of the problems whereas braobb, daoopt-lh, lbp, and uai14

each sometimes fail (indicated by blanks in their respective columns). In those cases where

the competing solvers do not produce a solution but AOBB-UFO can, we consider AOBB-UFO’s

performance to be superior. Furthermore, for 34 of the 100 problems, the AOBB-UFO solution

value is equal to or better than all of the competing solvers solution values, and it produced

solution values that were strictly superior to competing solvers on 18 problems (on average

doing strictly better than two-to-three competing solvers). In addition, AOBB-UFO generated

a solution value for all but one of the Promedas problems (denoted as ”or chain ...). In

contrast, all of the competing solvers failed at providing a solution for any of these problems

except for one.

It is important to remember that AOBB-UFO solutions are evaluated on the underflowed model

Mτ , which lead to lower bounds on the true value of the solution returned by AOBB-UFO.

Highlighting its speed, we observed that for 53 out of the 100 problems, AOBB-UFO found a

non-zero solution within 120 seconds. This indicates the potential of the UFO scheme at

helping find quick (albeit maybe dirty) initial solutions.

4.5 Conclusion

We introduced a new scheme called UFO for infusing artificial determinism into graphical

models. Increased determinism can empower graphical model algorithms to exploit con-

straint processing for increased efficiency, for example by early pruning during search. We

presented UFO schemes that use a binary search to find an appropriate threshold to use

in underflowing function values to zero. The search for a threshold aims to ensure that we

avoid thresholds that make the problem inconsistent. Once a legitimate threshold is found,

it can be relaxed (i.e., its value lowered) to allow more flexible solutions.

124

Several variants of UFO were presented, each having their respective strengths and weaknesses.

UFO-GT is the simplest variant uses a global threshold that is applied to all functions. The

variant UFO-RT seeks a constant factor that multiply a function dependant value yielding

a vector of underflow-thresholds, one for each function. This can be particularly beneficial

when functions are scaled differently. UFO-Sol on the other hand takes into consideration

known good solutions, and sets an underflow that keeps each consistent.

We ientified simple properties of UFO, being an inherently lower-bounding scheme. We

derived a bound on the error and showed that it can be estimated efficiently.

Finally, we evaluated UFO by adapting a vanilla AND/OR branch-and-bound MMAP al-

gorithm with constraint propagation and with UFO, testing the scheme on 100 MMAP

problems used in the 2022 UAI Inference Competition. The scheme was able to produce an

equivalent or better solution than all of the other solvers for roughly a third of the problems,

and was strictly better for almost a fifth of the problems. Furthermore, the algorithm often

terminated very quickly showing its potential for producing quick lower bounds.

In summary, although applying UFO forfeits anytime optimality guarantees, it provides

lower bounds and given its speed and sometimes strong performance, it has the potential of

empowering anytime algorithms empowered with constraint processing to more quickly find

better solutions or as a way to initialize search bounds.

125

Chapter 5

AND/OR Search-Based Computational

Protein Design

5.1 Introduction

Modern advances in molecular biology have led to heightened interest in identifying or de-

signing proteins with desirable properties, such as high affinity antigen binding proteins (for

example, to treat a disease by inhibiting its virus). However, computational protein design,

even when restricted to small changes to existing analogues, is far from trivial. A protein

is a sequence constructed from approximately twenty unique building blocks called amino

acids, with some proteins reaching sizes of over 27,000 amino acids long. If we design a novel

protein by replacing even just four positions in the protein’s chain, considering all possible

combinations at those positions would require enumerating 204 ≈ 160000 unique variants. If

a variant needs to be created and tested in vitro via biochemical laboratory processes, then

building, purifying, and testing each variant could take anywhere from tens to thousands

of dollars (assuming availability and access to important equipment). The process is also

time consuming: graduate students may spend their entire PhD cataloging just a handful

of proteins. Hence, developing automated methods to help focus on the most promising

variants can be invaluable.

126

The field of Computational Protein Design, or CPD, casts the search for potentially good

protein designs as an optimization problem. CPD’s task is to find a sequence of amino

acids that optimizes a score corresponding to the degree to which the protein has a desired

function or property. Generically, we solve:

argmax
r

o(r) (5.1)

where r is a vector representing a possible amino acid combination and o(r) is its score (i.e.,

the objective function to maximize).

Of course the choice of objective function plays a critical role in the resulting sequence pro-

duced. A good objective function should be tractable to evaluate (or approximate) and

relate to the desired design goal. For example, suppose that we wish to redesign a pro-

tein to improve its binding affinity to a particular ligand. For this task, we can consider

the complexed (bound) state of the protein with its ligand and search for an amino acid

sequence that results in favorable interactions. In general, search for such an optimal se-

quence is challenging, for example because proteins may have many amino acids involved

in the protein’s interactions, and those interactions depend on how the protein is oriented

in three-dimensional space. However, if we simplify the problem by choosing to redesign

only a small portion of the protein – focusing on a few positions in the protein chain – and

assume discrete orientations, the task becomes quite feasible. The flavor of such a problem

is closely related to well-studied optimization tasks within the field of graphical models. As

such, these problems have been cast within the framework of graphical models, and graphical

model algorithms used to solve them [Ruffini et al., 2021, Hallen and Donald, 2019, Zhou

et al., 2016].

Recently, a more complex objective function called K* has been proposed [Ojewole et al.,

2018] for redesigning proteins to improve affinity. However, performing the optimization

127

using A*-like strategies in a classical search space (as in Ojewole et al. [2018]) results in a

memory-intensive process with poor anytime behavior. Here, we address the same problem,

but cast the K* objective into an alternative graphical model framework, which can better

leverage existing state-of-the-art graphical model algorithms [Dechter and Rish, 2002, Mari-

nescu and Dechter, 2009a, Marinescu et al., 2014, 2018a, 2019, 2018b] and take advantage

of independences that may be present by using an AND/OR search space.

Contributions. In this work we propose a framework that casts protein redesign problems

as a graphical model and associated K* inference query, and to adapt existing graphical

model algorithms to solve the resulting protein redesign task. As such, this chapter provides

the following contributions:

1. Two formulations of protein redesign problems as a graphical model for the task of

optimizing the K* objective, which acts as an approximation to binding affinity.

2. wMBE-K*, an adaptation of Weighted Mini-Bucket Elimination for use in bounding K*.

More importantly, the scheme is used to efficiently generate heuristics for search over

AND/OR search spaces for the K* objective.

3. Development of an array of AOBB-K* algorithms, specifically anytime depth-first branch-

and-bound algorithms over AND/OR search spaces for protein redesign maximizing

K*. Variants include augmentation with weighted heuristic search, use of dynamic

heuristics, and the incorporation of the UFO scheme.

4. Empirical analysis with real protein benchmarks comparing these schemes to state-of-

the-art algorithm BBK* [Ojewole et al., 2018] (part of the long-standing computational

protein design software OSPREY [Hallen et al., 2018]) and demonstrating our methods’

strong performance.

128

5.2 Background

Proteins are involved in a vast number of both cellular and extracellular functions such as

cell signalling, signal transduction, DNA replication, catalyzing reactions, as part of the

immune response, structure and mobility, and many more. As such, designing proteins for

specific structures and functions - particularly those not typically found in nature - have

wide applications in chemistry, biology, pharmacology, and medicine.

Protein Structure. A protein is a complex molecule made up of a sequence of organic

compounds called amino acids, which can be viewed as the building blocks of proteins. Each

of the roughly 20 naturally occurring amino acids contains a set of identical backbone atoms,

along with a unique side chain group of atoms that determines that amino acid’s specific

properties. The amino acids are linked together along their common backbone structure by

a particular type of chemical bond called a peptide bond, to form a polypeptide chain. This

polypeptide chain folds into a three-dimensional structure, which can interact with other

such folded chains. As such, protein structure is organized into four levels:

Primary Structure: The linear sequence of amino acids in the polypeptide chain,

determined by the genetic code. The specific sequence dictates the protein’s overall

shape and function.

Secondary Structure: Local folding patterns within the polypeptide chain, such as

alpha-helices and beta-sheets, stabilized by hydrogen bonds between backbone atoms.

Tertiary Structure: The overall three-dimensional shape of a single polypeptide chain,

formed by interactions between the side chains of the amino acids, including hydrogen

bonds, ionic bonds, hydrophobic interactions, and disulfide bridges.

Quaternary Structure: Some proteins consist of multiple polypeptide chains, or sub-

units, that come together to form a functional protein complex. Quaternary structure

129

refers to the arrangement and interaction of these subunits.

The term conformation refers to the three-dimensional shape taken on by the protein and

its constituent atoms (so, its secondary and tertiary structure), which may be affected by

the environment or other molecules (quaternary structure).

The Dynamic Nature of Proteins. However, proteins are not static structures; they are

dynamic and flexible molecules that continuously undergo movements and conformational

changes essential for their biological functions. This dynamic behavior allows proteins to:

interact with other molecules by adjusting their shape to bind specifically and effectively

with substrates, inhibitors, and other proteins; perform chemical reactions by allowing con-

formational changes during catalysis to facilitate the conversion of substrates into products;

and respond to environmental changes by altering their structure in response to changes in

acidity, temperature, and the presence of signaling molecules, enabling appropriate cellular

responses. The dynamic nature of the protein structure is critical for processes such as signal

transduction, molecular recognition, and cellular regulation. Mutations that lead to misfold-

ing or impaired dynamics can interfere with a protein’s function, and have been associated

with a number of diseases.

Protein Design. Protein design can be broadly partitioned into two sub-fields: de novo

protein design and protein redesign. The task of de novo protein design is to design com-

pletely new proteins that perform a target function or have a desired structure, designing

them without a starting blueprint such as an existing protein structure. Example uses of

de novo protein design include constructing a protein that has a binding interaction with a

given target (such as a small binding protein to a viral antigen), that folds into a particular

topology (such membrane protein channels), or that is able to catalyze a desired reaction

(such as enzymes) [Cao et al., 2020, Korendovych and DeGrado, 2020, Watson et al., 2023].

In contrast, protein re-design is the task of altering an existing protein’s sequence to achieve

130

a desired change in behavior or structure but without altering other aspects of the protein’s

structure and function. Some common tasks for redesign include modifying a protein subunit

to enhance its binding to other subunits (improving the energetics of the complexed form),

ligands (such as for an enzyme substrate interaction), or antigens (such as with antibody

bonding to antigens), or creating or removing allosteric binding sites. All of these involve

optimizing a portion of the protein’s amino acid sequence to either maximize or minimize

binding to a target. Computational Protein Design (CPD), then, is to use computational

methods to achieve the goals of protein design.

Computational Protein Design. In this chapter, we exclusively focus on the task of auto-

mated protein redesign to increase affinity between known protein subunits. For simplicity,

in the sequel we use “computational protein design” (or “CPD”) to refer to this specific task.

Within this setting, for a given protein of interest, we designate certain amino acid posi-

tions (or residues) as mutable – these are the positions in the sequence at which alternate

amino acids will be considered. Then, through a computational process, we try to identify

a preferred residue sequence. Given a particular sequence (or in some methods, a partial se-

quence), we use a score function to estimate the resulting protein’s suitability, or “goodness”,

for the target application, for example its ability to bind to a target site, form a particular

geometry, or catalyze a reaction. Although we are searching over the protein sequence (pri-

mary structure), our score function should take into account the possible conformations of

the resulting protein (e.g., its secondary and tertiary structures).

Simplifying Assumptions. The state space for these conformations is continuous – or, if

discretized, still extremely large – making the inference problem intractable. As such, many

simplifications are commonly assumed to speed up the redesign process:

Select of Mutable Residues: We typically consider of only a subset of the residues –

131

often those involved in the interactions – as mutable, keeping the rest fixed.

Predetermined Side-Chain Rotamers: We assume that the continuous-valued side-

chain conformations can be well-approximated using a discrete collection of the most

common positions, called rotamers.

Fixed Backbone Structure: We assume that the conformation of the backbone of the

protein is held fixed.

With these simplifying assumptions, many algorithms have been designed to find mutations

with the potential to provide improved protein functionality Hallen and Donald [2019], Zhou

et al. [2016].

5.2.1 Suitable Objective Functions

In order to facilitate automated design, a quantitative notion of a protein’s “goodness” must

be defined for the optimization. Here we describe two such objective functions in the context

of protein redesign for maximizing protein-ligand affinity: the GMEC and K*.

5.2.1.1 The GMEC Objective

In general, proteins are dynamic structures that can assume a large number conformations

[Frauenfelder et al., 1991]. Each particular conformation c of a protein corresponds to a

specific free energy value E(c), where lower free energy correspond to more stable confor-

mations. The probability of a protein adopting any one conformation can be related to its

energy by the Boltzmann distribution:

P (c) =
1

Z
∫ e−E(c)

RT , Z
∫
=

∫
C

e−
Eγ (c)

RT dc (5.2)

132

where R is the so-called Boltzmann constant, and the partition function Z
∫
is the normal-

izing constant integrating the contribution of all possible conformations. In summary, lower

energy conformations are both more stable and more probable.

The Global Minimum Energy Conformation, or GMEC, of a dynamic molecular system is

the conformational state that results in the lowest overall free energy. For many years it was

believed that the GMEC determined the native structure of a protein [Anfinsen, 1973], and

the energy corresponding to the GMEC is still often used as an approximation of overall

protein stability [Hallen et al., 2018]. Letting C(r) be the possible conformational states

of the amino acid sequence R = r, a protein redesign problem using the GMEC objective

would then be:

argmin
R

GMEC(r), GMEC(r) = min
c∈C(r)

E(c) (5.3)

Although the GMEC is widely accepted as a reasonable, if crude, approximate score func-

tion, there are a number of issues with its use as an objective. Perhaps most obvious is

that the GMEC only considers the single best conformational state of each sequence in its

comparisons; however, the dynamic nature of proteins suggests it can be important to con-

sider the contributions from other conformations as well. Furthermore, and especially in the

context of affinity, it is not enough to understand the goodness of a complexed state alone.

Instead, it should be judged in comparison to the goodness of the dissociated (un-bound)

state – however low the energy of the bound state, if the unbound state has even lower

energy, the protein will not bind effectively. Thus, another objective function known as K*

was developed.

133

5.2.1.2 The K* Objective

The affinity between two interacting protein subunits P and L is correlated to an equilibrium

of the chemical reaction forming their complexed state PL:

P + L⇌ PL. (5.4)

The symbol “⇌” indicates that the conversion can go in both directions – namely P and L

can come together to form the complex PL, and that the complex PL can dissociate into

separated P and L. In fact, both directions happen simultaneously. Initially, one direction

is more favored based on the concentrations of P , L, and PL present. The reaction proceeds

in the more favorable direction more quickly until an equilibrium is reached, after which the

reaction continues in both directions at equal rates

This equilibrium point is associated with a constant, Ka, that can be determined in vivo or

in vitro by observing the persisting concentrations of each species, and is defined by,

Ka =
[PL]

[P][L]
. (5.5)

where brackets “[]” indicate the concentration of the enclosed substance. However, in

order to compare the equilibrium constant values Ka of various designs in vitro, it is neces-

sary to synthesize the interacting subunits through molecular processes that are both time

consuming and costly.

The constant Ka can also be approximated by,

K
∫
=

Z
∫
PL

Z
∫
PZ

∫
L

, Z
∫
γ =

∫
C

e−
Eγ (c)

RT dc (5.6)

where Z
∫
PL, Z

∫
P , and Z

∫
L are partition functions of the bound and unbound states that capture

134

the entropic contributions of their various conformations C. (Eγ(c) represents the energy of

a particular conformation c of state γ ∈ φ where φ = {P,L, PL}, R is the universal gas

constant, and T is temperature (in Kelvin). We can further use a model that discretizes the

conformation space. This computed estimate is denoted as K* Ojewole et al. [2018]:

K∗ =
ZPL

ZPZL

, Zγ =
∑

c∈D(C)

e−
Eγ (c)

RT (5.7)

Simplifying the expressing, we will use:

K∗ =
ZB

ZU

, (5.8)

where B respresents the bound (complexed) state(s) and U represents the unbound (disso-

ciate) states. (For the two-subunit system in our example, B = {PL} and U = {P} ∪ {L}).

This more generalized representation can also be used directly for K* computations involving

more than two subunits.

Where the GMEC, being a pure minimum over the energies of the complex’s conformations,

ignores the realization that protein structures are dynamic, the K* captures this through

the computation of the partition function for the different subunits. Furthermore, by the

GMEC focusing only on the protein’s complexed state, it ignores the dynamicity of the

subunit interactions. The K* captures this through taking a ratio of the bound and unbound

states. However, since minimizing the GMEC results in a pure optimization task – a task

much easier than that of mixed inference – many solvers adopt this objective. On the other

hand, the K* objective captures both the dynamicity of protein conformations and subunit

interactions, and so can be considered as a better objective. K*MAP is the formalization of

computational protein design as a task to maximize K*,

K∗MAP = argmax
R

K∗(r), (5.9)

135

where we look for amino acid assignments R=r that maximize K*. Thus, the goal this line

of work is to develop efficient algorithms for computing K*MAP, from which one can identify

a small set of promising sequences to experimentally test in vitro and in vivo, saving much

time and cost. Our work taps into recent algorithms developed for the marginal MAP task

on graphical models.

5.3 Graphical Model for K*MAP

As the first main contribution of this chapter, we describe two formulations of the CPD

problem as a graphical model for computing K*MAP. These build upon previous work from

MMAP (see Marinescu et al. [2018b]) and formulations for optimizing the weaker GMEC

objective [Zhou et al., 2016]. Put briefly, these models contain two types of variables: a

set R of variables representing the various residue positions being considered, and a set C

representing the various conformational states the amino acids can take for each residue.

Domains of the R variables are the amino acids being considered for each residue. Domains

of the C variables are the various conformational states being considered for the amino acid

selected for that residue. The functions of the model can be partitioned into two groups:

a set of constraints denoted C that enforce consistency between residue and conformation

assignment pairs, and a set of energy functions, denoted E, that estimate the contribution to

overall free energy from interactions between the amino acid side chains and those of other

residues or the protein backbone.

In order to illustrate the graph structure of our two formulations, we construct a toy example

protein whose schematic is shown in Figure 5.1. Our toy protein has two subunits, labeled

P and L. Subunit P has three residues, with each residue interacting only with its direct

neighbor (indicated by a black line connecting them). Subunit L is composed of a single

residue; when the protein complexes – namely P and L come together – the residue in L

136

interacts with each of the last two residues in P (indicated by dotted lines).

Figure 5.1: Example protein subunit interaction schematic.

5.3.1 Formulation 1 (F1)

Figure 5.2: Illustration of CPD Formulation F1.

Variables and Domains: Let R = {Ri | i ∈ {1, 2, ..., N}} be the set of residue variables

representing N different residues (i.e., positions) of the protein. Each Ri has a corresponding

domain DRi
= {aa|aa is a possible amino acid assignment to residue i}. For residues that are

being considered for mutation (mutable residues), each Ri considers one of ∼20 possible

amino acid assignments in its domain of values. These are the MAP variables maximized

over in the K*MAP task.

Cγ = {Cγ(i) | i ∈ {1, 2, ..., N}} are conformation variables, each indexing a discrete

spacial conformation (rotamer) of the amino acid at residue Ri when its subunit is in form

γ ∈ {B,U}, where B represents the subunit when it is in the bound or complexed state,

and U when the subunit is dissociated and the protein is in the unbound state. Each Cγ(i)

137

has corresponding domain DCγ(i)
= {1, 2, ...,Mγ(i)}, where Mγ(i) is the maximum number

of rotamers for any amino acid assignment to Ri in form γ. The assignment to Cγ(i) acts

as an index to the possible side chain conformations of the amino acid assigned to Ri. If

assignment Cγ(i) = cγ(i) is greater than the maximum number of rotamers for amino acid

Ri = ri, then the joint assignment (Ri = ri, Cγ(i)=cγ(i)) is said to be inconsistent. During

inference, the Cγ are the SUM variables to be marginalized over.

Functions: We consider two sets of energy functions: Esb
γ = {Esb

γ(i)(Ri, Cγ(i))|i ∈ {1, 2, ..., N}}

that capture the energies of interaction of the amino acid at each residue i with itself and the

surrounding backbone, and Epw
γ = {Epw

γ(ij)(Ri, Cγ(i), Rj, Cγ(j)) | for i, j s.t. Ri and Rj interact}

that capture pair-wise energies of interaction between amino acids in close proximity. Func-

tions with Ri and Cγ(i) in their scope are assigned infinite energy values for inconsistent

assignments to Ri and Cγ(i). As a result, inconsistent assignments have a zero probability

(see Equation 5.2) and thus these infinite energies act as implicit constraints.

Figure 5.2 shows the graph structure resulting from the toy protein in Figure 5.1 cast into

the F1 graphical model formulation. On the left we see the overall graphical model, and on

the right the portions of the model that correspond to the local interactions of the unbound

and bound states have been extracted. Both the bound and unbound states share the same

residue variables. We also see that, in the unbound states, the local interactions of the

different subunits are independent of each other.

Objective: The K* objective can be expressed as K∗(R1...RN) = ZB(R1...RN)
ZU (R1...RN)

, where we

assume temperature T in Kelvin and Boltzmann constant R and where:

Zγ(R1...RN) =
∑

Cγ(1),...,Cγ(N)

∏
Esb

γ(i)
∈Esb

γ

e−
Esb
γ(i)

(Ri,Cγ(i))

RT ·
∏

Epw
γ(ij)

∈Epw
γ

e−
E
pw
γ(ij)

(Ri,Cγ(i),Rj,Cγ(j))

RT
(5.10)

In summary, Formulation 1 provides us with a way to express the protein and its various

138

conformations by using an indexing scheme into the amino acid rotamers. However, we see

that its graph structure is densely connected. Formulation 2, described next, takes a different

approach which helps lead to a more sparse graph structure.

5.3.2 Formulation 2 (F2)

Formulation 2, inspired by the works of Viricel et al. [2018] and Vucinic et al. [2019], uses a

different approach to capture amino acid - rotamer pairs that involves explicit constraints to

restrict invalid combinations. This approach can lead to more sparse graph structures that

can be leveraged by algorithms.

Figure 5.3: Illustration of CPD Formulation F2.

Variables and Domains: As in F1, we define both a set of residue variables R = {Ri | i ∈

{1, 2, ..., N}} and conformation variables Cγ = {Cγ(i) | i ∈ {1, 2, ..., N}}. However, in this

formulation, each Cγ(i) represents a specific amino acid and conformation of the residue.

In other words, each Cγ(i) has a domain DCγ(i)
that includes all possible rotamers of any

possible amino acid value Ri. Then, the value of Ri acts as a “selector” into the possible

assignments to Cγ(i), disallowing the rotamers of other possible values of Ri. For example,

suppose that at residue i, we consider only two possible amino acids: Ri ∈ {r′i, r′′i }. When

the protein is in state γ, for value r′i only a single rotamer is possible, c
(1)

r′i
; for value r′′i there

are two possible rotamers, c
(1)

r′′i
and c

(2)

r′′i
. Then, DCγ(i)

= {c(1)r′i
, c

(1)

r′i
, c

(2)

r′′i
}. However, attempting

to assign Ri = r′i but Cγ(i) = c
(2)

r′′i
would be invalid, since amino acid r′i does not take on

139

rotamer c
(2)

r′′i
. As in formulation F1, we call these mismatched joint assignments inconsistent.

If we compare formulations F1 and F2, we see that F1’s conformation variables C have much

smaller domain sizes, but that this comes at the cost of more interactions between the R

and C variables. Conversely, F2’s conformation variables have large domain sizes, but its

interaction energies are more easily expressed:

Functions: As in F1, we have energy functions to capture singleton and pairwise interac-

tions. However, unlike F1, energy functions for F2 can capture these interactions using only

the conformation variables, since their assignments capture both amino acid and rotamer

identities. Our energy functions consist of: Esb
γ = {Esb

γ(i)(Cγ(i)) | i ∈ {1, 2, ..., N}} which

captures the energies of interaction of the amino acid at each residue i with itself and the

surrounding backbone, and Epw
γ = {Epw

γ(ij)(Cγ(i), Cγ(j)) | for i, j s.t. Ri and Rj interact},

capturing the pair-wise energies of interaction between amino acids in close proximity. In

addition, C = {Cγ(i)(Ri, Cγ(i)) | i ∈ {1, 2, ..., N}, γ ∈ φ } is a set of constraints that ensure

the assigned rotamer to Cγ(i) belongs to the amino acid assigned to Ri. These constraints

prevent inconsistent (Ri,Cγ(i)) assignments.

Figure 5.3 shows the graph structure resulting from the toy protein in Figure 5.1 cast into

the F2 graphical model formulation. On the left we see the overall graphical model, and on

the right the portions of the model that correspond to the local interactions of the unbound

and bound states have been extracted. As before, the bound and unbound states share

the same residue variables, and in the unbound states the local interactions of the different

subunits are independent of each other. Compared to F1, F2’s graph is much sparser, with

any densely connected regions corresponding to only conformation variables. Figure 5.4

highlights this point by labeling different portions in the graph of our toy protein’s model.

140

Figure 5.4: F2 graph with arcs and nodes labeled.

Objective: Again, the K* objective can be expressed as K∗(R1...RN) =
ZB(R1...RN)
ZU (R1...RN)

, where

Zγ(r) =
∑
Cγ

∏
Cγ

Cγ(i)(ri, cγ(i)) ·
∏
Esb

γ

e−
Esb
γ(i)

(cγ(i))

RT ·
∏
E

pw
γ

e−
E
pw
γ(ij)

(cγ(i),cγ(j))

RT (5.11)

5.3.3 Resulting Pseudo Tree

We saw in Figures 5.2 and 5.3 that for both F1 and F2, the extracted local interactions for

the protein in its unbound state are independent of those when the protein is in its bound

state, with the exception of the shared residue variables. Thus, given a variable ordering that

places residue variables at the beginning of the ordering, the resulting pseudo tree structure

for both can be depicted by the general schematic shown in Figure 5.5.

The decomposition captured by this schematic shows that the AND/OR search space will

result in independent sub-trees, creating a more compact search space and enabling more

efficient search.

141

Figure 5.5: Schematic of resulting pseudo tree for CPD formulated as F1 or F2.

5.3.4 Subunit-Stability Thresholds

It is important to note that, semantically, low values for Zγ(r) imply estimated low stability

with amino acids R = r, and thus it is unlikely that subunit γ will retain the desired

structure. Thus, even if very low Zγ(r) can yield high K*, such solutions are not biologically

relevant and we prefer to omit R = r as a possible solution.

We define subunit-stability thresholds Sγ for which we restrict valid solutions R = r to

satisfy Zγ(r) > Sγ for all subunits γ, as in Ojewole et al. [2018]:

Definition 5.1 (subunit-stability threshold)

For each subunit γ, its corresponding subunit-stability threshold is

Sγ = Zγ(rwt) · e
−5
RT (5.12)

where rwt is the wild-type (i.e., naturally occurring) amino acid sequence, R is the universal

gas constant, and T is the temperature in Kelvin.

As such, we can add corresponding global constraints to the model to enforce biologically

relevant solutions according to Sγ.

142

Definition 5.2 (CPD Graphical Model)

Let Mcpd = ⟨X = R ∪ C, D, F = C ∪ E, S⟩ be a CPD graphical model for K*MAP

optimization.

With a graphical model framework in place, next we describe a heuristic that can provide a

bound on the K*MAP value and that can be used to guide search.

5.4 wMBE-K*

Next we present a weighted mini-bucket based approximation scheme for K∗, which adapts

weighted mini-bucket for MMAP [Dechter and Rish, 2002, Marinescu et al., 2014] to the

K∗ objective. Since mini-bucket bounds are compatible with AND/OR search, we leverage

these bounds as heuristics to guide branch-and-bound schemes.

Algorithm 14 describes wMBE-K*, which operates similarly to wMBE-MMAP (Algorithm 2).

Two key similarities are that (1) it uses an elimination order that constrains buckets of

MAP variables, over which maximization occurs, to be processed last (line 3); and (2) for

any bucket that has a width larger than the provided i-bound, a bounded approximation

is made by partitioning the bucket functions into T mini-buckets (line 4) and taking the

product of their power-sums over the bucket variable (lines 10-14, 15-22).

For K*MAP, two key innovations are required: (1) buckets corresponding to variables in CU ,

whose marginal belongs to the denominator of the K* expression, must be lower-bounded (to

provide an upper bound on K*) using a modification of Holder’s inequality that incorporates

negative weights [Liu and Ihler, 2011b] (lines 15-22); and (2) when messages are passed from

buckets corresponding to variables in CU to that of R, the messages are inverted to capture

their role in the denominator (line 20). Although we omit the details here, wMBE-K* can also

employ cost shifting to tighten its bounds (see Flerova et al. [2011], Liu and Ihler [2011b]).

143

Algorithm 14: wMBE-K*

Input: CPD Graphical modelMcpd (Def 5.2); i-bound i;
constrained elimination order oelim = [X1, ..., Xn]
Output: upper bound on the K*MAP: ubK∗MAP (Mcpd)

1 begin
2 Partition the functions f ∈ F into buckets B1, ..., Bn s.t. each function is placed in the bucket

corresponding to the lowest-index variable in its scope.
3 foreach k = 1...n do

4 Generate a mini-bucket partitioning of the bucket functions MBk = {MB
(1)
k , ...,MB

(T)
k } s.t.

|scope(f
MB

(t)
k

)| ≤ i, for all MB
(t)
k ∈MBk

5 if Xk ∈MAP then

6 foreach MB
(t)
k ∈MBk do

7 λ
(t)
k ← maxXk

f
MB

(t)
k

8 end

9 else
10 if Xk ∈ CB then // upper-bound for numerator

11 Select positive weights w = {w1, ..., wT } s.t.
∑

wt∈w wt = 1

12 foreach MB
(t)
k ∈MBk do

13 λ
(t)
k ←

∑wt

Xk
f
MB

(t)
k

14 end

15 else if Xk ∈ CU then // lower-bound for denominator

16 Select a negative weight w1 and positive weights w = {w2, ..., wT } s.t.
∑

wt∈w wt = 1

17 foreach MB
(t)
k ∈MBk do

18 λ
(t)
k ←

∑wt

Xk
f
MB

(t)
k

19 if scope(λ
(t)
k) ⊆ R then

20 λ
(t)
k ← 1/λ

(t)
k

21 end

22 end

23 end

24 end
25 Add each λt

k to the bucket of the lowest-index variable in its scope.

26 end
27 return λn = ubK∗MAP (Mcpd)

28 end

In our empirical evaluation cost-shifting is implemented as well. Finally, the complexity of

the algorithm, which is parameterized by the i-bound i, is time and space exponential in i.

As can be expected, bounding a ratio of functions (as in K*) is particularly challenging,

requiring both upper and lower bounds. Lower bounding of functions, particularly functions

with constraints, can be especially challenging. For larger problems and low i-bounds, we find

this often yields relatively weak bounds, and propose an improvement to partially remedy

144

this behavior.

5.4.1 Domain-Partitioned MBE

The preceding discussion suggested applying mini-bucket without regard to the presence of

hard constraints and consistency requirements. But these constraints, which are represented

as zeros in functions, can lead to poor lower bound generation. For example, in standard

mini-bucket elimination lower bounds [Dechter and Rish, 2003], the bound involves a mini-

mum over function values – so, zero values can cause the resulting lower bound to become

zero as well. However, in the CPD domain, the functions represent protein energetics, and

satisfiable configurations correspond to positive function values. We can thus guarantee a

positive lower bound by using a simple remedy:

Theorem 5.1 (Bounded Domain-Partitioning)

Consider three variables X, Y , and Z and objective

obj =
∑
X

f(x, y) · g(x, z) (5.13)

Let X ′ = {x ∈ X|g(x, z) ̸= 0}, and take ϵX′ = minx∈X′ g(x, z). Since by definition ϵX′ > 0,

we can derive:

obj =
∑
x∈X′

f(x, y)·g(x, z) +
∑

x∈X\X′

f(x, y)·g(x, z) (5.14)

=
∑
x∈X′

f(x, y)·g(x, z) ≥ ϵX′ ·
∑
x∈X′

f(x, y) (5.15)

> 0 (5.16)

when f(x, z) is not identically zero over X ′.

Standard Mini-Bucket Elimination, even under the conditions above, produces its lower

145

Algorithm 15: AOBB-K*

Input: CPD graphical modelM; pseudo-tree T ; K∗ upper-bounding heuristic function hK∗(.); Zγ

upper-bounding heuristic function hZγ
(.); and subunit stability threshold Sγ for each

subunit γ
Output: K∗MAP (M)

1 begin
2 Encode deterministic relations inM into CNF
3 π ← root OR node s
4 ubK∗(s)← hK∗(s)
5 lbK∗(s)← −inf
6 g(s)← 1
7 foreach γ ∈ φ do
8 UBZγ (s)←

∏
m∈chTγ (s) hZγ

(m)

9 end
10 while nX ← EXPAND(π) do
11 if ConstraintPropagation(π) = false then
12 PRUNE(π)

13 else if ∃γ ∈ φ s.t. UBZγ
(nX) < Sγ then

14 PRUNE(π)

15 else if X ∈ R then
16 if ∃a ∈ ancOR(n) s.t. ubK∗(a, π) < lbK∗(a) then
17 PRUNE(π)

18 end

19 else if chunexp
T (n) = ∅ then

20 BACKTRACK(π)

21 end
22 return ubK∗(s) = lbK∗(s) = K∗MAP (M)

23 end

bound as minX g(x, z)·
∑

x∈X′ f(x, y); while min value can be zero, we see that ϵX′·
∑

x∈X′ f(x, y)

provides a tighter, and strictly positive, lower bound.

5.5 AOBB-K*

State-of-the-art K* optimizers, such as BBK*, utilize memory-intensive best-first A*-like search

algorithms [Ojewole et al., 2018, Hallen et al., 2018]. In contrast, depth-first algorithms offer

a linear space complexity, enabling them to solve problems that best-first methods may

not be be able to due to memory limitations [Zhou et al., 2016]. As a key algorithmic

contribution of this work, we present AOBB-K*, a depth-first AND/OR branch-and-bound

scheme for solving K*MAP.

146

AOBB-K* (Algorithm 15) traverses the underlying AND/OR search of pseudo tree T , expand-

ing nodes in a depth-first manner (line 10), and pruning whenever any of three conditions

are triggered: (1) the resulting variable assignments violate constraints encoded as infinite

values inM (line 11); (2) a subunit-stability constraint (SSC) – a constraint which enforces

the partition function of each protein subunit, Zγ, to be greater than a biologically-relevant

threshold Sγ [Ojewole et al., 2018] – is violated (line 13); or (3) when it can be determined

that the current partial assignment cannot produce a K* value greater than that previously

found during the search (line 16). Backtracking occurs when all the node’s children have

been explored and returned from (line 19), at which point the K* value of the subproblem

rooted at that node is computed exactly, and bounds of its parents are tightened accordingly.

Infinite energy tuples inM’s functions are used to forbid inconsistent amino acid - rotamer

pairs. During search, unit-propagation (e.g., Eén and Sörensson [2004]) propagates values

through these constraints and detects infeasible configurations (line 11).

The algorithm progresses until it backtracks to, and updates, the root of the search tree

with the maximal K* value of an amino acid sequence that also satisfies the subunit-stability

thresholds.

Throughout search, each node n maintains a progressively tightened upper bound ubK∗(n)

on the K*MAP of the sub problem rooted at n. When a node is expanded, this bound

is initialized based on the upper-bounding heuristic function hubK∗(.) (line 4). As search

progresses, ubK∗(n) decreases, converging towards the K*MAP of the sub problem rooted

at n. Furthermore, each node n also maintains a progressively improved upper bound on

the partition function of each subunit γ consistent with the path to n, UBZγ (n) (line 8).

At each step UBZγ (n) is recomputed to ensure that it is greater than the provided subunit-

stability threshold Sγ, thus satisfying the subunit-stability constraints and ensuring that

only biologically relevant solutions are considered [Ojewole et al., 2018]. Note that the

subunit stability constraints are not encoded into the problem, and thus add another layer

147

of complexity not present in classical inference tasks such as MMAP.

AOBB-K* is a systematic search algorithm that only prunes its search space when it can prove

sub-optimal or invalid (under the subunit-stability constraints) solutions. Therefore we have,

Theorem 5.2 (AOBB-K* correctness, completeness)

AOBB-K* is sound and complete for optimal K* under the subunit-stability constraints.

From Marinescu and Dechter [2009c,b] it follows that,

Theorem 5.3 (AOBB-K* complexity)

AOBB-K* is time O(n · kd) and space O(n), where n is the number of variables, k is the

maximum domain size, and d is the depth of the guiding pseudo tree. When AOBB-K* is

modified to search the context minimal AND/OR graph it is both time and space O(n · kw∗
),

where w∗ is the induced width of the pseudo tree.

5.5.1 Weighted Search for K*

Weighted best-first search (e.g., WA∗ [Pohl, 1970], WAO∗ [Desarkar et al., 1987]) is a well

known principle for converting best-first search into an anytime scheme by multiplying the

heuristic function h(n) of a node n in the search space by a weight ω > 1. The solution is

guaranteed to be ω-optimal (i.e., within a factor ω of the optimal solution).

Therefore, AOBB-K* can easily be relaxed to an ω-approximation scheme (for ω ∈ [0, 1)) by

multiplying hK∗(nR) at each node nR in the AND/OR search tree by a factor of ω. The

resulting solution will be at worst ω ·K∗MAP [Pohl, 1970, Flerova et al., 2014]. We explore

the performance of applying weighted search methods to a class of difficult CPD problem

instances in Section 5.10: Empirical Evaluation.

148

5.6 Boosting AOBB-K*

In order to further enhance AOBB-K*, we developed AOBB-K*-b (boosted) as an advancement

of AOBB-K* with modifications that improve its scalability. These enhancements, outlined

below, are a mix of CPD domain-specific enhancements as well as principled enhancements

that can be generalized to other graphical models tasks and problem domains.

5.6.1 Boosted wMBE-K*

A main cause of the scalability limitations of the AOBB-K* is a sometimes weak or unbounded

heuristic estimate by wMBE-K* (Algorithm 14). This occurs primarily because of difficulties

in the lower-bounding computations corresponding to the denominator of K* and lead to

loose upper bounds on the K*MAP. Such loose bounds (or lack of bounds) do not allow

pruning during search, and can lead to traversal of a much larger search space than if more

pruning can occur.

To improve on wMBE-K*’s estimates, we introduce wMBE-K*-b (boosted) which we developed

by augmenting wMBE-K* with three sequential improvements: (1) adjustment of the power-

sum mechanism (lines 13,18) to produce non-zero lower-estimates at the cost of losing bound

guarantees, (2) adjustment to the cost shifting mechanism to prevent cost-shifts with zeros,

and (3) maximization with finite values over infinite ones (line 7). The specific adjustments

and justifications for these modifications are explained next.

1) Enforcing non-zero lower estimates. wMBE-K* uses uses a power-sum computation

leveraging Holder’s inequality to compute bounds on the K*MAP objective, with a version

using negative weights for lower bounding the denominator portion of the K* expression

(lines 13,18). When doing the lower bounding of the denominator using negative weights,

if the consolidated mini-bucket function f
B

(j)
X

contains zeros, then
(
f
B

(j)
X

) 1
w is undefined –

149

or infinity according to the continuous limit (Equation 2.5, Equation 2.6). This results in

the overall power-sum evaluating to zero (and so the denominator of the K* is set to zero)

leading to an unbounded K* upper bound.

Thus, deriving inspiration from Section 5.4.1: Domain-Partitioned MBE we adjust the com-

putation to omit zeros in the lower-bounding power-sum (line 18) thus forcing non-zero

estimates for consistent sub problems. This is also in line with the fact that the partition

functions of biologically relevant protein subunits are in fact non-zero.

Definition 5.3 (Zero-Omitted Weighted Function)

The zero-omitted w-weighted function, denoted f ◁w, of a function f having scope Y is defined

by: f ◁w(y) := f(y)w for f(y) ̸= 0 and 0 otherwise.

Definition 5.4 (Zero-Omitted Power Sum)

The zero-omitted power-sum of a function f that includes X in its scope is defined by:∑◁w
X f := (

∑
X f(x)

◁ 1
w)w where 0

0
:= 0.

Specifically, line 18 is changed to: λtk ←
∑◁w

Xk
f
MB

(t)
k
.

This modified version can no longer guarantee a lower bound for the denominator of the

K* expression, however boundedness can be retained if the omitted zeros correspond to

conditions for bounded domain-partitioning (Theorem 5.1).

2) Cost shifting with non-zero values. We similarly adjust the cost-shifting mechanism

(described in Flerova et al. [2011], Ihler et al. [2012]) to only consider non-zero values when

choosing a Lagrange multiplier. This in turn restricts cost-shifts to be only with non-zero

values, helping to prevent numerical instabilities and ensures a positive lower bound for

consistent sub problems. This change does not disrupt bound guarantees.

3) Maximizing over finite values. With adjustments 1) and 2) above, the resulting

K* approximation for any (partial) configuration of the residues that are consistent will

150

necessarily have a finite positive value (the upper bound estimates on theK∗ = ZB

ZU
numerator

are inherently finite and, now, the lower estimate of the denominator is also forced to be

positive and finite for consistent sub problems). Thus, during the maximization step in

wMBE-K* (line 7), we now instead maximize only over the available finite values.

5.6.2 Tuning search

Two key enhancements were also made to AOBB-K* search.

Prioritizing the wild-type assignment. Unlike many other problem domains, for protein

re-design a good initial assignment to the variables is known ahead of time: the amino acid

sequence that corresponds to the wild-type (naturally occurring) protein [Kuhlman and

Baker, 2000]. We force the wild-type sequence to be explored first, ensuring that we begin

search with a strong initial lower bound.

Prioritizing nodes with a finite heuristic value. Since wMBE-K*-b produces infinite

K* estimates only for invalid configurations, we adjust node ordering during search to first

explore nodes that have a finite heuristic value. This ensures that consistent configurations

are traversed first.

In the Empirical Evaluation section we evaluate the performance impact of these changes.

5.7 Weighted Search

Weighted best-first search (e.g., WA∗ [Pohl, 1970], WAO∗ [Desarkar et al., 1987]) is a well

known principle for converting best-first search into an anytime scheme by multiplying the

heuristic function h(n) of a node n in the search space by a weight ω > 1. The solution is

guaranteed to be ω-optimal (i.e., within a factor ω from the optimal one).

151

Therefore, AOBB-K* can easily be relaxed to an ω-approximation scheme (for ω ∈ [0, 1)) by

multiplying hK∗(n) at each node n in the AND/OR search tree by a factor of ω. It can be

shown that the resulting solution will be at worst ω · K∗MAP [Pohl, 1970, Flerova et al.,

2014]. We explore the performance of applying such approximations to a class of difficult

CPD problem instances in Section 5.10.

5.8 Dynamic Heuristics

So far, we have used a pre-computed and fixed heuristic function to guide the search process.

However, computing bounds dynamically during the search, after some variables have been

assigned values, can produce much tighter bounds but at the cost of requiring potentially

many bound recomputations. (e.g., Lam et al. [2014]). AOBB-K*-DH (Algorithm 16) provides

a general framework for using dynamic heuristics within AOBB-K*.

AOBB-K*-DH performs search similarly to AOBB-K* with the exception that, at each node

expansion not resulting immediately in pruning, it makes a decision whether or not to dy-

namically recompute a new K* upper-bounding heuristic conditioned on the current search

path (line 12 This decision is based on two hyper-parameters: maxDepth, a maximum

depth at which to consider recomputations, and dhThreshold, a numerical bound on exist-

ing heuristic estimates over which re-computations occur. These hyper-parameters serve to

regulate the frequency of dynamic heuristic re-computations since they can be costly both

in time and memory. (In particular, wMBE-K* is exponential in its i-bound hyper-parameter).

When pruning or backtracking past the point of the most recent heuristic re-computation,

the K* heuristic tables HK∗ are rolled back to cached tables from previous computations

(not shown explicitly).

152

Algorithm 16: AOBB-K*-DH
Input: CPD graphical modelMcpd (Def 5.2);
pseudo tree T guiding node expansions;
K∗ upper-bounding heuristic function hK∗(.);
Zγ upper-bounding heuristic function hZγ

(.)
Output: K∗MAP (Mcpd)

1 begin
2 Encode deterministic relations inMcpd into CNF
3 π ← search path initialized with a dummy root node r
4 HK∗ ← tables precomputed by hK∗(r)
5 HZγ

← tables precomputed by hZγ
(r) for each γ

6 while EXPAND(π, T) do
7 if ConstraintPropagation(π) = false then
8 PRUNE(π)

9 else if ∃γ ∈ φ s.t. ubZγ
(π,HZγ

) < Sγ then
10 PRUNE(π)

11 else
12 if depth(π) ≤ maxDepth and HK∗(π) > dhThreshold then
13 HK∗ ← tables recomputed by hK∗(π)

14 if X ∈ R then
15 if ubK∗(π,HK∗) < lbK∗ then
16 PRUNE(π)

17 end

18 while π has no unexpanded children do
19 BACKTRACK(π)

20 end

21 end
22 return lbK∗ = K∗MAP (Mcpd)

23 end

Parameters regulating dynamic heuristic re-computation. Dynamic heuristic re-computation

can be expensive, and as the search progresses deeper, many heuristics (including the

weighted Mini-Bucket Heuristic) becomes more accurate. Thus, a simple way to bound the

number of times the heuristic is recomputed is to limit the depth at which re-computation

of the heuristic can occur. The provided maxDepth parameter does just this, indicating the

maximum depth .

Dynamic heuristic re-computations aim to improve bounds and enhance pruning. However,

if the existing heuristic value is already tight, the cost of re-computation may outweigh

traversing the search space with the current heuristic. Determining what is considered

“already tight” can be difficult for general search tasks. However, in the case of protein

153

re-design, valid solutions almost always have a cost similar in magnitude to the score of

the wild-type. Therefore, we can initially select a value for dhThreshold relative to the

native wild-type K* value and change them towards more speed (increasing the threshold)

or accuracy (decreasing it) as desired.

5.9 Incorporating UFO

In Chapter 4 we discussed the potential of infusing determinism to accelerate search em-

powered by constraint propagation. In particular, UFO schemes such as UFO-GT (Algorithm

10) were developed to replace very small function values (i.e., “near constraints”) with 0.0

turning them into hard constraints. Protein design is one example domain in which this

approach is potentially quite powerful. Very poor side chain interactions within proteins

– namely, interactions that contribute a very high free energy – typically cause instability

in the protein structure. Thus, it is uncommon to find stable functional proteins contain-

ing such high energy interactions. By applying the UFO methodology, we explicitly forbid

these very unfavorable interactions. As our last set of algorithmic improvements, we present

AOBB-K*-UFO, AOBB-K* augmented with a CPD-specific UFO scheme.

In general, larger values of the UFO underflow threshold lead to more determinism, and

consequently more aggressive constraint propagation pruning. However, if the threshold is

set too high, the resulting model becomes inaccurate and may even become inconsistent,

leaving no configuration capable of producing a non-zero value. To maximize our pruning

without ruining the model quality, we seek a threshold that is as high as possible yet still

ensures a consistent model. To identify the threshold value, UFO-GT (Algorithm 10) employs

binary search to find the largest threshold that still results in a satisfiable model (lines 6-12).

In CPD, we actually know more information than that the model should remain consis-

154

Algorithm 17: AOBB-K*-UFO

Input: Mcpd (Def 5.2); xwt, wild-type assignment to X; SAT solving algorithm,
SAT (.) ; time limit for binary search; a deflation factor 0 < δ ≤ 1; pseudo
tree T guiding search; K∗ upper-bounding heuristic function hK∗(.); Zγ

upper-bounding heuristic function hZγ (.);
Output: approximation to the true K∗MAP (M)

1 begin
2 τ ← UFOcpd(Mcpd, xwt, SAT (.), time-limit, δ)
3 K∗′ ← AOBB-K∗(Mcpdτ , T , hK∗(.), hZγ (.))
4 return K∗′

5 end

tent – we know that the wild-type configuration is both valid and reasonable, and we can

additionally require that the wild-type sequence should not be made inconsistent by UFO.

To this end, we modify UFO so that as it performs underflows on the Boltzmann transformed

Esb and Epw functions (see Equation 5.11), it not only enforces general satisfiability but also

enforces satisfiability of the wild-type sequence. This modified UFO scheme, called UFOcpd,

alters the vanilla UFO-GT’s satisfiability check (Algorithm 10, line 7) with one that enforces

consistency of the wild-type sequence. Once an appropriate initial threshold is selected,

the algorithm decreases the threshold using a hyper-parameter δ (Algorithm 10, line 13) to

enable a wider array of solutions in the model.

AOBB-K*-UFO . AOBB-K*-UFO (Algorithm 17) empowers AOBB-K* by generating an un-

derflowed modelMcpdτ with τ determined by UFOcpd.

155

5.10 Empirical Evaluation

5.10.1 Experimental methodology

Benchmarks. We performed empirical evaluation on benchmarks derived from re-design

problems for real proteins provided by the Bruce Donald Lab at Duke University. To grad-

ually increase difficulty, small problems with two mutable residues (with five to ten total

residues) were incrementally enlarged by making more of the residues mutable. Experiments

were performed on an initially created “Expanded” problem set consisting of 12 problems

with 3 mutable residues, then also additionally set of 32 problems expanded to have 4 mu-

table residues, and a set of 18 problems expanded to have 5 mutable residues. The names

of the problems from the “Expanded” set correspond to the design number of the instance

obtained from the Donald Lab. The names of problems from the the latter two sets of cre-

ated benchmarks are shown with three parts: d[g]-[M]-[p] (e.g., d27-4-1), where [g] represents

the problem design number as obtained from the Donald Lab, [M] indicates the number of

mutable residues after enlarging, and [p] is an integer representing an index into the possi-

ble
(
n
M

)
combinations of M mutable residues chosen from n residues available for redesign.

The resulting conformation spaces for these problems ranged from on the order of 106 for 3

mutable residues to 1011 for 5 mutable residues.

Algorithms. We experimented with 6 algorithms: AOBB-K*; AOBB-K*-ω using weighted

search (Section 5.7); AOBB-K*-b (boosted) with an improved wMBE-K*-b heuristic and search

enhancements (Section 5.6); AOBB-K*-b-DH, which is AOBB-K*-b with dynamic heuristics

(Section 5.8); AOBB-K*-b-UFO, which is AOBB-K*-b empowered with a CPD-specific UFO

scheme (Section 5.9); and BBK*, state-of-the-art best-first search algorithm in comprehensive

CPD software OSPREY 3.0 [Ojewole et al., 2018, Hallen et al., 2018].

Each AOBB-K* algorithm was implemented in C++. AOBB-K*-b-DH dynamic heuristic re-

156

computations were regulated with maxDepth = 2 and dhThreshold = 1020 · K∗
wt, where

K∗
wt is the wild-type K* value. The UFO scheme used by AOBB-K*-b-UFO performed binary

search in log-space and decreased the resulting threshold with δ = 0.2 (Algorithm 10: UFO-

GT, line 13). Because the AOBB-K*-b algorithms use the wMBE-K*-b heuristic which does

not guarantee bounds, they do not guarantee discovery of the optimal K* (i.e., they are not

complete). Similarly, schemes empowered with UFO lose optimality guarantees.

BBK* is implemented in Java, was set to use rigid rotamers, and given a bound-tightness of

1 × 10−200[∗]. Despite the extremely small bound tightness parameter, BBK* still failed to

yield an optimal solution in various instances and therefore cannot be considered as sound

and complete.

Experiments were run on a 2.66 GHz processor, and given 4 GB of memory and a time limit

of 1hr for each problem. As BBK* can take advantage of parallelism, it was given access to 4

CPU cores.

Domain Sizes. In all problems, each mutable residues considers ∼21 different amino acid

assignments. Conformation variables of non-mutable residues have a domain size of ∼2-14

rotamers (most having domain sizes ∼4-9). Conformation variables of mutable residues have

a domain size of ∼34-35 when formulated as F1 and ∼203-205 when formulated as F2.

5.10.2 Results

Below are common keys to the tables presented in the results:

Table Keys. F: formulation type, ω: weight applied to the heuristic for weighted search, iB

or i: the i-bound used for the heuristic generation, w*: induced width, d: pseudo tree depth,

|R|: number of mutable residues (i.e., variables to be maximized over), |X|: total number

∗BBK*’s bound tightness parameter does not correlate directly with an ω-approximation. See Ojewole
et al. [2018].

157

of variables, Dmax: maximum domain size, UB: heuristic upper bound at the root (empty

cells representing no finite bound), pre-t: pre-processing time (ex. compiling heuristics),

search: search time, time: total time, K* or Soln: the returned K* solution in log10 (for

AOBB-K*-b-UFO, the solution was recomputed using the native, not underflowed, model), wt

K*: the wild-type sequence K* value (in log10), and Anytime: the time it took to find the

best solution found. The favorable values are printed in green or blue. Unfavorable values

are printed in red.

Table 5.1: F1 vs F2 on original and Expanded(*) problems. Times for F1 are in black, and
times for F2 are in green.

benchmark F iB |R| |X| Dmax w* d UB pre-t time
F1 3 2 16 34 8 8 0.9 226.9
F2 3 2 16 203 6 8 0.7 93.0
F1 6 2 12 34 6 6 10.28 69.2 101.2
F2 4 2 12 203 4 6 10.29 6.8 15.7
F1 3 2 18 35 9 9 1.0 30.2
F2 3 2 18 203 7 9 1.3 12.3
F1 6 2 14 34 7 7 15.18 14.6 25.0
F2 4 2 14 203 5 7 15.08 1.7 7.3
F1 3 3 15 34 8 8 2.9 24.5
F2 4 3 15 205 5 8 14.80 58.3 60.9
F1 6 3 15 35 8 8 12.28 122.0 775.2
F2 5 3 15 203 5 8 11.39 81.8 360.7
F1 5 3 13 34 7 7 12.9 45.1
F2 4 3 13 203 4 7 12.29 74.0 76.1
F1 6 3 15 34 8 8 16.93 119.6 1494.9
F2 5 3 15 203 5 8 16.05 169.2 181.3

AOBB-K*

1a0r_00031

1gwc_00021

2hnu_00026

4wwi_00019*

3u7y_00011*

1gwc_00033

2xgy_00020*

2rfe_00012*

Formulation 1 vs. Formulation 2. Table 5.1 shows results from both formulations on

problems that were able to be solved exactly. The first four benchmarks shown are original

small problems with 2 mutable residues obtained form the Donald Lab. The latter four

problems are “Extended” problems with 3 mutable residues. Since the results are exact,

we compare performance by the computation time. We see that F2 is generally superior

to F1. Recall that F1 uses an indexing scheme between amino-acids and their rotamers,

which implies that all functions need to include both residue and conformation variables

thus leading to densely connected graphs. That being said, a strength of F1 vs. F2 is its

158

Table 5.2: AOBB-K* (ω = 1) vs. Weighted AOBB-K*-ω (ω = 0.001) on Expanded F2 problems.
Times for ω = 1 are in black, and times for ω = 0.001 are in green. Red K* indicates a
suboptimal solution.

benchmark ω iB w* d |X| UB pre-t search time K*
1 4 4 7 13 28.80 123.8 81.3 205.1

0.001 4 4 7 13 28.80 124.3 12.1 136.4
1 4 6 9 17 42.32 109.8 44.0 153.8

0.001 4 6 9 17 42.32 109.3 12.2 121.5
1 4 6 9 17 37.68 83.0 17.8 100.8

0.001 4 6 9 17 37.68 82.8 1.6 84.4
1 4 5 8 15 34.07 58.3 2.6 60.9

0.001 4 5 8 15 34.07 58.6 0.3 58.9
1 4 5 8 15 35.07 58.2 2.4 60.6

0.001 4 5 8 15 35.07 58.2 1.3 59.4
1 5 5 8 15 26.39 166.8 167.8 334.6

0.001 4 5 8 15 27.39 89.1 5.0 94.1
1 4 5 8 15 31.34 115.2 161.5 276.6 11.1

0.001 4 5 8 15 31.34 101.4 0.5 101.9 10.9
1 5 5 8 15 26.24 81.8 278.9 360.7

0.001 4 5 8 15 27.24 60.4 8.2 68.6
1 4 4 7 13 11.41 62.6 36.8 99.5

0.001 4 4 7 13 11.41 62.5 2.1 64.7
1 4 4 7 13 28.29 74.0 2.1 76.1

0.001 4 4 7 13 28.29 83.4 0.1 83.5
1 5 5 8 15 36.96 169.2 12.1 181.3

0.001 4 5 8 15 37.96 62.0 7.2 69.2

(203 ≤ Dmax ≤ 206) ω-AOBB-K*

11.92

16.18

15.03

13.93

14.36

1gwc_00021*

2hnv_00025*

2rf9_00013*

2rfe_00012*

2rfe_00014*

3u7y_00011*

4wwi_00019*

10.86

10.96

4.51

11.85

14.99

2rfe_00017*

2rfe_00030*

2xgy_00020*

3u7y_00009*

smaller domain sizes as seen via column “Dmax” (35 for F1 vs. 205 for F2). The smaller

domain sizes facilitates the use of higher i-bounds as compared with F2

Weighted Search. Each pair of rows in Table 5.2 compares AOBB-K* (denoted ω = 1) and

AOBB-K*-ω (ω = 0.001) on all Expanded problems. The listed i-bound is the value leading to

the best result for each algorithm. Using approximate search reduces the MAP search space

and improves search time (see values in the column “search”), sometimes by more than a

factor of ten (e.g., for 3u7y prepped 00009* AOBB-K*-ω took 2.1 seconds during search com-

pared to 36.8 seconds with AOBB-K*). For 2rfe prepped 00017*, 2xgy prepped 00020*, and

4wwi prepped 00019*, we see the optimal i-bound is reduced from 5 to 4 when using weighted

search, highlighting the increased pruning of the search space enabled by the weighted heuris-

tic even when using a weaker (but more quickly computed) heuristic. (Even when using the

same i-bound, weighted search still showed significant speed-ups solving these problems).

For the majority of these problems AOBB-K*-ω still found the optimal K*– in the table, the

159

Table 5.3: Performance of AOBB-K*-b vs AOBB-K* on the “Expanded” benchmarks with 3
mutable residues. Displayed are the i-bound (“i”) used by each, their respective best-found
K* value (“Soln”), their completion time (“Time”), and, as reference, the wild-type K* value
(“wt K* ”).

3 Mut
Problem i Soln Time i Soln Time
00007 4 14.73 269.3 14.08 - -inf t/o
00009 4 4.51 79.9 4.09 4 4.51 99.5
00011 4 11.85 102.2 11.75 4 11.85 76.1
00012 4 13.93 69.1 13.93 4 13.93 60.9
00013 4 15.03 101.9 13.25 4 15.03 100.8
00014 4 14.36 70.9 13.96 4 14.36 60.6
00017 4 10.86 118.0 10.52 5 10.86 334.6
00019 4 14.99 77.6 14.99 5 14.99 181.3
00020 4 10.96 101.5 10.60 5 10.96 360.7
00021 4 11.92 200.4 9.37 4 11.92 205.1
00025 4 16.18 168.6 10.74 4 16.18 153.8
00030 4 11.12 154.3 10.35 4 11.12 276.6

wt K*
AOBB-K*-b AOBB-K*

column “K*” reports the output of the algorithms, and only for 2rfe prepped 00030* does

AOBB-K*-ω produce a slightly suboptimal solution).

Comparing AOBB-K*-b vs AOBB-K*. In Table 5.3 we examine performance of AOBB-K*-b

(with tightened wMBE-K*-b) vs. AOBB-K* on the problems with three mutable residues. We

compare solution quality and speed of the two algorithms. The i-bound of AOBB-K*-b was

set to i = 4. For AOBB-K* we use the best performing i-bound as reported previously. We

highlight in blue any better K* solutions and any significantly faster completion times (20%

or more improvement over the competing algorithm’s time). The wild-type K* value (“wt

K* ”) is also shown.

The highlighted blue times show AOBB-K*-b finishing significantly faster for half of the prob-

lems, as well as solving a problem that AOBB-K* could not solve. Finally, AOBB-K*-b was able

to find optimal solutions for each of these problems, although it does not prove optimality.

Evaluating Dynamic Heuristics. Table 5.4 compares AOBB-K*-b with and without the

dynamic heuristic scheme described in Section 5.8 on problems with 3 or 4 mutable residues

for which both algorithms found optimal solutions within an hour. We compare the size

160

of the explored search space between the two algorithms (counting the number of OR and

AND nodes of the residue variables traversed) and highlight when there are differences.

We see that dynamic heuristic re-computation reduces the size of the traversed search space

in the majority of problems. For example, for problem d18-4-2 AOBB-K*-DH searched 40 OR

nodes and 56 AND nodes whereas AOBB-K*-b traversed 279 OR nodes 1214 AND nodes.

In two cases (highlighted in red) dynamic heuristics cause an increase in the search space.

This may occur when dynamic heuristic re-computation causes the K* upper-estimate for

a node to increase, resulting in less pruning. This can occur because the lower-estimate of

the K* denominator from wMBE-K*-b does not guarantee a lower-bound. Thus, tightening

of the heuristic may cause this lower-estimate to decrease in comparison to the originally

computed heuristic. With an even lower value in the denominator, the K* upper-estimate

now increases, and thus less pruning may occur.

We also see that in the majority of the problems AOBB-K*-DH had better time performance de-

spite the naive implementation of dynamic heuristic re-computations. For example, AOBB-K*-

DH took 598.38 seconds to solve problem d18-4-2 whereas AOBB-K*-b took 3488.56 seconds.

UFO Impact and Cross Comparisons. The culmination of our results, Table 5.5 compares

the performance of AOBB-K*-b-UFO, AOBB-K*-b-DH, AOBB-K*-b, and BBK* on problems with

three, four, and five mutable residues. The AOBB-K*-based algorithms are displayed in a top-

down ranking per problem, with the best ranking algorithm placed at the top. Ranking is

based first on the quality of K* found and then by the speed at which their respective solution

was first discovered (measured in seconds and denoted “Anytime”, highlighting the anytime

nature of AOBB-K* search). Large text highlights the value responsible for the algorithm’s

higher ranking, and blue color indicates that BBK* was outperformed.

From the rank-based ordering of the algorithms, the competitiveness of the UFO scheme is

apparent, with AOBB-K*-b-UFO ranked higher than the other two AOBB-K* schemes for all

161

Table 5.4: Comparison of the explored search space by AOBB-K*-b with and without use of a
dynamic heuristic. Displayed are the respective i-bounds (“i”) used, best-found K* solutions
(“Soln”), completion times (“Time”), and the size of the traversed AND/OR search space
(number of residue OR and AND nodes).

M Problem Algorithm i Soln Time OR AND

AOBB-K*-b-DH 3 11.85 24.64 3 15
AOBB-K*-b 3 11.85 60.99 58 197
AOBB-K*-b 4 11.85 102.18 3 5

AOBB-K*-b-DH 3 13.93 22.06 3 13
AOBB-K*-b 3 13.93 20.72 21 122
AOBB-K*-b 4 13.93 69.05 3 4

AOBB-K*-b-DH 3 14.36 26.95 3 16
AOBB-K*-b 3 14.36 21.92 25 132
AOBB-K*-b 4 14.36 70.88 3 5

AOBB-K*-b-DH 3 11.12 54.02 70 141
AOBB-K*-b 3 11.12 2019.77 254 3666
AOBB-K*-b 4 11.12 154.28 22 25

AOBB-K*-b-DH 3 16.58 598.38 40 56
AOBB-K*-b 3 16.58 3488.56 279 1214

AOBB-K*-b-DH 3 12.96 407.78 92 251
AOBB-K*-b 3 12.96 487.66 94 437
AOBB-K*-b-DH 3 15.55 405.89 57 137
AOBB-K*-b 3 15.55 254.67 57 137

AOBB-K*-b-DH 3 15.27 37.78 9 12
AOBB-K*-b 3 15.27 21.62 9 19
AOBB-K*-b-DH 3 15.27 576.98 93 230
AOBB-K*-b 3 15.27 323.45 59 166

AOBB-K*-b-DH 3 22.65 2897.35 18 61
AOBB-K*-b 3 22.65 3025.80 24 114
AOBB-K*-b-DH 3 18.04 483.55 346 476
AOBB-K*-b 3 18.04 112.50 56 75

3

4

d43-4-2

d42-4-1

d27-4-1

d28-4-1

d28-4-2

d30-3-1

d18-4-2

d24-4-1

d11-3-1

d12-3-1

d14-3-1

problems except d27-5-1 (for which it found the same K* value as the other algorithms and

was slower than AOBB-K*-b by just 2.61 seconds). The frequency of blue coloring shows

the algorithms’ competitiveness against BBK* on problems having three and four mutable

residues. For problems d7-4-2, d47-4-2, and d47-5-2 AOBB-K*-b-UFO found a better solution

than all other algorithms, BBK* included.

On problems having 5 mutable residues the AOBB-K*-b schemes begin to struggle. This is

likely due to the loss of bounds from the boosted modifications of wMBE-K*-b in conjunction

with a low i-bound, heavy underflows, and longer message passing for these larger problems.

Nevertheless, AOBB-K*-UFO is still able to find good solutions, more often better than BBK*

162

Table 5.5: Comparison of the AOBB-K*-b-[UFO/DH] schemes and BBK* on problems ranging
from 3 to 5 mutable residues. Shown is the i-bound used, best-found K* solution (recom-
puted without underflow-thresholding), the time at which the best-found solution was first
discovered (“Anytime”), and the completion time (“Time”). The wild-type K* solution is
also shown.

M Problem Algorithm i Soln Anytime Time Soln Time
AOBB-K*-b-UFO 3 14.99 6.15 621.83 14.99 14.99 34.00
AOBB-K*-b-DH 3 14.99 11.31 56.05 14.99 14.99 34.00
AOBB-K*-b 4 14.99 75.99 76.00 14.99 14.99 34.00
AOBB-K*-b-UFO 3 10.96 13.70 480.77 10.60 10.96 1388.13
AOBB-K*-b-DH 3 10.96 39.67 339.91 10.60 10.96 1388.13
AOBB-K*-b 4 10.96 100.02 100.03 10.60 10.96 1388.13
AOBB-K*-b-UFO 3 11.92 89.03 628.59 9.37 11.72 551.27
AOBB-K*-b-DH 3 11.92 136.44 1307.45 9.37 11.72 551.27
AOBB-K*-b 4 11.92 193.83 196.52 9.37 11.72 551.27
AOBB-K*-b-UFO 3 16.18 14.02 64.82 10.74 13.65 880.46
AOBB-K*-b-DH 3 16.18 51.92 80.22 10.74 13.65 880.46
AOBB-K*-b 4 16.18 166.74 166.75 10.74 13.65 880.46
AOBB-K*-b-UFO 3 14.89 3391.78 timeout 14.08 14.54 278.08
AOBB-K*-b-DH 3 14.49 3543.27 timeout 14.08 14.54 278.08
AOBB-K*-b 3 14.49 3293.62 timeout 14.08 14.54 278.08
AOBB-K*-b-UFO 3 15.03 12.69 1974.43 13.25 15.03 46.46
AOBB-K*-b-DH 3 15.03 22.05 79.88 13.25 15.03 46.46
AOBB-K*-b 4 15.03 165.48 timeout 13.25 15.03 46.46
AOBB-K*-b-UFO 3 10.86 29.39 timeout 10.52 10.80 89.94
AOBB-K*-b 4 10.86 657.54 timeout 10.52 10.80 89.94
AOBB-K*-b-DH 3 10.86 660.16 timeout 10.52 10.80 89.94
AOBB-K*-b-UFO 3 11.92 196.30 timeout 9.37 11.72 687.66
AOBB-K*-b-DH 3 11.92 614.88 timeout 9.37 11.72 687.66
AOBB-K*-b 4 11.72 264.92 timeout 9.37 11.72 687.66
AOBB-K*-b-UFO 3 18.19 76.49 484.69 18.04 18.18 119.88
AOBB-K*-b-DH 3 18.19 386.49 timeout 18.04 18.18 119.88
AOBB-K*-b 3 18.19 896.67 timeout 18.04 18.18 119.88
AOBB-K*-b-UFO 3 22.87 72.53 239.88 22.70 22.83 1339.15
AOBB-K*-b 3 22.74 130.95 timeout 22.70 22.83 1339.15
AOBB-K*-b-DH 3 22.74 140.66 timeout 22.70 22.83 1339.15
AOBB-K*-b-UFO 3 15.17 1570.30 timeout 14.08 14.73 401.09
AOBB-K*-b-DH 3 14.73 57.91 timeout 14.08 14.73 401.09
AOBB-K*-b 3 14.73 62.53 timeout 14.08 14.73 401.09
AOBB-K*-b-UFO 3 14.84 891.90 timeout 14.08 15.60 205.56
AOBB-K*-b 3 14.73 67.53 timeout 14.08 15.60 205.56
AOBB-K*-b-DH 3 14.73 156.68 timeout 14.08 15.60 205.56
AOBB-K*-b 3 15.55 274.30 timeout 15.48 15.55 1270.65
AOBB-K*-b-UFO 3 15.55 276.91 timeout 15.48 15.55 1270.65
AOBB-K*-b-DH 3 15.55 321.02 timeout 15.48 15.55 1270.65
AOBB-K*-b-UFO 3 7.88 22.35 128.75 7.63 7.88 130.04
AOBB-K*-b 3 7.88 129.43 timeout 7.63 7.88 130.04
AOBB-K*-b-DH 3 7.88 145.63 timeout 7.63 7.88 130.04
AOBB-K*-b-UFO 3 23.08 2068.22 timeout 22.70 23.05 timeout
AOBB-K*-b 3 22.74 222.66 timeout 22.70 23.05 timeout
AOBB-K*-b-DH 3 22.74 241.88 timeout 22.70 23.05 timeout

5

d7-5-1

d7-5-3

d27-5-1

d31-5-1

d47-5-1

4

d7-4-2

d13-4-1

d17-4-1

d21-4-1

d43-4-1

d47-4-2

AOBB-K*-b-[DH/UFO]
wt K*

BBK*

3

d19-3-1

d20-3-1

d21-3-1

d25-3-1

163

(e.g., problems d7-5-1 and d47-5-1) than worse (e.g., only problem d7-5-3).

We also see the potential of the AOBB-K*-DH scheme: on many problems shown, AOBB-K*-b-DH

performs better than AOBB-K*-b– sometimes providing a better solution (e.g., for problem

d21-4-1 where it found a K* of 11.92 as opposed to the K* of 11.72 found by AOBB-K*-b),

in other cases finding good solutions faster (e.g., for problem d13-4-1 where it solved the

problem in 22.05 seconds as opposed to AOBB-K*-b which took 165.48 seconds).

Finally, although AOBB-K*-b generally ranked lower than other AOBB-K*-b variants, it keeps

up with BBK* on problems with 4 mutable residues (previously out of range for AOBB-K*),

and even finds acceptable solutions for some 5-mutable-residue problems.

5.10.3 Summary of Results

Casting the protein redesign problem of optimizing K* to a graphical model allowed us to

adapt an existing AND/OR branch-and-bound algorithm for MMAP to solve the K*MAP

task. Testing this new algorithm, AOBB-K*, we saw that our formulation called F2 tends to

lend itself to better performance. Nevertheless, AOBB-K* did not scale well. The innovations

of AOBB-K*-ω, AOBB-K*-b, AOBB-K*-b-DH, and AOBB-K*-b-UFO enabled search to solve harder

problems, including up to five mutable residues. Our UFO scheme demonstrated particu-

larly strong performance, and was competitive with BBK* on these problems. Analysis of

AOBB-K*-b-DH’s explored search space shows its promise, but the current naive implementa-

tion showed limited gains on larger problems.

Determinism. A major factor that can lead to decreased performance on large problem for

AOBB-K* schemes (particularly when using the F2 formulation) is that domain sizes increase

significantly with an increasing number of mutable residues. This is because each conforma-

tion variable associated with a mutable residue needs to encode the rotamers for all of the

possible amino acids being considered for its corresponding residue. For the problems that

164

we experimented on, this changed the domain size of the conformation variables from tens to

hundreds. This increase in domain size in turn restricts wMBE-K* to using lower i-bounds and

correspondingly degrades its heuristic accuracy. To explore the potential of moving to more

compact representations that could enable higher i-bounds, we evaluated determinism in

wMBE-K*-b’s computed messages for AOBB-K*-b-UFO. For problems with 5 mutable residues,

the largest tables generated by wMBE-K*-b often had a determinism ratio > 0.95 – namely

95% of the entries were zero. This insight adds motivation to shifting to representations that

can take advantage of sparsity or other repeated patterns, such as relational representations.

5.11 Conclusion

In this chapter, we present a graphical model framework for formulating and solving the

protein redesign task of optimizing an objective function called K*. This new framework

allows for the leveraging of recent powerful advancements in graphical model algorithms

towards protein redesign.

We presented two distinct graphical model formulations for this task, F1 and F2, and after

determining F2 to be more effective, we employed a wide range of ideas within the AND/OR

search space framework for graphical models. Focusing specifically on recent advances in

marginal MAP algorithms, we adapted an AND/OR branch-and-bound scheme for marginal

MAP to address the K* optimization task. The resulting algorithm, AOBB-K*, was then

extended to several approximate variants to improve scalability.

The AOBB-K*-ω variant uses weighted heuristic search, allowing for more aggressive pruning

of the search space and improving AOBB-K* performance. AOBB-K*-b (boosted) made several

modifications to its search routine to find better solutions early and speed up search. A

dynamic heuristic scheme, AOBB-K*-DH, was tested and showed promise. Lastly, a specialized

165

version of UFO for use with CPD was incorporated into AOBB-K*-b as AOBB-K*-b-UFO and

showed competitive performance against state-of-the-art BBK* on problems with up to 5

mutable residues.

These algorithms relied on a new heuristic for bounding K*MAP, wMBE-K*, which is based on

Weighted Mini-Bucket Elimination for bounding MMAP. Evaluation of Mini-Bucket Elimina-

tion properties inspired an additional variant, wMBE-K*-b, which sacrificed bound guarantees

for tighter estimates and was used by the AOBB-K*-b variants.

With these new frameworks in place, we can now turn our directions towards further ad-

vancements. Some possible directions include: adapting richer implementations of dynamic

heuristics [Lam et al., 2014], possibly incorporating look-ahead schemes [Lam et al., 2017];

extending K* optimization to finding the n-best K*’s such as approaches by Flerova et al.

[2016], Ruffini et al. [2021]; to explore more compact representations of wMBE-K* that can

take advantage of the high levels of determinism [Mateescu and Dechter, 2008, Larkin and

Dechter, 2003] or other scalable heuristics [Lee et al., 2016]; to extend these algorithms

by incorporating other state-of-the-art inference schemes, especially approximate schemes

[Yanover and Weiss, 2002, Hurley et al., 2016, Lou et al., 2018a,b, Marinescu et al., 2019,

2018a,b]; and to apply these schemes to develop mutation targets for real-world biological

problems.

166

Chapter 6

Conclusion

6.1 Summary

We conclude this dissertation having focused on advancing the field of graphical models from

three directions.

First we presented several advancements to a recently developed Monte Carlo sampling

method called Abstraction Sampling, which is an unbiased stratified importance sampling-

like scheme that leverages abstractions (similar to stratification) to solve summation queries

for graphical models. We introduced ORAS for performing Abstraction Sampling on clas-

sical OR trees, and then presented a significant advancement in AOAS that is designed for

compact AND/OR search spaces. We gave theoretical analysis on both OR and AND/OR

Abstraction Sampling properties, including variance reduction conditions and a proof of

unbiasedness. We provided three classes of abstraction functions that guide Abstraction

Sampling’s stratification process, one based on a graph notion of “context”; a second that

partitions nodes based on positive real number values associated with them; and lastly a

purely randomized abstraction scheme. From within these classes, over twenty-four distinct

abstraction functions were designed and tested, each with the ability to vary granularity

of their abstractions. An extensive empirical evaluation on over 400 problems from five

167

well known summation benchmarks demonstrated the properties of Abstraction Sampling

and also showed its superiority in estimating summation queries compared to well-known

methods such as Importance Sampling, Weighted Mini-Bucket Importance Sampling, IJGP-

SampleSearch, and Dynamic Importance Sampling. Based on this study, we believe that

AOAS is one of the best schemes for estimating the partition function to date, in particular

when used with the (equalDistQB3, equalDistQB4), or RAND abstraction schemes.

We also presented a novel scheme called UFO for infusing artificial determinism into graph-

ical models, empowering algorithms that leverage constraint processing. An example of

such an algorithm is AOBB [Marinescu et al., 2018b], a branch-and-bound algorithm that

can augmented to use constraint propagation to prune regions of the search space that are

provably inconsistent. We derived theoretical properties of applying such artificial determin-

ism, including showing lower-boundedness for common graphical model tasks. We evaluated

AOBB-with-UFO performance problems used in the 2022 UAI Inference Competition which

demonstrated that, at times, even simple schemes infused with UFO can outperform pow-

erful solvers. And that UFO can sometimes lead to very fast solutions. In summary, UFO

has the potential to be a good augmentation for some algorithms, such as to produce quick

lower bounds or to speed up approximate search.

And finally in more applied research, we presented work adapting graphical model frame-

works for Computational Protein Design. We focus on the automated redesign of proteins to

maximize K*, an approximation of binding affinity. We provided two graphical model formu-

lations for this redesign task and provided algorithms that operate over them. In particular,

we provided a heuristic scheme called wMBE-K*, based on Weighted Mini-Bucket Elimina-

tion [Liu and Ihler, 2011b, Ihler et al., 2012], for the K* maximization task, and provide

an array of anytime AND/OR depth-first branch-and-bound algorithms, the parent version

of which is called AOBB-K*. Variants include augmentation with weighted heuristic search,

the use of dynamic heuristics, and incorporating the UFO technique. Empirical analysis on

168

real proteins show strong performance from these schemes compared to the state-of-the-art

algorithm BBK* [Ojewole et al., 2018], which is used as part of a long-standing computational

protein design software called OSPREY [Hallen et al., 2018].

6.2 Future Directions

There are still a myriad of directions the work presented in this dissertation can be extended

towards. We outline a few below.

Abstraction Sampling. An observation about Abstraction Sampling is that it shows varied

performance on different benchmarks. This begs the question of how Abstraction Sampling

can be tuned for specific benchmarks. In similar spirit, for some practical domain appli-

cations, there may be expert domain knowledge that can be used to guide abstractions.

Current abstraction frameworks do not allow for this, and so such extensions could be use-

ful. Furthermore, the current Abstraction Sampling framework is solely designed for discrete

graphical models. The Abstraction Sampling framework can [in theory] be adapted for the

continuous domain as well, and such an extension would be invaluable. Algorithmically,

AOAS showed powerful performance. Nevertheless, its performance may be able to be further

improved by combining the scheme with other well known schemes. For example, many

discrete graphical model instances are such that a few configurations capture most of the

model’s mass. For such models, enumerating those configurations exactly and then sampling

over the rest could prove to be a valuable strategy. Such amalgams may prove to be fruitful

in enhancing the quality of estimates. Furthermore, it may be valuable to choose abstrac-

tions also based on the quality of estimates for node values, such as by incorporating notions

of error in the heuristic estimates as in [Lam et al., 2017]. To speed up and drive towards

a lower estimate, UFO can be infused with Abstraction Sampling as well. Finally, a user

friendly API for wider use of Abstraction Sampling can provide access across the community.

169

UFO. Non-zero lower-bounds are often difficult to obtain when problems contain deter-

minism. However, UFO provides a new method to achieve these bounds by adding more

determinism through underflow-thresholding and solving these problems exactly. It could

be valuable to empirically evaluate the speed and quality of such lower bounds compared to

other schemes. Furthermore, an analysis on which domains UFO can be most fruitful, and

why, can be instrumental in guiding its use. (For example, it already showed promise within

the CPD domain). There can also be more principled and better thresholding schemes which

could also be an interesting direction for future research.

AND/OR Computational Protein Design. One very natural direction that would be

helpful to see this work extended to is the application of the provided framework for real

biology tasks that include in vivo or in vitro analysis. However, in practice, it is rare that the

optimal computationally derived biological designs are necessarily optimal (or even good) in

vitro and especially rare for it being so in vivo. Thus, extending our framework to produce

k-best solutions (such as in approaches by Flerova et al. [2016], Ruffini et al. [2021]) would

allow for a greater chance of finding a good candidate. We can adapt richer implementations

of dynamic heuristics [Lam et al., 2014] and consider look-ahead schemes [Lam et al., 2017]

to help decide when to recompute them. In terms of problem representation, it could be

beneficial to explore more compact representations of wMBE-K* that can take advantage of

the high levels of determinism [Mateescu and Dechter, 2008, Larkin and Dechter, 2003] or

other scalable heuristics [Lee et al., 2016], particularly given the framework’s success with

UFO. And finally, it makes sense to next extend this framework to incorporate other state-of-

the-art inference schemes, especially approximate schemes [Yanover and Weiss, 2002, Hurley

et al., 2016, Lou et al., 2018a,b, Marinescu et al., 2019, 2018a,b], and including Abstraction

Sampling.

170

Bibliography

C. B. Anfinsen. Principles that govern the folding of protein chains. Science, 181(4096):223–
230, 1973. doi: 10.1126/science.181.4096.223. URL https://www.science.org/doi/abs/

10.1126/science.181.4096.223.

F. Broka, R. Dechter, A. Ihler, and K. Kask. Abstraction sampling in graphical models.
In Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence,
UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 632–641, 2018. URL
http://auai.org/uai2018/proceedings/papers/234.pdf.

L. Cao, I. Goreshnik, B. Coventry, J. B. Case, L. Miller, L. Kozodoy, R. E. Chen, L. Carter,
A. C. Walls, Y.-J. Park, E.-M. Strauch, L. Stewart, M. S. Diamond, D. Veesler, and
D. Baker. De novo design of picomolar sars-cov-2 miniprotein inhibitors. Science, 370
(6515):426–431, 2020. doi: 10.1126/science.abd9909. URL https://www.science.org/

doi/abs/10.1126/science.abd9909.

P.-C. Chen. Heuristic sampling: A method for predicting the performance of tree searching
programs. SIAM Journal on Computing, 21:295–315, 1992.

E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods to
improve mip solutions. Mathematical Programming, 102:71–90, 2005.

A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press,
2009.

R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113:41–85, 1999.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

R. Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Al-
gorithms. Synthesis Lectures on Artificial Intelligence and Machine Learning. Mor-
gan & Claypool Publishers, 2013. doi: 10.2200/S00529ED1V01Y201308AIM023. URL
http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023.

R. Dechter. Reasoning with probabilistic and deterministic graphical models: Exact algo-
rithms, second edition. Synthesis Lectures on Artificial Intelligence and Machine Learning,
13:1–199, 02 2019.

R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Artificial Intel-
ligence, 171(2-3):73–106, 2007.

171

https://www.science.org/doi/abs/10.1126/science.181.4096.223
https://www.science.org/doi/abs/10.1126/science.181.4096.223
http://auai.org/uai2018/proceedings/papers/234.pdf
https://www.science.org/doi/abs/10.1126/science.abd9909
https://www.science.org/doi/abs/10.1126/science.abd9909
http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023

R. Dechter and I. Rish. Mini-buckets: A general scheme for approximating inference. Journal
of the ACM, pages 107–153, 2002.

R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference. J. ACM,
50(2):107–153, 2003. doi: 10.1145/636865.636866. URL http://doi.acm.org/10.1145/

636865.636866.

S. Desarkar, P. Chakrabarti, and S. Ghose. Admissibility of AO* when heuristics overesti-
mate. Artificial Intelligence, 34(1):97–113, 1987.

N. Eén and N. Sörensson. An extensible sat-solver. In E. Giunchiglia and A. Tacchella, edi-
tors, Theory and Applications of Satisfiability Testing, pages 502–518, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

N. Flerova, A. Ihler, R. Dechter, and L. Otten. Mini-bucket elimination with moment
matching. In Workshop on Discrete Optimization in Machine Learning (DISCML) at
NIPS, 2011.

N. Flerova, R. Marinescu, and R. Dechter. Evaluating weighted DFS branch and bound
over graphical models. In S. Edelkamp and R. Barták, editors, Proceedings of the Seventh
Annual Symposium on Combinatorial Search, SOCS 2014, Prague, Czech Republic, 15-
17 August 2014. AAAI Press, 2014. URL http://www.aaai.org/ocs/index.php/SOCS/

SOCS14/paper/view/8937.

N. Flerova, R. Marinescu, and R. Dechter. Searching for the M best solutions in graphical
models. J. Artif. Intell. Res., 55:889–952, 2016.

H. Frauenfelder, S. G. Sligar, and P. G. Wolynes. The energy landscapes and motions of
proteins. Science, 254(5038):1598–1603, 1991.

S. D. Givry. toulbar2, an exact cost function network solver. In 24ème édition du congrès an-
nuel de la Société Française de Recherche Opérationnelle et d’Aide à la Décision ROADEF
2023, Rennes, France, Feb. 2023. URL https://hal.science/hal-04021879.

V. Gogate and R. Dechter. Samplesearch: Importance sampling in presence of determinism.
Artif. Intell., 175(2):694–729, 2011. doi: 10.1016/j.artint.2010.10.009. URL https://doi.

org/10.1016/j.artint.2010.10.009.

M. Hallen, J. Martin, A. Ojewole, J. Jou, A. Lowegard, M. Frenkel, P. Gainza, H. Nisonoff,
A. Mukund, S. Wang, G. Holt, D. Zhou, E. Dowd, and B. Donald. Osprey 3.0: Open-
source protein redesign for you, with powerful new features. Journal of Computational
Chemistry, 39, 10 2018.

M. A. Hallen and B. R. Donald. Protein design by provable algorithms. Commun. ACM, 62
(10):76–84, sep 2019.

G. Hardy, J. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library.
Cambridge University Press, 1988.

172

http://doi.acm.org/10.1145/636865.636866
http://doi.acm.org/10.1145/636865.636866
http://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8937
http://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8937
https://hal.science/hal-04021879
https://doi.org/10.1016/j.artint.2010.10.009
https://doi.org/10.1016/j.artint.2010.10.009

B. Hurley, B. O’sullivan, D. Allouche, G. Katsirelos, T. Schiex, M. Zytnicki, and S. d.
Givry. Multi-language evaluation of exact solvers in graphical model discrete optimization.
Constraints, 21:413–434, 2016.

A. Ihler, N. Flerova, R. Dechter, and L. Otten. Join-graph based cost-shifting schemes. In
UAI, pages 397–406, 2012.

H. Kahn and A. W. Marshall. Methods of reducing sample size in monte carlo computa-
tions. Journal of the Operations Research Society of America, 1(5):263–278, 1953. ISSN
00963984. URL http://www.jstor.org/stable/166789.

D. Knuth. Estimating the efficiency of backtracking algorithms. Math. Comput., 29:1121–
136, 1975.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

I. V. Korendovych and W. F. DeGrado. De novo protein design, a retrospective. Quarterly
reviews of biophysics, 53:e3, 2020.

B. Kuhlman and D. Baker. Native protein sequences are close to optimal for their structures.
Proceedings of the National Academy of Sciences, 97(19):10383–10388, 2000. doi: 10.1073/
pnas.97.19.10383. URL https://www.pnas.org/doi/abs/10.1073/pnas.97.19.10383.

W. Lam, K. Kask, R. Dechter, and A. Ihler. Beyond static mini-bucket: Towards integrating
with iterative cost-shifting based dynamic heuristics. In Seventh Annual Symposium on
Combinatorial Search, 2014.

W. Lam, K. Kask, J. Larrosa, and R. Dechter. Residual-guided look-ahead in AND/OR
search for graphical models. J. Artif. Intell. Res., 60:287–346, 2017. doi: 10.1613/JAIR.
5475. URL https://doi.org/10.1613/jair.5475.

G. N. Lance and W. T. Williams. A General Theory of Classificatory Sorting Strategies:
1. Hierarchical Systems. The Computer Journal, 9(4):373–380, 02 1967. ISSN 0010-4620.
doi: 10.1093/comjnl/9.4.373. URL https://doi.org/10.1093/comjnl/9.4.373.

D. Larkin and R. Dechter. Bayesian inference in the presence of determinism. AI and
Statistics(AISTAT03), 2003.

J. Lee, R. Marinescu, R. Dechter, and A. Ihler. From exact to anytime solutions for marginal
map. AAAI’16, page 3255–3262. AAAI Press, 2016.

L. H. S. Lelis, S. Zilles, and R. C. Holte. Predicting the size of ida*’s search tree. Artif.
Intell., 196:53–76, 2013. doi: 10.1016/j.artint.2013.01.001. URL http://dx.doi.org/10.

1016/j.artint.2013.01.001.

173

http://www.jstor.org/stable/166789
https://www.pnas.org/doi/abs/10.1073/pnas.97.19.10383
https://doi.org/10.1613/jair.5475
https://doi.org/10.1093/comjnl/9.4.373
http://dx.doi.org/10.1016/j.artint.2013.01.001
http://dx.doi.org/10.1016/j.artint.2013.01.001

L. H. S. Lelis, L. Otten, and R. Dechter. Memory-efficient tree size prediction for depth-first
search in graphical models. In B. O’Sullivan, editor, Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12,
2014. Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 481–496.
Springer, 2014. ISBN 978-3-319-10427-0. doi: 10.1007/978-3-319-10428-7 36. URL http:

//dx.doi.org/10.1007/978-3-319-10428-7.

Q. Liu and A. Ihler. Bounding the partition function using holder’s inequality. In Proceed-
ings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011, pages 849–856, 2011a.

Q. Liu and A. Ihler. Bounding the partition function using Hölder’s inequality. In Interna-
tional Conference on Machine Learning (ICML), pages 849–856. ACM, June 2011b.

Q. Liu, J. W. Fisher III, and A. Ihler. Probabilistic variational bounds for graphical models.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28, pages 1432–1440. Curran Associates, Inc.,
2015.

Q. Lou, R. Dechter, and A. Ihler. Anytime anyspace and/or best-first search for bounding
marginal map. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 2018a.

Q. Lou, R. Dechter, and A. Ihler. Finite-sample bounds for marginal MAP. In Proceed-
ings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018,
Monterey, California, USA, August 6-10, 2018, pages 725–734. AUAI Press, 2018b.

Q. Lou, R. Dechter, and A. Ihler. Interleave variational optimization with monte carlo
sampling: A tale of two approximate inference paradigms. 2019.

R. Marinescu and R. Dechter. And/or branch-and-bound search for combinatorial optimiza-
tion in graphical models. Artif. Intell., 173(16-17):1457–1491, 2009a.

R. Marinescu and R. Dechter. Memory intensive AND/OR search for combinatorial opti-
mization in graphical models. Artificial Intelligence, 173(16-17):1492–1524, 2009b.

R. Marinescu and R. Dechter. AND/OR branch-and-bound search for combinatorial opti-
mization in graphical models. Artificial Intelligence, 173(16-17):1457–1491, 2009c.

R. Marinescu, R. Dechter, and A. Ihler. And/or search for marginal map. In Proceedings of
the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI’14, page 563–572.
AUAI Press, 2014.

R. Marinescu, R. Dechter, and A. Ihler. Stochastic anytime search for bounding marginal
map. In IJCAI, pages 5074–5081, 2018a.

R. Marinescu, J. Lee, R. Dechter, and A. Ihler. And/or search for marginal map. J. Artif.
Int. Res., 63(1):875–921, sep 2018b.

174

http://dx.doi.org/10.1007/978-3-319-10428-7
http://dx.doi.org/10.1007/978-3-319-10428-7

R. Marinescu, A. Kishimoto, A. Botea, R. Dechter, and A. Ihler. Anytime recursive best-
first search for bounding marginal map. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):7924–7932, Jul. 2019.

R. Mateescu and R. Dechter. The relationship between and/or search and variable elimina-
tion. pages 380–387, 01 2005.

R. Mateescu and R. Dechter. Mixed deterministic and probabilistic networks. Annals of
mathematics and artificial intelligence, 54(1):3–51, 2008.

D. Merkel. Docker: lightweight linux containers for consistent development and deployment.
Linux journal, 2014(239):2, 2014.

B. Neveu and G. Trombettoni. Incop: An open library for incomplete combinatorial opti-
mization. In F. Rossi, editor, Principles and Practice of Constraint Programming – CP
2003, pages 909–913, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-
540-45193-8.

A. Ojewole, J. D. Jou, V. G. Fowler, and B. R. Donald. BBK* (Branch and Bound Over K*):
A provable and efficient ensemble-based protein design algorithm to optimize stability and
binding affinity over large sequence spaces. J. Comput. Biol., 25(7):726–739, 2018.

L. Otten and R. Dechter. Anytime and/or depth-first search for combinatorial optimization.
In SOCS, 2011.

A. Ouali, D. Allouche, S. de Givry, S. Loudni, Y. Lebbah, L. Loukil, and P. Boizumault. Vari-
able neighborhood search for graphical model energy minimization. Artificial Intelligence,
278:103194, 2020. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2019.103194.
URL https://www.sciencedirect.com/science/article/pii/S0004370218305927.

A. B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/

mc/, 2013.

J. Pearl. Heuristics: Intelligent Search Strategies. Addison-Wesley, 1984.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

I. Pohl. Heuristic search viewed as path finding in a graph. Artificial Intelligence, 1(3-4):
193–204, 1970.

M. L. Rizzo. Statistical computing with R. Chapman & Hall/CRC, 2007.

R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method (Wiley Series
in Probability and Statistics). 2 edition, 2007. ISBN 0470177942, 9780470177945.

R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. Wiley Pub-
lishing, 3rd edition, 2016. ISBN 1118632168.

175

https://www.sciencedirect.com/science/article/pii/S0004370218305927
https://artowen.su.domains/mc/
https://artowen.su.domains/mc/

M. Ruffini, J. Vucinic, S. de Givry, G. Katsirelos, S. Barbe, and T. Schiex. Guaranteed
diversity and optimality in cost function network based computational protein design
methods. Algorithms, 14(6), 2021.

C. Viricel, S. de Givry, T. Schiex, and S. Barbe. Cost function network-based design of
protein-protein interactions: predicting changes in binding affinity. Bioinformatics (Ox-
ford, England), 34, 02 2018.

J. Vucinic, D. Simoncini, M. Ruffini, S. Barbe, and T. Schiex. Positive multistate protein
design. Bioinformatics (Oxford, England), 36, 06 2019.

J. H. Ward. Hierarchical grouping to optimize an objective function. Journal of the American
Statistical Association, 58(301):236–244, 1963. ISSN 01621459. URL http://www.jstor.

org/stable/2282967.

J. L. Watson, D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern,
A. J. Borst, R. J. Ragotte, L. F. Milles, et al. De novo design of protein structure and
function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

B. Wemmenhove, J. M. Mooij, W. Wiegerinck, M. Leisink, H. J. Kappen, and J. P. Neijt.
Inference in the promedas medical expert system. In R. Bellazzi, A. Abu-Hanna, and
J. Hunter, editors, Artificial Intelligence in Medicine, pages 456–460, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

C. Yanover and Y. Weiss. Approximate inference and protein-folding. Advances in neural
information processing systems, 15, 2002.

Y. Zhou, Y. Wu, and J. Zeng. Computational protein design using and/or branch-and-
bound search. Journal of computational biology : a journal of computational molecular
cell biology, 23, 05 2016.

176

http://www.jstor.org/stable/2282967
http://www.jstor.org/stable/2282967

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Background
	Probabilistic Graphical Models
	Discrete Graphical Models
	Notation
	Primal Graph
	Pseudo Trees

	Common Graphical Model Queries
	Paradigms for Answering Queries
	Elimination Methods
	The Variable Elimination Framework
	Bucket Elimination
	Induced Width
	Mini-Bucket and Weighted Mini-Bucket Bounding Schemes
	Weighted Mini-Bucket Elimination for Marginal MAP

	Search
	OR Search Spaces
	AND/OR Search Spaces
	Search Space Notation
	Important Search Space Quantities

	Sampling
	Importance Sampling
	Stratified Importance Sampling

	Advancing Abstraction Sampling
	Introduction
	Abstraction Sampling
	 The General Scheme Through An Example
	 Algorithm ORAS on OR search Trees
	 Unbiasedness of ORAS

	Abstraction Sampling for AND/OR Search Trees
	AND/OR node values and the partition function
	 Algorithm AOAS
	 Unbiasedness of AOAS
	Additional Properties
	 Complexity and scalability.

	Candidate Abstractions
	Context-Based Abstractions
	 Value-Based Abstractions
	Value-Based Abstraction Classes
	Ordered Partitioning Schemes

	Random-Only Abstractions

	Empirical Evaluation
	Setup
	Abstraction Sampling Algorithm Comparisons
	Aggregated Results
	Representative Plots

	Abstraction Function Comparisons
	Summary Comparison.
	Results from 100 Samples with bold0mu mumu nAbs = 256nAbs = 256subsubsectionnAbs = 256nAbs = 256nAbs = 256nAbs = 256.
	Choice of Abstraction Granularity
	Summary of Results.

	Conclusion

	UFO: Underflow-Threshold Optimization
	Introduction
	The General UFO Scheme
	UFO Variants
	UFO-GT: Global Threshold UFO
	UFO-RT: Relative-Threshold UFO
	UFO-Sol: Solutions-based UFO
	UFO as an Anytime Scheme

	Empirical Evaluation of AOBB-UFO
	Setup
	Results

	Conclusion

	AND/OR Search-Based Computational Protein Design
	Introduction
	Background
	Suitable Objective Functions
	The GMEC Objective
	The K* Objective

	Graphical Model for K*MAP
	Formulation 1 (F1)
	Formulation 2 (F2)
	Resulting Pseudo Tree
	Subunit-Stability Thresholds

	wMBE-K*
	Domain-Partitioned MBE

	AOBB-K*
	Weighted Search for K*

	Boosting AOBB-K*
	Boosted wMBE-K*
	Tuning search

	Weighted Search
	Dynamic Heuristics
	Incorporating UFO
	Empirical Evaluation
	Experimental methodology
	Results
	Summary of Results

	Conclusion

	Conclusion
	Summary
	Future Directions

	Bibliography

