Part 1

Advancing AND/OR Abstraction Sampling

Part 2

K*-Based Computational Protein Design using AND/OR Search

Bobak Pezeshki's PhD Final Defense

(Advised by Prof. Rina Dechter and Prof. Alexander Ihler)

Bobak Pezeshki, Kalev Kask, Alex Ihler, and Rina Dechter. "Value-Based Abstraction Functions for Abstraction Sampling". *Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).*

KALEV KASK, BOBAK PEZESHKI, FILJOR BROKA, ALEX IHLER, RINA DECHTER

Outline

- **General Background**
- **Abstraction Sampling**
	- **General Scheme**
	- **AND/OR Abstraction Sampling**
		- **AOAS Algorithm**
		- **Analysis of its Properties**
	- **Abstraction Function Schemes**
		- **Context-based Abstraction Functions**
		- **Value-based Abstraction Functions**
		- **Completely Random Abstractions**
- **Empirical Evaluation**
- **Conclusion**

Main Contributions

Abstraction Sampling

-
- **AND/OR Abstraction Sampling**
	- **AOAS Algorithm**
	- **Analysis of its Properties**
- **Abstraction Function Schemes**
	-
	- **Value-based Abstraction Functions**
	- **Completely Random Abstractions**

Empirical Evaluation

Conclusion and Future Work

Background

Graphical Models – Overview

Graphical Models – Formal Definition

$$
\mathcal{M} = \{ \mathbf{X}_1, X_2, \dots, X_N \} \quad \leftarrow \text{Variables}
$$
\n
$$
\mathbf{D} = \{ D_{X_1}, D_{X_2}, \dots, D_{X_N} \} \leftarrow \text{Domain}
$$
\n
$$
\mathbf{F} = \{ f_{\alpha_1}, f_{\alpha_2}, \dots, f_{\alpha_N} \} \quad \leftarrow \text{Factors}
$$

A combination operator ⊗ **defines a global function.**

$$
p(A, B, C) \propto f_{AB}(A, B) \times f_{BC}(B, C)
$$

ex.
$$
\otimes
$$
 = multiplication

 $f_{AB}(A,B),\quad f_{BC}(B,C)$

Example: $A \mid B \mid f(A,B)$

 $A \in \{0, 1\}$

 $B \in \{0, 1\}$

 $C \in \{0, 1\}$

 $0 0 2$

 $0 \mid 1 \mid 4$

1 0 3

 $1 \mid 1 \mid 1$

Primal graph

Tasks

• **NP-hard:** exponentially many terms

Systematic Search

- Enumerate states
- Every stone turned
- No stone turned more than once

 $\overline{\mathbf{c}}$

 $\mathbf D$

A

 $\left(\mathsf{B}\right)$

Systematic Search

- Enumerate states
- Every stone turned
- No stone turned more than once

 $\overline{\mathbf{c}}$

 Ω

A

 $\left(\mathsf{B}\right)$

 A : $Z \sim 90$ $B:$ $C:$ $\overline{\bigcirc}$ $\boxed{1}$ $\boxed{\mathbf{0}}$ $\overline{\mathbf{1}}$ $\boxed{1}$ $\boxed{0}$ $\overline{\bigcirc}$ $\overline{\mathbf{1}}$ D: $\overline{0}$ $\mathbf{1}$ $\mathbf 0$ $\overline{\mathbf{0}}$ $|1|$ $w = 45$ $2*(45) = 90$

Importance Sampling

[Liu, 2001]

 $\left(\mathsf{B}\right)$

- Enumerate states
- Every stone turned
- No stone turned more than once

• Monte Carlo sampling method

 $\overline{\mathbf{c}}$

^D

Systematic Search

Importance Sampling

- Enumerate states
- Every stone turned
- No stone turned more than once

• Monte Carlo sampling method

[J. Liu, Monte-Carlo strategies in scientific computing, Springer-Verlag, New York, 2001]

 $\overline{\mathbf{c}}$

^D

 $\left(\mathsf{B}\right)$

AND/OR Search Space

Compact search space taking advantage of conditional independencies

Guiding Pseudo-Tree

Pseudo-Trees capture conditional independencies and guide the construction of the search space.

g(A=0, B=1, C=2, D=1) = $1 \times ((2) \times (1 \times 2)) = 4$

Stochastically select a value to assign the variable according to a proposal distribution, p.

Update importance weight according to $w(n) = w/p(n)$

Stochastically assign value to variable according to proposal and update weights accordingly

Repeat until every variable is assigned a value (a *solution tree* is sampled) ^A

An estimate can be produced considering the cost associated with the sampled solution tree upweighted by the assigned importance weights.

Stratified [Importance] Sampling

[Knuth, 1975], [Chen, 1992], [Rizzo, 2007]

Main idea: partially enumerate and partially sample search space

Steps:

- Subdivide space into set strata
- Enumerate strata choosing reweighted samples from each to form a probe
- Average estimates from sampled probes

Stratified [Importance] Sampling

[Knuth, 1975], [Chen, 1992], [Rizzo, 2007]

Main idea: partially enumerate and partially sample search space

Steps:

- Subdivide space into set strata
- Enumerate strata choosing reweighted samples from each to form a probe
- Average estimates from sampled probes

Interpolating Between Sampling and Search

Importance Sampling

Interpolating Between Sampling and Search

We can draw samples of multiple configurations to more closely resemble search.

Sampling Search

Interpolating Between Sampling and Search

 \mathbf{C} \mathbf{B} D)

We can draw samples of multiple configurations to more closely resemble search.

Abstraction Sampling

A sampling scheme that enables the interpolating between sampling and search by performing abstractions level-by-level.

Original Work Set A Foundation…

Main Questions 1:

- How to adapt to the more compact AND/OR spaces?
	- \Box Should valid samples consist of only solution subtrees?
	- How to abstract across different branches of the AND/OR tree?

Scalable AND/OR Abstraction Sampling (algorithm: AOAS)

AOAS

New AND/OR abstraction sampling scheme that allows for flexible abstractions while still ensuring formation of valid probes.

Key Points:

- Allows for flexible abstractions
- Expands along a depth first traversal of the guiding pseudo tree
- \Box Immediately performs recursive pruning of branches that cannot be part of valid configurations

Proposal Distribution

A heuristic function h is used to estimate the value of unexplored subtrees.

$$
p(n) \leftarrow \frac{w(n) \cdot g(n) \cdot h(n) \cdot r(n)}{\sum_{m \in A_i} w(m) \cdot g(m) \cdot h(m) \cdot r(m)}
$$

- \Box *w(n)* captures the estimated weight of subtrees absorbed by the *n*'s ancestors during abstraction
- *g(n)* is the path cost from the root to *n*
- \Box *h(n)* is the estimated mass of the subtree *n* roots
- *r(n)* is the estimated ancestor branching mass of *n*

B

 $r(n)$

 n "

 $w(n)$

N

 $h(n)$

 $g(n)$

Properties (Unbiasedness)

- □ Proof-Strategy
	- Key observation: at each step in the algorithm, either
		- The probe is expanded
		- An abstraction occurs
		- **Pruning occurs**

Properties (Unbiasedness)

- □ Proof-Strategy
	- Key observation: at each step in the algorithm, either
		- The probe is expanded
		- An abstraction occurs
		- **Pruning occurs**
	- Main Idea:
		- Construct an estimator that equals
			- the exact Z value for the unexpanded probe *(base case)*
			- the value of AOAS's estimator for the final probe
			- needs to include consideration of different branchings in the tree
			- can be computed by analyzing the frontier nodes of a single variable
		- Show that, at each step, the expectation of the estimator remains unchanged

Properties (Unbiasedness)

Illuminating characteristics

- Works for any valid importance sampling proposal distribution
- Generalizes to BF expansion of the pseudo-tree
- Generalizes to algorithms that allow non-solution trees as samples

Properties (Complexity)

Properties (Complexity)

R

M

| 0

 $|0|$

 $\boxed{0}$

 $|0|$ $|1|$

 $\vert 1 \vert$

 \vert 1

 $|1|$

Properties (Complexity)

Other Properties (see Thesis)

Conditions for exact AOAS estimates Proposal-based conditions Abstraction-based conditions

Original Work Set A Foundation…

Main Questions 2:

 \Box How to construct powerful abstraction functions?

Abstraction Function Schemes

What did the previous abstraction schemes capture?

Context-Based Schemes:

RelCB and RandCB only estimate similarity of this piece and based only on graph structure

Value-Based Abstraction Functions - Intuition

- Use relevant quantities to assign a values to nodes
- Use those values to guide abstractions

Value-Based Abstraction Functions - Classes

Potential Candidates:

HB: $\mu(n) = h(n)$

```
HRB: \mu(n) = h(n) r(n)
```
QB: $\mu(n) = w(n) g(n) h(n) r(n)$

Value-Based Abstraction Functions - Classes

Potential Candidates:

HB: $\mu(n) = h(n)$

HRB:
$$
\mu(n) = h(n) r(n)
$$

 $QE: $\mu(n) = w(n) g(n) h(n) r(n)$$

(best performing)

Value-Based Abstraction Functions - Partitioning Intuition

- **□** Simple and fast
- \Box Group similar nodes together Minimize with-in variance of abstract states
- \Box Form abstract states of roughly equal mass *[Rizzo, 2007]*

Bobak Pezeshki, PhD Final Defense, UCI 2024 **47**

Bobak Pezeshki, PhD Final Defense, UCI 2024 **52**

Purely Random Abstractions

Empirical Evaluation

- Performance of Abstraction Sampling comparing against existing schemes?
- Does sampling over the AND/OR space provide benefits?
- What abstraction functions empower Abstraction Sampling most?

Setup

- \Box Problems (480+)
	- DBN, Grids, Linkage-Type4, Pedigree, Promedas
- **Abstraction Sampling Algorithms**
	- **Q** Sampling Schemes:
		- ORAS, proper-restricted-AOAS (pAOAS), **AOAS**
	- **Q** Abstraction Functions:
		- Context-Based, Value-Based, and Purely Random abstractions
		- Varying granularities
	- **Heuristic:**
		- Weighted Mini-Bucket Elimination (wMBE) [Liu, Ihler, 2012]
- \Box Competing Algorithms ■ IS, DIS [WMB-IS, IJGP-SS] [Liu, Fisher III, Ihler, 2015]
- **Q** Questions
- [Lou, Dechter, Ihler, 2019]
- Quality of estimates, Scalability of Abstraction Functions

Plots

grid80x80.f10.wrap

Graph Type: MARKOV, N: 6400, cliques: 19200, K(min): 2, K(max): 2, K(avg): 2.0, Scope Size (max): 2, Fxn Size (max): 4

#p: number of probes

#n/p: number of nodes per probe

est. error: $log_{10}Z$ error w.r.t. the reference value

Aggregation Tables

Bmk: benchmark name

- **Sz**: difficulty of subset of problems {small, LARGE}
- **Graph Scheme**: Abstraction Sampling search scheme
- **Abs**: granularity of abstraction function
- **n***: number of problems solved
- **log(err)**: average log₁₀ Z error
- **error distr.**: count of problems solved within an error threshold
- **#probes**: average number of probes

#nodes/probe: average number of nodes per probe

 $[$ [Lou et al., 2019]

Comparison of Abstraction Granularity

Comparison of Abstraction Granularity

Comparison of Abstraction Granularity

AS Comparison Chart

Value-Based Abstraction Functions - Best Scheme

Score > $1.0 \Rightarrow$ better than context-based

Conclusion

AND/OR Abstraction Sampling via AOAS is an efficient effective stratified sampling method for solving summation tasks and can be empowered by use of several of the newly proposed abstraction functions.

End Part 1

Bobak Pezeshki, PhD Final Defense, UCI 2024 **71**

K*-Based Computational Protein

Bobak Pezeshki, Radio Varmesco, Atex Illet and Rina Dechter. AND VOR Branch fand. Boemd for componition and rendering *TPM 2022 Best Paper Award*

Bobak Pezeshki, Radu Marinescu, Alex Ihler, and Rina Dechter. "Boosting AND/OR-Based Computational Protein Design: Dynamic Heuristics and Generalizable UFO". *Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).*

Special thanks to…

THOMAS SCHIEX

Special thanks to…

Outline

- **Background: Computational Protein Design (CPD)**
- **K*MAP using AND/OR Search**
	- **Problem Formulation**
	- **AOBB-K* (using wMBE-K*)**
	- **Scalability Improvements**
- **Empirical Evaluation**
- **Conclusion and Future Work**

Contributions

Background: Computational Protein Design (CPD)

K*MAP using AND/OR Search

- **Problem Formulation**
- **AOBB-K* (using wMBE-K*)**
- **Scalability Improvements**

Empirical Evaluation

Conclusion and Future Work

Background

Computational Protein Design (CPD)

[Re]design proteins to perform desired biological functions.

CPD often manifests as an optimization problem:

Ex. find the optimal composition that maximizes binding between

subunits.

Computational Protein Design

Primary Protein Structure Sequence of a chain of amino acids

Secondary Protein Structure Local folding of the polypeptide chain into helices or sheets

Tertiary Protein Structure three-dimensional folding pattern of a protein due to side chain interactions

Quaternary Protein Structure protein consisting of more than one amino acid chain

Computational Protein Design

Cannot be made by the human body

Computational Protein Design

Amino Acid Rotamers: Select conformational isomers of an amino acid

Peter Carlsson, Konrad F. Koehler, and Lennart Nilsson Molecular Endocrinology 19(8):1960–1977. https://doi.org/10.1210/me.2004-0203

Proteins are Dynamic Structures

A protein's structural state is probabilistic

Proteins continuously transition between various energetically favorable conformation.

Partition Function

Partition Function (Z) Normalizes the Likelihood of the Protein In A Particular Conformational State

$$
Z(r) = \sum_{c \in C(r)} \exp\{-E(c)/RT\}
$$

r = amino acid assignments to the residues

C(r) = possible rotamer conformations given a.a. sequence r

 $E(c)$ = energy given conformation c

 $R =$ universal gas constant (for unit conversion between kJ and K)

T = absolute temperature (Kelvin)

K^{*} Objective [Ojewole et al., 2018, Hill, 1987, Mc-Quarrie, 2000]

K* approximate Ka, the affinity equilibrium constant

$$
K^*(r) = \frac{Z_{complex}(r)}{Z_{subunit 1}(r) Z_{subunit 2}(r)}
$$

Note that K* not only considers the "goodness" of the bonded state (PL),

but also weighs it relative to the "goodness" of the unbound (dissociate) states

K* Objective

$$
K^*MAP = \max_R K^*(r)
$$

ie. Find the sequence with the greatest $K^* \sim Ka$

- A*-like algorithm for designing proteins to improve binding
- Our objective: solve the same problem with algorithms that offer something more
	- New heuristic
	- Capture independences
	- Sampling

Task Difficulty

$$
K^*(r) = \frac{Z_{complex}(r)}{Z_{subunit 1}(r) Z_{subunit 2}(r)}
$$

Marginal MAP (MMAP)

State-of-the-art search and sampling algorithms

State-of-the-art Marginal MAP (MMAP) algorithms [Marinescu, Lee, Dechter, Ihler, 2018] Learning Depth-First AND/OR Search [Marinescu, Dechter, Ihler, 2018] Stochastic Best-First AND/OR Search [Marinescu, Dechter, Ihler, 2018] Recursive Best-First AND/OR Search [Marinescu, Dechter, Ihler, Kishimoto, Botea, 2018]

State-of-the-art sampling algorithms

Dynamic Importance Sampling [Liu, Dechter, Ihler, 2017]

Abstraction Sampling [Kask, Pezeshki, Broka, Ihler, Dechter, 2020]

K*MAP using AND/OR Search

Problem Formulation

Two Formulations

 \mathcal{C}_{n} 3

 \bigcirc

 \circledR

⊛

G9)

F2

 \mathbb{C}

 \mathcal{C} 2

F1

Two Formulations

F1

F2

Due to interactions when dissociated

 P

Problem Formulation: Assumptions

Select Residues: Model using only a subset of the residues.

Discrete Rotamers: Use discrete side-chain conformations.

Fixed Backbone: Fix the position of the residues in space.

Problem Formulation: Variables and Domains

```
R = \{ R_i \mid i \in \{1, 2, ..., N\} \}
```
- Residues considered for mutation
	- ie. variables we maximize over
- Domain = possible amino acids

Problem Formulation: Variables and Domains

$$
C_X = \{ C_{X(i)} \mid i \in \{1, 2, ..., N\} \}
$$

- Side-chain rotamers of the residues
	- Two for each R_i , one capturing the rotamers of the bound and the other for the unbound states
- Domain = discretized amino acid rotamers

 $X \in \{Bound, Dissocial\}$

Problem Formulation: Functions

 Interaction energies between amino acid side chain rotamers

 Constraints enforcing consistent assignments between corresponding residue and conformation variables

K^*MAP $V \in \{Bound, Dissociate\}$

let...
$$
Z_{\gamma}(\boldsymbol{r}) = \sum_{\boldsymbol{C}_{\gamma}} \prod_{\mathscr{C}_{\gamma}} \mathscr{C}_{\gamma(i)}(r_i, c_{\gamma(i)}) \cdot \prod_{\boldsymbol{E}_{\gamma}} e^{-\frac{E_{\gamma(ij)}(c_{\gamma(i)}, c_{\gamma(j)})}{\mathscr{R}T}}
$$

$$
\text{objective:} \qquad K^*(R) = \frac{Z_B(R)}{Z_U(R)}
$$

$$
\text{Task:} \qquad K^*\text{MAP} = \max_{\boldsymbol{R}} K^*(\boldsymbol{r})
$$

AOBB-K*

Based on AOBB-MMAP [Marinescu, Dechter, Ihler, 2014]

AOBB-K*

- **Branch-and-bound** over **AND/OR** search space
- Uses **wMBE-based heuristics** to guide search and prune suboptimal paths
- Uses **encodes determinism** and uses Mini SAT to **prune inconsistent paths**
- Enforces **biologically-relevant stability constraints**
- **Exact**

wMBE Heuristic for MMAP

Mini-bucket elimination [Dechter & Rish 2001]

- Weighted Mini-bucket [Liu & Ihler, 2012]
	- Holder's inequality

$$
\sum_{x}^{w} f(x) \triangleq \left[\sum_{x} f(x)^{\frac{1}{w}}\right]^{w} \qquad w = \sum_{r} w_{r}
$$

$$
\sum_{E} [\psi(A, E)\psi(C, E)] \leq [\sum_{E} \psi(A, E)][\sum_{E} \psi(C, E)]
$$

AOBB-K*

Branch-and-bound over **AND/OR** search space

Uses **wMBE-based heuristics** to guide search and prune suboptimal paths

Uses **encodes determinism and uses of property** in the property of the property of the paths of the paths of the paths **Performed well on small problems, Exact** but did not scale well

Scalability Improvements

List of improvements tested…

- Numerical stability fixes (part of the boosted **AOBB-K*-b** variant)
- Search the wild-type sequence first (part of the boosted **AOBB-K*-b** variant)
- Improve heuristic lower-estimates (part of the boosted **AOBB-K*-b** variant)
- Weighted heuristic search
- Dynamic heuristic recomputation
- Infuse artificial determinism to leverage CP

Underflow-Threshold Optimization (UFO)

General idea:

- During search we can use constraint processing schemes to identify inconsistent paths early on
- Problems may have "near-constraints" (i.e., very small function values) that prevent solutions that contain them in practice
- Treat "near-constraints" as constraints by underflowing their value to zero

Underflow-Threshold Optimization (UFO)

Algorithm Sketch:

- Set a time limit
- Use binary search to find the greatest constant $\tau \in [0, v_{max}]$ such that
	- If we replace all function values $v < \tau$ with *0, there still exists a consistent path (ie. path* with non-zero cost)
	- *CPD: wild-type remains consistent*
- Relax threshold: $\tau := \tau \cdot \delta$, $\delta \in (0, 1]$
- Replace any function value v < *τ with 0.*

Empirical Evaluation

- Does formulating the K*MAP task as a graphical model show potential?
- Which AOBB-K^{*} scheme is best performing?
- How does performance compare to state-of-the-art BBK*?

Setup

 \Box Real protein benchmarks obtained by the Donald Lab at Duke University

- Contained instances for redesigning 1-3 residues
- These were expanded to also consider redesign of 4-5 residues
- Algorithms tested
	- \Box AOBB-K*
	- \Box AOBB-K*-ω
	- AOBB-K*-b
	- AOBB-K*-b-DH
	- AOBB-K*-b-UFO
	- \Box BBK*

[Ojewole et al., 2018]
Setup

 \Box Real protein benchmarks obtained by the Donald Lab at Duke University

- Contained instances for redesigning 1-3 residues
- These were expanded to also consider redesign of 4-5 residues
- Algorithms tested
	- AOBB-K*
	- $AOBB-K*-\omega$
	- AOBB-K*-b
	- AOBB-K*-b-DH
	- AOBB-K*-b-UFO
	- \Box BBK*
		- [Ojewole et al., 2018]

Redesign of 5 Residues

Bobak Pezeshki, PhD Final Defense, UCI 2024

Redesign of 5 Residues

Bobak Pezeshki, PhD Final Defense, UCI 2024

Conclusion

*This simplified K*MAP task formulated as a graphical model allows existing graphical model algorithms to be adapted to the task and shows potential against current state of the art algorithms.*

End Part 2

Bobak Pezeshki, PhD Final Defense, UCI 2024 **113**

Special Thank You's

Bobak Pezeshki, PhD Final Defense, UCI 2024 **114**

Professor Rina Dechter

Thank you for always kindly pushing me to grow. Your dedication, heart, and wisdom have left a permanent mark on me…

Professor Alexander Ihler

Thank you for investing in me and always helping me to understand complex concepts, both technically and intuitively…

Dear Mentors

Thank you for your guidance and support at all hours, and always taking the initiative and putting more on your shoulders to help the rest of us.

JUNKYU LEE

FILJOR BROKA

Thank you for believing that I can transfer my personality and passion into my work and the hours you stayed late to explain concepts to me.

Thank you for your positivity and all the meetings from across the world. Not to mention tag teaming those conference deadlines…

RADU MARINESCU

PROF. KALEV KASK

Thank you for helping me transition into my first research project with Abstraction Sampling and mentoring me as an instructor.

Partners in the lab…

Thank you for paving the way for our lunches, walks, and talks (research, philosophical, and otherwise). I look forward to many more to come.

NICHOLAS COHEN ANNIE RAICHEV

Thank you for being the burst of energy in our group. You give the best presentations, and your cats are the cutest. #Barcelona 2024

Also special thanks to… SHUFENG KONG, YASAMAN RAZEGHI, JIAPENG ZHAO, SAKSHI AGARWAL

– **¹¹⁸** Bobak Pezeshki, PhD Final Defense, UCI 2024 **118**

My Family

My Family

…and friends

– **¹²⁰** Bobak Pezeshki, PhD Final Defense, UCI 2024 **120**

And so many others…

- *Professors from our department who always have their door open willing to help students, and constantly working to improve our department* Prof. Padhraic Smyth, Prof. Erik Sudderth, Prof. Sameer Singh, …
- *Professors who have offer enriching courses from which to grow upon* Prof. Stephen Mandt, Prof. Weining Shen, Prof. Michael Dillencourt…
- *Professors whom I've TA'ed for and/or are helping me evolve instructionally* Prof. Jennifer Wong-Ma, Raymond Klefstad, Prof. Bob Pelayo
- *My Cohort:* Claudio, Kyu-Seon, Wonnie, Madina, Gabe, John, Akshay, AK, Siwei
- *OIT Help Desk for their never- ending support of our technical issues*
- *ICS/CS Department Staff constantly helping take care of logistics and making sure our departments are running smoothly*
- *Counseling Staff that helped guide me through this process*

END

Ancestor Branching Mass

AND/OR Schemes

"proper" abstractions ensure that every AND/OR probe includes a valid configuration.

IJCAI-2020: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence **124**

Scalability Issues

Properness restricts the scope of abstractions leading to serious scalability issues.

 \leftarrow OR Abstraction Sampling

8 nodes; 2 solutions

Proper AND/OR Abstraction Sampling

Properties

Complexity

O(n•m) where *n* is the number of variables, and *m* is the number of abstract states per variable

AOAS is and Unbiased Estimator of the Partition Function

THEOREM 2 (unbiasedness). Given a graphical model $\mathcal{M} =$ (X, D, Φ) , algorithm AOAS provides an unbiased estimate for the partition function of M .

Context-Based Abstractions – Defining Context

Set of pseudo tree ancestors whose assignment causes conditional independence of a variable's subtree with all other variables

Context-based Abstractions - Intuition

We know from search that we can merge nodes that root identical subtrees.

[Dechter and Mateescu, 2006]

similar Relaxed Context-Based Abstractions – Intuition

What if we abstract nodes that root intentical subtrees...

Relaxed Context-Based Abstractions

Relaxed Context-Based Abstractions (RelCB)

- Use subset of *most recent* context variables
- Granularity parameter limits number context variables
- Randomized Context-Based Abstractions (RandCB)
	- Use full context, but randomly hash into a bounded number of abstract states
	- Granularity parameter limits number of abstract states

AOAS **vs. DIS** [Lou, Dechter, Ihler, 2019]

Problem: benchmark name

Size: difficulty of subset of problems

Total: total number of instances

∈**Bnds**: number of times AOAS's estimate fell within DIS's 95% probabilistic bounds

AOAS≥ : number times AOAS's* estimates were comparable to or better than DIS's**

AOAS>: number times AOAS's* estimates were strictly better than DIS's

* for this table, AOAS refers to AOAS RandCB-256

 $*$ comparable means falling within ± 0.1 or ± 0.5 of DIS's estimate, for small and large problems respectively

Marginal MAP (MMAP)

$$
MMAP(M, X_{MAP}) = \max_{X_{MAP}} \sum_{X/X_{MAP}} \prod_{\alpha} f_{\alpha}(X_{\alpha})
$$

► Max-Inference\n
$$
f(\mathbf{x}^*) = \max_{\mathbf{x}} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})
$$
\n>Sum-Inference\n
$$
Z = \sum_{\mathbf{x}_M} \prod_{\mathbf{x}_\alpha} f_{\alpha}(\mathbf{x}_{\alpha})
$$
\nMixed-Inference\n
$$
f(\mathbf{x}_M^*) = \max_{\mathbf{x}_M} \sum_{\mathbf{x}_S} \prod_{\alpha} f_{\alpha}(\mathbf{x}_{\alpha})
$$

• NP-hard: exponentially many terms

MMAP

Example: decision making

Sum over random variables (random effects, etc.)

Max over decision variables (specify action policies)

GMEC Objective

Lower Energy \rightarrow More Stable \rightarrow Structure More Likely To Exist

Def. Global Minimum-Energy Conformation (GMEC):

• conformation that minimizes the energy of the complex

$$
GMEC(r) = \min_{c \in C(r)} E(c)
$$

r = amino acid assignments to the residues

C(r) = possible rotamer conformations given a.a. sequence r

 $E(c)$ = energy given conformation c

GMEC Objective

$$
GMEC \; MAP = \min_{R} GMEC(r) \left[\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \right]
$$

ie. Find the sequence with the lowest GMEC

• ie. Find sequence that has the most stable conformation

Proteins are Dynamic Structures

Sowmya, Gopichandran & Vaishnavi, A. & Jigisha, A. & Kangueane, Pandjassarame. (2011). Protein-protein complexes.

GMEC Objective

• **NP-hard:** exponentially many terms

Problem Formulation: Functions

$$
E_X^{sb} = \{ E_{X(i)}^{sb}(R_i, C_i) | i \in \{1, 2, ..., N\} \}
$$

• Energy of interactions between residues and their surrounding backbone

 $X \in \{Bound, Dissocial\}$

Ε

Problem Formulation: Functions

$$
E_X^{pw} = \left\{ E_{X(i,j)}^{pw}(R_i, C_i, R_j, C_j) \middle| \forall i, j \text{ st. } R_i \text{ and } R_j \text{ interact} \right\}
$$

• Energy of interactions between pairs of residues that interact

 $X \in \{Bound, Dissocial\}$

 $X \in \{Bound, Dissocial\}$

K*MAP

$$
K^*(\mathbf{r}) = \frac{Z_{Bound}(\mathbf{r})}{Z_{Dissocial}(\mathbf{r})} = \frac{Z_{complex}(\mathbf{r})}{Z_{subunit 1}(\mathbf{r}) Z_{subunit 2}(\mathbf{r})}
$$

$$
K^*MAP = \max_{\mathbf{R}} K^*(\mathbf{r})
$$

In Collaboration with the Donald Lab, Duke University

Problem Formulation: Subunit-Stability Constraints

 $K^*(r) = \frac{Z_{complex}}{Z_{z}}$ $Z_{\textit{subunit}~1}(r) \, Z_{\textit{subunit}~2}$

Do not want dissociate subunits to be too unstable

 $Z_{\text{subunit}~i}(r) > Z_{\text{subunit}~i}(r^{wt})^* \exp\{-5/RT\}$ Likelihood of naturally occurring version Constant factor to threshold with

i = index of dissociate subunit

r = amino acid sequence assignments

D = indicating dissociate subunit

- r^{wt} = naturally occurring in nature amino acid sequence (wild type)
- **R** = universal gas constant (for unit conversion between kJ and K)

T = absolute temperature (Kelvin)

Problem Formulation: Pseudo Tree Overview for K*MAP

In Collaboration with the Donald Lab, Duke University

ω-**Weighted Search**

Boosted Variants of AOBB-K* / wMBE-K*

Dynamic Heuristics

In Collaboration with the Donald Lab, Duke University
Conclusion

- \Box Graphical Model formulation for K*MAP task
- \Box wMBE-K*, wMBE-based heuristic for bounding K*
- \Box AOBB-K^{*}, MMAP-like AND/OR search algorithms for K^{*}MAP
- \Box Multiple improvements to improve scalability
	- □ Weighted Search
	- **Tuning of AOBB-K*** and wMBE-K*
	- **Dynamic Heuristics**
	- **Q** UFO
		- Also as an independent scheme
- \Box Strong performance in comparison to state-of-the-art BBK*

Future Work

- Test structures that have conditional independences between their residues
- Extend other well-known approximate anytime methods
- More compact sparse representation
- Improve heuristic function
	- □ Use sampling / search for lower bound?
	- Incorporate pruning constraint
- k-Best Solutions

Bobak Pezeshki, PhD Final Defense, UCI 2024

Cochrane 1977

This theorem leads to the following rules of conduct. In a given stratum, take a larger sample if

Ž.

- 1. The stratum is larger.
- 2. The stratum is more variable internally.
- 3. Sampling is cheaper in the stratum.

AOBB-K*MAP K* Pruning Condition

AOBB-K*MAP Subunit Stability Pruning Condition

key observation: for any node in corresponding to subunit X, the progressively improving $ub(z_x)$ can be computed via the expression: $ub(Z_x) = gh)$ $ub_x(n) \cdot r_x(n) + Sum_x(n)$ MMAP summation term $(n \in SUM)$ ancestor branching
factor which can be computed using information from n, par(n), and sib_x(n)

AOBB-K*MAP Subunit Stability Pruning Condition

In Collaboration with the Donald Lab, Duke University – **¹⁶¹**