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5Bobak Pezeshki, PhD Final Defense, UCI 2024 5



Protein Folding and 
Design

Graphical Models – Overview
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Graphical Models – Formal Definition

ℳ = {    
 X = { X1, X2, … , XN }  Variables

 D = { D
𝑋𝑋1

, D
𝑋𝑋2

, … , D
𝑋𝑋𝑁𝑁

 }  Domains

 F = { f
α1

, f
α2

, … , f
α𝑀𝑀

}  Factors

        }

Example:
A B f(A,B)

0 0 2

0 1 4

1 0 3

1 1 1

Primal graph

A combination operator ⊗ defines a global function.

ex. ⊗ = multiplication
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Tasks

8

𝑍𝑍 = �
𝑿𝑿

 �
α

 𝑓𝑓α(𝑋𝑋α)

partition function

Computing marginals: P(𝑋𝑋𝑖𝑖) =
1
𝑍𝑍  �

𝑿𝑿/𝑋𝑋𝑖𝑖

 �
α

 𝑓𝑓α(𝑋𝑋α)

(#P-complete)
[Cooper, 1990]
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Systematic Search vs Sampling
Systematic Search

• Enumerate states
• Every stone turned
• No stone turned more than once
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Systematic Search vs Sampling
Systematic Search

• Enumerate states
• Every stone turned
• No stone turned more than once

Importance Sampling

• Monte Carlo sampling method

[Liu, 2001]

11Bobak Pezeshki, PhD Final Defense, UCI 2024 11



Systematic Search vs Sampling
Systematic Search

• Enumerate states
• Every stone turned
• No stone turned more than once

Importance Sampling

• Monte Carlo sampling method
[J. Liu, Monte-Carlo strategies in scientific computing, 

Springer-Verlag, New York, 2001]

[Liu, 2001]
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AND/OR Search Space
Compact search space taking advantage of  conditional independencies

Classical OR Search Space

g(A=0, B=1, C=2, D=1) = 1×2×1×2 = 4 g(A=0, B=1, C=2, D=1) = 1×((2)×(1×2)) = 4

Compact AND/OR Search Space
[Dechter and Mateescu, 2004]
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Guiding Pseudo-Tree
Pseudo-Trees capture conditional independencies and guide the construction of  
the search space.

Compact AND/OR Search Space

g(A=0, B=1, C=2, D=1) = 1×((2)×(1×2)) = 4

Primal Graph Pseudo-Tree

[Dechter and Mateescu, 2004]
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IS in AND/OR Trees

15

A

0 1

Progress variable-by-variable according 
to the guiding pseudo tree
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IS in AND/OR Trees

16

A

0 1

Stochastically select a value to assign 
the variable according to a proposal 
distribution, p.
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IS in AND/OR Trees

17

A

0 1

Update importance weight according 
to w(n) = w/p(n) w
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IS in AND/OR Trees
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A

0 1

Expand to a next variable in the 
pseudo tree ordering w

B

0 1
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IS in AND/OR Trees

19

A

0 1

Stochastically assign value to variable 
according to proposal and update 
weights accordingly

w

B

0 1
w'
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IS in AND/OR Trees

20

Repeat until every variable is assigned 
a value (a solution tree is sampled) A

0 1
w

B

0 1
w'

C

0 1
w''

D

0 1
w’''
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IS in AND/OR Trees

21

An estimate can be produced 
considering the cost associated with 
the sampled solution tree upweighted 
by the assigned importance weights.

A

0 1
w

B

0 1
w'

C

0 1
w''

D

0 1
w’''

1

1

2 1

2
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Main idea:  partially enumerate and partially sample search space

Steps:
 Subdivide space into set strata
 Enumerate strata choosing reweighted samples from each to form a probe
 Average estimates from sampled probes

Strata 1 Strata 2 Strata 3

22

Stratified [Importance] Sampling
[Knuth, 1975], [Chen, 1992], [Rizzo, 2007]
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Main idea:  partially enumerate and partially sample search space

Steps:
 Subdivide space into set strata
 Enumerate strata choosing reweighted samples from each to form a probe
 Average estimates from sampled probes

Strata 1 Strata 2 Strata 3

23

Stratified [Importance] Sampling
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Interpolating Between 
Sampling and Search

.  .  .     K independent samples

Ẑ =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑍𝑍𝑍𝑘𝑘

Importance Sampling
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Interpolating Between 
Sampling and Search
We can draw samples of  multiple configurations to more closely resemble search.

𝐾𝐾
2

  independent samples

Ẑ =
2
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾/2

𝑍𝑍𝑍𝑘𝑘

Importance Sampling
K independent samples

Ẑ =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑍𝑍𝑍𝑘𝑘

.  .  .  K

2-Config Sampling
𝐾𝐾
4

  independent samples

Ẑ =
4
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾/4

𝑍𝑍𝑍𝑘𝑘

4-Config Sampling

.  .  .   𝑒𝑒𝑡𝑡𝑡𝑡.

Sampling                   Search
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Interpolating Between 
Sampling and Search
We can draw samples of  multiple configurations to more closely resemble search.

𝐾𝐾
2

  independent samples

Ẑ =
2
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾/2

𝑍𝑍𝑍𝑘𝑘

Importance Sampling
K independent samples

Ẑ =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑍𝑍𝑍𝑘𝑘

.  .  .  K

2-Config Sampling
𝐾𝐾
4

  independent samples

Ẑ =
4
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾/4

𝑍𝑍𝑍𝑘𝑘

4-Config Sampling

Is it worth it?

Sampling                   Search

Variance reduction of

under certain conditions 
       [Rizzo, 2007]

𝑘𝑘2 𝑉𝑉𝑉𝑉𝑉𝑉 Ẑ𝐽𝐽
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Abstraction Sampling
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General AS Scheme
A sampling scheme that enables the interpolating between sampling and search by 
performing abstractions level-by-level.

Ẑ =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑍𝑍𝑍𝑘𝑘

[Broka, Dechter, Ihler, and Kask, 2018]
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Original Work Set A Foundation…

Main Questions 1:

 How to adapt to the more compact AND/OR spaces?
 Should valid samples consist of only solution subtrees?
 How to abstract across different branches of the AND/OR tree?

29
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Scalable AND/OR Abstraction Sampling
(algorithm: AOAS)
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AOAS
New AND/OR abstraction sampling scheme that allows for flexible abstractions 
while still ensuring formation of  valid probes.

Key Points:
 Allows for flexible abstractions

 Expands along a depth first 
traversal of the guiding pseudo tree

 Immediately performs recursive 
pruning of branches that cannot be 
part of valid configurations

31
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Proposal Distribution
A heuristic function h is used to estimate the value of  unexplored subtrees.

 w(n) captures the estimated weight of subtrees 
absorbed by the n’s ancestors during abstraction

 g(n) is the path cost from the root to n

 h(n) is the estimated mass of the subtree n roots

 r(n) is the estimated ancestor branching mass of n

32

Estimated via Weighted Mini-bucket Elimination [Liu & Ihler, 2012]
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Properties (Unbiasedness)
 Proof-Strategy
 Key observation: at each step in the algorithm, either

 The probe is expanded
 An abstraction occurs
 Pruning occurs

 Main Idea:
 Define an estimator for the value of each node such that

 The value of the dummy root node is the exact Z value (base case)
 The value of the final probe is equivalent to the value determined by AOAS

 Show that, at each step, the expectation of the estimator remains unchanged
 Needed Trick:

 Incorporate the ancestor branching mass into the estimator

d
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Properties (Unbiasedness)
 Proof-Strategy
 Key observation: at each step in the algorithm, either

 The probe is expanded
 An abstraction occurs
 Pruning occurs

 Main Idea:
 Construct an estimator that equals

 the exact Z value for the unexpanded probe (base case)
 the value of AOAS’s estimator for the final probe
 needs to include consideration of different branchings in the tree
 can be computed by analyzing the frontier nodes of a single variable

 Show that, at each step, the expectation of the estimator remains unchanged 

d

34
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Properties (Unbiasedness)

 Illuminating characteristics
 Works for any valid importance sampling proposal distribution
 Generalizes to BF expansion of the pseudo-tree
 Generalizes to algorithms that allow non-solution trees as samples

OK 

35
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OR Abstraction Sampling 

Proper AND/OR Abstraction Sampling  

11 nodes; 16 solutions

8 nodes; 2 solutions

 AOAS

42 nodes; 128 solutions

Properties (Complexity)

O(n∙m) where n is the number of variables, and m is the number of abstract states per variable

36
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Proper AND/OR Abstraction Sampling  
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8 nodes; 2 solutions

 AOAS

42 nodes; 128 solutions

Properties (Complexity)

O(n∙m) where n is the number of variables, and m is the number of abstract states per variable
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OR Abstraction Sampling 

Previous AND/OR Scheme 

11 nodes; 16 solutions

8 nodes; 2 solutions

 AOAS

42 nodes; 128 solutions

Properties (Complexity)

O(n∙m) where n is the number of variables, and m is the number of abstract states per variable

38
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Other Properties (see Thesis)

Conditions for exact AOAS estimates
Proposal-based conditions
Abstraction-based conditions

39
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Original Work Set A Foundation…

Main Questions 2:

 How to construct powerful abstraction functions? 

40
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Abstraction Function Schemes

41



What did the previous abstraction 
schemes capture?

42Bobak Pezeshki, PhD Final Defense, UCI 2024 42

Context-Based Schemes:
RelCB and RandCB only estimate 
similarity of this piece and based 
only on graph structure



Bobak Pezeshki, PhD Final Defense, UCI 2024 43

Value-Based Abstraction Functions
           - Intuition

43

• Use relevant quantities to 
assign a values to nodes

• Use those values to guide 
abstractions
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Value-Based Abstraction Functions
           - Classes

44

Potential Candidates:
  HB: μ(n) = h(n)
HRB: μ(n) = h(n) r(n)
  QB: μ(n) = w(n) g(n) h(n) r(n)
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Value-Based Abstraction Functions
           - Classes

45

(best performing)

Potential Candidates:
  HB: μ(n) = h(n)
HRB: μ(n) = h(n) r(n)

QB: μ(n) = w(n) g(n) h(n) r(n)
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Value-Based Abstraction Functions
        - Partitioning Intuition

46

 Simple and fast

 Group similar nodes together
  Minimize with-in variance of abstract states

 Form abstract states of roughly equal mass
  [Rizzo, 2007]
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Value-Based Abstraction Functions
        - Partitioning Schemes

47

1.0 1.1 1.2 1.3 1.4 1.5 10 100
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Value-Based Abstraction Functions
        - Partitioning Schemes

48

1.0 1.1 1.2 1.3 1.4 1.5 10 100

Ex. Partition into four abstract states
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Value-Based Abstraction Functions
        - Partitioning Schemes

49

1.0 1.1 1.2 1.3 1.4 1.5 10 100

1.0 1.1 1.2 1.3 1.4 1.5 10 100

Simply partition into equal cardinality abstract states!

simpleVB
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Value-Based Abstraction Functions
        - Partitioning Schemes

50

1.0 1.1 1.2 1.3 1.4 1.5 10 100

1.0 1.1 1.2 1.3 1.4 1.5 10 100

Use hierarchical clustering to minimize with-in variance

simpleVB
1.0 1.1 1.2 1.3 1.4 1.5 10 100

minVarVB
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Value-Based Abstraction Functions
        - Partitioning Schemes

51

1.0 1.1 1.2 1.3 1.4 1.5 10 100

1.0 1.1 1.2 1.3 1.4 1.5 10 100

Use a greedy approach to create abstract states of approximate equal value

simpleVB
1.0 1.1 1.2 1.3 1.4 1.5 10 100

minVarVB

1.0 1.1 1.2 1.3 1.4 1.5 10 100

equalDistVB
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Value-Based Abstraction Functions
        - Partitioning Schemes

52

1.0 1.1 1.2 1.3 1.4 1.5 10 100

1.0 1.1 1.2 1.3 1.4 1.5 10 100

Create random partitionings of the ordered nodes

simpleVB
1.0 1.1 1.2 1.3 1.4 1.5 10 100

minVarVB

1.0 1.1 1.2 1.3 1.4 1.5 10 100

equalDistVB
1.0 1.1 1.2 1.3 1.4 1.5 10 100

randVB
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Purely Random Abstractions

53

1.0 1.1 1.2 1.3 1.4 1.5 10 100

1.0 1.11.21.3 1.41.5 10100

Randomly place nodes into equal cardinality abstract states

simpleRand
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Empirical Evaluation

54

 Performance of Abstraction Sampling comparing against existing schemes?
 Does sampling over the AND/OR space provide benefits?
 What abstraction functions empower Abstraction Sampling most?
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Setup
 Problems (480+)

 DBN, Grids, Linkage-Type4, Pedigree, Promedas
 Abstraction Sampling Algorithms

 Sampling Schemes:
 ORAS, proper-restricted-AOAS (pAOAS), AOAS

 Abstraction Functions:
 Context-Based, Value-Based, and Purely Random abstractions
 Varying granularities

 Heuristic:
 Weighted Mini-Bucket Elimination (wMBE)

 Competing Algorithms
 IS, DIS [WMB-IS, IJGP-SS]

 Questions
 Quality of estimates, Scalability of Abstraction Functions

55

[Liu, Ihler, 2012]

[Liu, Fisher III, Ihler, 2015]

[Gogate and Dechter, 2011]

[Lou, Dechter, Ihler, 2019]
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Plots

- - - :  reference log10 Z value

#p:  number of probes

#n/p:  number of nodes per probe

est. error: log10 Z error w.r.t. the reference value

56

204, 204, 204,
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Aggregation Tables

Bmk:  benchmark name

Sz:  difficulty of subset of problems {small, 
LARGE}

Graph Scheme:  Abstraction Sampling 
search scheme

Abs:  granularity of abstraction function

n*:  number of problems solved

log(err):  average log10 Z error

error distr.:  count of problems solved 
within an error threshold

#probes:  average number of probes

#nodes/probe:  average number of nodes 
per probe

[Lou et al., 2019] 
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Comparison of  Abstraction Functions
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Comparison of  Abstraction Functions
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Comparison of  Abstraction Functions
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Comparison of  Abstraction Functions
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Comparison of  Abstraction Functions
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Comparison of  Abstraction Functions
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Comparison of  Abstraction Functions
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Comparison of  Abstraction Granularity
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Comparison of  Abstraction Granularity
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Comparison of  Abstraction Granularity

67



AS Comparison Chart

Algorithm
Compact

Search Space
Scalable 

Abstractions

OR Abstraction Sampling No Yes

“Proper” 
AO Abstraction Sampling Yes No

AOAS Yes Yes
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Value-Based Abstraction Functions
                       - Best Scheme

69

equalDistQB3 and equalDistQB4
were best performing!

Many of the new schemes performed 
better than the context based schemes.

Score > 1.0 ⇒ better than context-based



Conclusion

70

AND/OR Abstraction Sampling via AOAS is an efficient 
effective stratified sampling method for solving 

summation tasks and can be empowered by use of 
several of the newly proposed abstraction functions.
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End Part 1
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Computational Protein Design (CPD)

[Re]design proteins to perform 
desired biological functions.

CPD often manifests as an 
optimization problem:

Ex. find the optimal composition 
that maximizes binding between 
subunits.
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Computational Protein Design
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Computational Protein Design
There Are ~20 Naturally Occurring Amino Acids

Cannot be made 
by the human body
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Computational Protein Design
Amino Acid Rotamers:  Select conformational isomers of an amino acid

Peter Carlsson, Konrad F. Koehler, and Lennart Nilsson
Molecular Endocrinology 19(8):1960–1977. https://doi.org/10.1210/me.2004-0203
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Proteins are Dynamic Structures

A protein’s structural state is probabilistic

Proteins continuously transition 
between various energetically 
favorable conformation.
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Partition Function
Partition Function (Z) Normalizes the Likelihood

of the Protein In A Particular Conformational State

𝑍𝑍(𝑉𝑉) = �
𝑐𝑐∈𝐶𝐶(𝑟𝑟)

exp{−𝐸𝐸(𝑡𝑡)/𝑅𝑅𝑅𝑅}

r = amino acid assignments to the residues
C(r) = possible rotamer conformations given a.a. sequence r
E(c) = energy given conformation c
R = universal gas constant (for unit conversion between kJ and K)
T = absolute temperature (Kelvin)
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K* Objective
K* approximate Ka, the affinity equilibrium constant

Note that K* not only considers the “goodness” of the bonded state (PL), 
but also weighs it relative to the “goodness” of the unbound (dissociate) states

𝐾𝐾∗(𝑉𝑉) =
𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉

𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 1 𝑉𝑉  𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 2 𝑉𝑉

84

[Ojewole et al., 2018, Hill, 1987, Mc-Quarrie, 2000]
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K* Objective

𝐾𝐾∗MAP =  m𝑉𝑉𝑎𝑎
𝑅𝑅

𝐾𝐾∗(𝑉𝑉)

ie. Find the sequence with the greatest K* ~ Ka
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BBK*

• A*-like algorithm for designing proteins to improve binding

• Our objective: solve the same problem with algorithms that offer something more

• New heuristic

• Capture independences

• Sampling

[Ojewole, Jou, Fowler, Donald, 2018]
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Task Difficulty

𝐾𝐾∗MAP =  m𝑉𝑉𝑎𝑎
𝑅𝑅

𝐾𝐾∗(𝑉𝑉)

𝐾𝐾∗(𝑉𝑉) =
𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉

𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 1 𝑉𝑉  𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 2 𝑉𝑉

87Bobak Pezeshki, PhD Final Defense, UCI 2024 87

Marginal MAP



Marginal MAP (MMAP)

• State-of-the-art search and sampling algorithms

State-of-the-art Marginal MAP (MMAP) algorithms

Learning Depth-First AND/OR Search

Stochastic Best-First AND/OR Search

Recursive Best-First AND/OR Search

State-of-the-art sampling algorithms

Dynamic Importance Sampling

Abstraction Sampling

[Marinescu, Lee, Dechter, Ihler, 2018]

[Marinescu, Dechter, Ihler, 2018]

[Marinescu, Dechter, Ihler, 2018]

[Marinescu, Dechter, Ihler, Kishimoto, Botea, 2018]

[Liu, Dechter, Ihler, 2017]

[Kask, Pezeshki, Broka, Ihler, Dechter, 2020]
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K*MAP using AND/OR Search

89
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Problem Formulation

90
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Two Formulations

91

Subunit 1

Subunit 2

F1

F2
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Two Formulations

92

Subunit 1

Subunit 2

F1

F2
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Problem Formulation: Assumptions

93

 Select Residues:  Model using only a subset of the residues.

 Discrete Rotamers:  Use discrete side-chain conformations.

 Fixed Backbone:  Fix the position of the residues in space.
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Problem Formulation: 
Variables and Domains

Ri

𝑹𝑹 =  𝑹𝑹𝒊𝒊 𝒊𝒊 ∈ 𝟏𝟏,𝟐𝟐, … ,𝑵𝑵  }

• Residues considered for mutation
• ie. variables we maximize over

• Domain = possible amino acids

94
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Problem Formulation: 
Variables and Domains

Ri

CB(i) CD(i)

𝑪𝑪𝑿𝑿 =  𝐶𝐶𝑋𝑋(𝑖𝑖) 𝑖𝑖 ∈ 1, 2, … ,𝑁𝑁  }

• Side-chain rotamers of the residues
• Two for each Ri, one capturing the rotamers of 

the bound and the other for the unbound states

• Domain = discretized amino acid rotamers

𝑋𝑋 ∈ {𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐵𝐵𝑡𝑡𝑖𝑖𝑉𝑉𝑡𝑡𝑒𝑒}

95
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Problem Formulation: Functions

96

 Interaction energies between amino acid 
side chain rotamers

 Constraints enforcing consistent 
assignments between corresponding residue 
and conformation variables
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K*MAP
𝛾𝛾 ∈ {𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐵𝐵𝑡𝑡𝑖𝑖𝑉𝑉𝑡𝑡𝑒𝑒}

97

let…

Objective:

Task:
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AOBB-K*
Based on AOBB-MMAP [Marinescu, Dechter, Ihler, 2014]

98
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AOBB-K*

 Branch-and-bound over AND/OR search space
 Uses wMBE-based heuristics to guide search and prune suboptimal paths
 Uses encodes determinism and uses Mini SAT to prune inconsistent paths
 Enforces biologically-relevant stability constraints
 Exact

99



wMBE Heuristic for MMAP
● Mini-bucket elimination [Dechter & Rish 2001]

–

– Holder’s inequality

– “i-bound”, limit on the number of 
variables in a single mini-bucket

MAX

SUM

●                   Weighted Mini-bucket [Liu & Ihler, 2012]
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wMBE Heuristic for K*

–

MAX

SUM UB( Zcomplex(R) )

MB MD

MB MD
-1

LB( Zsubunit i(R) )

𝐾𝐾∗(𝑉𝑉) =
𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉

𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 1 𝑉𝑉  𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 2 𝑉𝑉

R

CB CDCD
complex subunit 1 subunit 2

101
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AOBB-K*

 Branch-and-bound over AND/OR search space
 Uses wMBE-based heuristics to guide search and prune suboptimal paths
 Uses encodes determinism and uses Mini SAT to prune inconsistent paths
 Enforces biologically-relevant stability constraints
 Exact

102

Performed well on small problems, 
but did not scale well
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Scalability Improvements

103
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List of improvements tested…

104

 Numerical stability fixes  (part of the boosted AOBB-K*-b variant)

 Search the wild-type sequence first (part of the boosted AOBB-K*-b variant)

 Improve heuristic lower-estimates (part of the boosted AOBB-K*-b variant)

 Weighted heuristic search

 Dynamic heuristic recomputation

 Infuse artificial determinism to leverage CP
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Underflow-Threshold Optimization (UFO)

105

General idea:
 During search we can use constraint processing schemes to identify 

inconsistent paths early on
 Problems may have “near-constraints” (i.e., very small function values) that 

prevent solutions that contain them in practice
 Treat “near-constraints” as constraints by underflowing their value to zero
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Underflow-Threshold Optimization (UFO)

106

Algorithm Sketch:
 Set a time limit
 Use binary search to find the greatest constant τ ∊ [0, vmax) such that

 If we replace all function values v < τ with 0, there still exists a consistent path (ie. path 
with non-zero cost)

 CPD: wild-type remains consistent

 Relax threshold:    τ  :=  τ •  δ,  δ ∊ (0, 1] 
 Replace any function value v < τ with 0.
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Empirical Evaluation

107

 Does formulating the K*MAP task as a graphical model show potential?
 Which AOBB-K* scheme is best performing?
 How does performance compare to state-of-the-art BBK*?
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Setup
 Real protein benchmarks obtained by the Donald Lab at Duke University

 Contained instances for redesigning 1-3 residues
 These were expanded to also consider redesign of 4-5 residues

 Algorithms tested
 AOBB-K*
 AOBB-K*-ω
 AOBB-K*-b
 AOBB-K*-b-DH
 AOBB-K*-b-UFO
 BBK*

108

[Ojewole et al., 2018]
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Setup
 Real protein benchmarks obtained by the Donald Lab at Duke University

 Contained instances for redesigning 1-3 residues
 These were expanded to also consider redesign of 4-5 residues

 Algorithms tested
 AOBB-K*
 AOBB-K*-ω
 AOBB-K*-b
 AOBB-K*-b-DH
 AOBB-K*-b-UFO
 BBK*

109

[Ojewole et al., 2018]
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Redesign of 5 Residues

110
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Redesign of 5 Residues

111



Conclusion

112Bobak Pezeshki, PhD Final Defense, UCI 2024 112

This simplified K*MAP task formulated as a graphical 
model allows existing graphical model algorithms to 
be adapted to the task and shows potential against 

current state of the art algorithms. 



End Part 2

113Bobak Pezeshki, PhD Final Defense, UCI 2024 113



Special Thank You’s

114Bobak Pezeshki, PhD Final Defense, UCI 2024 114



Professor Rina Dechter

115

Thank you for always kindly pushing me to grow.  Your dedication, heart, and 
wisdom have left a permanent mark on me…



Professor Alexander Ihler

116

Thank you for investing in me and always helping me to understand complex 
concepts, both technically and intuitively…



Dear Mentors

–
117

FIL JOR BROKA

PROF.  KALEV KASK

JUNKYU LEE

RADU MARINESCU

Thank you for your 
guidance and support at all 
hours, and always taking 
the initiative and putting 
more on your shoulders to 
help the rest of us.

Thank you for believing 
that I can transfer my 
personality and passion 
into my work and the 
hours you stayed late to 
explain concepts to me.

Thank you for your positivity 
and all the meetings from 
across the world.  Not to 
mention tag teaming those 
conference deadlines…

Thank you for helping me 
transition into my first 
research project with 
Abstraction Sampling and 
mentoring me as an instructor.

Bobak Pezeshki, PhD Final Defense, UCI 2024 117



Partners in the lab…

–
118

NICHOLAS COHEN ANNIE RAICHEV

Also special thanks to…
SHUFENG KONG,

YASAMAN RAZEGHI,
J IAPENG ZHAO,

SAKSHI  AGARWAL

Thank you for paving the way 
for our lunches, walks, and talks 
(research, philosophical, and 
otherwise).  I look forward to 
many more to come.

Thank you for being the burst 
of energy in our group.  You 
give the best presentations, 
and your cats are the cutest. 
#Barcelona 2024

Bobak Pezeshki, PhD Final Defense, UCI 2024 118



My Family

–
119Bobak Pezeshki, PhD Final Defense, UCI 2024 119



My Family

–
120

…and friends
Bobak Pezeshki, PhD Final Defense, UCI 2024 120



And so many others…

–
121

• Professors  f rom our  depar tment  who  a lways  have  the i r  door  open  wi l l ing  to  he lp  
s tuden t s ,  and  cons tan t l y  work ing  to  improve  our  depar tment

 Prof .  Padhraic  Smyth,  Prof .  Erik  Sudderth,  Prof .  Sameer  Singh,  …

• Professors  who  have  o f f e r  enr ich ing  courses  f rom which  to  grow upon
 Prof .  Stephen Mandt ,  Prof .  Weining Shen,  Prof .  Michael  Di l lencourt…

• Professors  whom I ’ve  TA’ed  for  and/or  are  he lp ing me  evo lve  ins t ruc t ional ly
 Prof .  Jenni fer  Wong-Ma,  Raymond Kle fs tad,  Prof .  Bob Pe layo

• My Cohor t :  Claudio ,  Kyu-Seon,  Wonnie ,  Madina,  Gabe ,  John,  Akshay,  AK,  S iwei

• OIT Help  Desk  for  the i r  never-ending  suppor t  o f  our  t echnica l  i s sues

• ICS/CS Depar tment  S ta f f  cons tan t ly  he lp ing  take  care  o f  log i s t i cs  and  mak ing  sure  our  
depar tments  are  running  smooth ly

• Counse l ing  S ta f f  tha t  he lped  gu ide  me  through  th i s  process

Bobak Pezeshki, PhD Final Defense, UCI 2024 121



END

122



Ancestor Branching Mass



AND/OR Schemes

“proper” abstractions ensure that every AND/OR probe includes a valid configuration.

Proper AbstractionsNaïve  Non-proper Abstractions

Valid probes, but severe
scalability issues

IJCAI-2020: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence 124



Scalability Issues
Properness restricts the scope of  abstractions leading to serious scalability issues.

IJCAI-2020: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence

 OR Abstraction Sampling

Proper AND/OR Abstraction Sampling 

8 nodes; 2 solutions

42 nodes; 128 solutions

125



Properties
Complexity

O(n∙m) where n is the number of variables, and m is the number of abstract states per variable

IJCAI-2020: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence

AOAS is and Unbiased Estimator of  the Partition Function

126



Context-Based Abstractions – 
Defining Context
Set of  pseudo tree ancestors whose assignment causes conditional independence of  a variable’s subtree with all other variables

IJCAI-2020: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence

The context of F in the given 
pseudo tree is AE

Primal GraphPseudo-Tree

127



We know from search that we can merge nodes that root identical subtrees.

Context-based Abstractions - Intuition

[Dechter and Mateescu, 2006]

128

Paths having the same 
assignments to the 

“context” of a variable 

⇓
nodes of that variable 

along those paths root the 
exact same subtree

Determinable via 
structural analysis
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What if  we abstract nodes that root identical subtrees…What if  we abstract nodes that root  identical  subtrees…
similar

Sampled  subtree 1 Sampled  subtree 2

Relaxed Context-Based Abstractions 
–  Intuition

129

Z(n) Z(n’)

Z(n’)Z(n)

Z(n) ≈ Z(n’)
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Relaxed Context-Based Abstractions

130

 Relaxed Context-Based Abstractions (RelCB)
 Use subset of most recent context variables
 Granularity parameter limits number context variables

 Randomized Context-Based Abstractions (RandCB)
 Use full context, but randomly hash into a bounded number of abstract states
 Granularity parameter limits number of abstract states
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AOAS vs. DIS [Lou, Dechter, Ihler, 2019] 

IJCAI-2020: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence

Problem:  benchmark name

Size:  difficulty of subset of problems

Total:  total number of instances

∈Bnds:  number of times AOAS’s estimate 
fell within DIS’s 95% probabilistic bounds

AOAS≥ : number times AOAS’s* estimates 
were comparable to or better than DIS’s**

AOAS>:  number times AOAS’s* estimates 
were strictly better than DIS’s

**comparable means falling within ±0.1 or ±0.5 of DIS’s
    estimate, for small and large problems respectively

*  for this table, AOAS refers to AOAS RandCB-256 
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Marginal MAP (MMAP)

In Collaboration with the Donald Lab, Duke University

MMAP(ℳ,𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀) =  m𝑉𝑉𝑎𝑎
𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀

�
𝑿𝑿/𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀

 �
α

 𝑓𝑓α(𝑋𝑋α)

Influence diagram:

Example: decision making
Sum over random variables (random effects, etc.) 
Max over decision variables (specify action policies)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
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GMEC Objective

In Collaboration with the Donald Lab, Duke University

Lower Energy  More Stable  Structure More Likely To Exist

Def. Global Minimum-Energy Conformation (GMEC):
• conformation that minimizes the energy of the complex

𝐺𝐺𝑀𝑀𝐸𝐸𝐶𝐶(𝑉𝑉) = min
𝑐𝑐∈𝐶𝐶(𝑟𝑟)

𝐸𝐸(𝑡𝑡)

r = amino acid assignments to the residues
C(r) = possible rotamer conformations given a.a. sequence r
E(c) = energy given conformation c

133



GMEC Objective

In Collaboration with the Donald Lab, Duke University

𝐺𝐺𝑀𝑀𝐸𝐸𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑚𝑚𝑖𝑖𝐵𝐵
𝑅𝑅

𝐺𝐺𝑀𝑀𝐸𝐸𝐶𝐶(𝑉𝑉)

ie. Find the sequence with the lowest GMEC
• ie. Find sequence that has the most stable conformation

M = minimum

134



Proteins are Dynamic Structures

Sowmya, Gopichandran & Vaishnavi, A. & Jigisha, A. & 
Kangueane, Pandjassarame. (2011). Protein-protein complexes. 
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GMEC Objective

In Collaboration with the Donald Lab, Duke University

GMEC MAP =  m𝑖𝑖𝐵𝐵
𝑅𝑅

𝐺𝐺𝑀𝑀𝐸𝐸𝐶𝐶(𝑉𝑉)

136



In Collaboration with the Donald Lab, Duke University

Problem Formulation: Functions

𝑬𝑬𝑿𝑿𝒔𝒔𝒔𝒔 = 𝐸𝐸𝑋𝑋 𝑖𝑖
𝑠𝑠𝑠𝑠 (𝑅𝑅𝑖𝑖 ,𝐶𝐶𝑖𝑖)  𝑖𝑖 ∈ 1, 2, … ,𝑁𝑁  }

• Energy of interactions between residues 
and their surrounding backbone

𝑋𝑋 ∈ {𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐵𝐵𝑡𝑡𝑖𝑖𝑉𝑉𝑡𝑡𝑒𝑒}
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In Collaboration with the Donald Lab, Duke University

Problem Formulation: Functions

𝑬𝑬𝑿𝑿
𝒑𝒑𝒑𝒑 = 𝐸𝐸𝑋𝑋 𝑖𝑖,𝑗𝑗

𝑐𝑐𝑝𝑝 (𝑅𝑅𝑖𝑖 ,𝐶𝐶𝑖𝑖 ,𝑅𝑅𝑗𝑗 ,𝐶𝐶𝑗𝑗)  ∀𝑖𝑖, 𝑗𝑗 st. 𝑅𝑅𝑖𝑖  and 𝑅𝑅𝑗𝑗  interact}

• Energy of interactions between pairs of 
residues that interact

𝑋𝑋 ∈ {𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐵𝐵𝑡𝑡𝑖𝑖𝑉𝑉𝑡𝑡𝑒𝑒}
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In Collaboration with the Donald Lab, Duke University

K*MAP

𝐾𝐾∗𝑀𝑀𝑀𝑀𝑀𝑀 =  max
𝑹𝑹

𝐾𝐾∗(𝒓𝒓)

𝐾𝐾∗ 𝒓𝒓 =
𝑍𝑍𝐵𝐵𝑐𝑐𝑠𝑠𝑠𝑠𝑜𝑜 𝒓𝒓

𝑍𝑍𝐷𝐷𝑖𝑖𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑐𝑐 𝒓𝒓
=

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝒓𝒓
𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 1 𝒓𝒓  𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 2 𝒓𝒓

𝑍𝑍𝑋𝑋 𝒓𝒓 = �
𝑪𝑪𝑿𝑿

�
𝑬𝑬𝑿𝑿
𝒔𝒔𝒔𝒔

𝑒𝑒−
𝐸𝐸𝑋𝑋 𝑖𝑖
𝑠𝑠𝑠𝑠 𝑟𝑟𝑖𝑖,𝐶𝐶𝑋𝑋 𝑖𝑖

ℛ𝑇𝑇 �
𝑬𝑬𝑿𝑿
𝒑𝒑𝒑𝒑

𝑒𝑒−
𝐸𝐸𝑋𝑋 𝑖𝑖,𝑗𝑗
𝑝𝑝𝑝𝑝 𝑟𝑟𝑖𝑖,𝐶𝐶𝑋𝑋 𝑖𝑖 ,𝑟𝑟𝑗𝑗,𝐶𝐶𝑋𝑋(𝑗𝑗)

ℛ𝑇𝑇

𝑋𝑋 ∈ {𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐵𝐵𝑡𝑡𝑖𝑖𝑉𝑉𝑡𝑡𝑒𝑒}
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Problem Formulation: 
Subunit-Stability Constraints

In Collaboration with the Donald Lab, Duke University

𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 𝑖𝑖 𝑉𝑉 > 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 𝑖𝑖(𝑉𝑉𝑝𝑝𝑠𝑠)∗ exp{−5/ℛ𝑻𝑻}

Do not want dissociate subunits to be too unstable

i = index of dissociate subunit
r = amino acid sequence assignments
D = indicating dissociate subunit
rwt = naturally occurring in nature amino acid sequence (wild type)
R = universal gas constant (for unit conversion between kJ and K)
T = absolute temperature (Kelvin)

𝐾𝐾∗(𝑉𝑉) =
𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉

𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 1 𝑉𝑉  𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 2 𝑉𝑉

Likelihood of naturally occurring version Constant factor to threshold with
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Problem Formulation: 
Pseudo Tree Overview for K*MAP

In Collaboration with the Donald Lab, Duke University

R

CB CDCD
complex subunit 1 subunit 2
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In Collaboration with the Donald Lab, Duke University

ω-Weighted Search
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In Collaboration with the Donald Lab, Duke University

Boosted Variants of AOBB-K* / wMBE-K*
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Dynamic Heuristics

144



Conclusion 
 Graphical Model formulation for K*MAP task

 wMBE-K*, wMBE-based heuristic for bounding K*

 AOBB-K*, MMAP-like AND/OR search algorithms for K*MAP

 Multiple improvements to improve scalability
 Weighted Search
 Tuning of AOBB-K* and wMBE-K*
 Dynamic Heuristics
 UFO

 Also as an independent scheme

 Strong performance in comparison to state-of-the-art BBK*
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Future Work 
 Test structures that have conditional independences between their residues

 Extend other well-known approximate anytime methods

 More compact sparse representation

 Improve heuristic function
 Use sampling / search for lower bound?
 Incorporate pruning constraint

 k-Best Solutions
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Redesign of 4 Residues
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Cochrane 1977
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