<u>Part 1</u>

Advancing AND/OR Abstraction Sampling

Part 2

K*-Based Computational Protein Design using AND/OR Search

Bobak Pezeshki's PhD Final Defense

(Advised by Prof. Rina Dechter and Prof. Alexander Ihler)

Bobak Pezeshki, Kalev Kask, Alex Ihler, and Rina Dechter. "Value-Based Abstraction Functions for Abstraction Sampling". *Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).*

KALEV KASK, BOBAK PEZESHKI, FILJOR BROKA, ALEX IHLER, RINA DECHTER

Outline

- General Background
- □ Abstraction Sampling
 - **General Scheme**
 - AND/OR Abstraction Sampling
 - □ AOAS Algorithm
 - □ Analysis of its Properties
 - □ Abstraction Function Schemes
 - Context-based Abstraction Functions
 - Value-based Abstraction Functions
 - Completely Random Abstractions
- □ Empirical Evaluation

Main Contributions

General Background

Abstraction Sampling

- General Scheme
- AND/OR Abstraction Sampling
 - AOAS Algorithm
 - □ Analysis of its Properties
- Abstraction Function Schemes
 - **Context-based Abstraction Functions**
 - Value-based Abstraction Functions
 - Completely Random Abstractions

□ Empirical Evaluation

Conclusion and Future Work

Background

Bobak Pezeshki, PhD Final Defense, UCI 2024

Graphical Models – Overview

Graphical Models – Formal Definition

Example:

 $A \in \{0, 1\}$

 $B \in \{0,1\}$

 $C \in \{0,1\}$

$$\mathbf{X} = \{X_1, X_2, \dots, X_N\} \quad \leftarrow \text{Variables}$$
$$\mathbf{D} = \{D_{X_1}, D_{X_2}, \dots, D_{X_N}\} \quad \leftarrow \text{Domains}$$
$$\mathbf{F} = \{f_{\alpha_1}, f_{\alpha_2}, \dots, f_{\alpha_M}\} \quad \leftarrow \text{Factors}$$

A combination operator \otimes defines a global function.

$$p(A, B, C) \propto f_{AB}(A, B) \times f_{BC}(B, C)$$

$$\uparrow$$
ex. \otimes = multiplication

 $f_{AB}(A,B), \quad f_{BC}(B,C)$

В

0

0

Α

0

0

1

f(A,B)

2

4

3

1

 $\mathcal{M} = \{$

Tasks

• **NP-hard**: exponentially many terms

Systematic Search

- Enumerate states
- Every stone turned
- No stone turned more than once

C

D

Α

B

Systematic Search

- Enumerate states
- Every stone turned
- No stone turned more than once

C

D

Α

B

- Enumerate states
- Every stone turned
- No stone turned more than once

• Monte Carlo sampling method

C

D

Α

B

Systematic Search

Importance Sampling

- Enumerate states
- Every stone turned
- No stone turned more than once

• Monte Carlo sampling method

[J. Liu, Monte-Carlo strategies in scientific computing, Springer-Verlag, New York, 2001] C

D

Α

B

[Liu, 2001]

AND/OR Search Space

Compact search space taking advantage of conditional independencies

Guiding Pseudo-Tree

Pseudo-Trees capture conditional independencies and guide the construction of the search space.

g(A=0, B=1, C=2, D=1) = 1×((2)×(1×2)) = 4

Stochastically select a value to assign the variable according to a proposal distribution, p.

Update importance weight according to w(n) = w/p(n)

Stochastically assign value to variable according to proposal and update weights accordingly

Repeat until every variable is assigned a value (a *solution tree* is sampled)

An estimate can be produced considering the cost associated with the sampled solution tree upweighted by the assigned importance weights.

Bobak Pezeshki, PhD Final Defense, UCI 2024

Stratified [Importance] Sampling

[Knuth, 1975], [Chen, 1992], [Rizzo, 2007]

Main idea: partially enumerate and partially sample search space Steps:

- □ Subdivide space into set strata
- □ Enumerate strata choosing reweighted samples from each to form a probe
- Average estimates from sampled probes

Stratified [Importance] Sampling

[Knuth, 1975], [Chen, 1992], [Rizzo, 2007]

Main idea: partially enumerate and partially sample search space Steps:

- □ Subdivide space into set strata
- □ Enumerate strata choosing reweighted samples from each to form a probe
- Average estimates from sampled probes

Interpolating Between Sampling and Search

Importance Sampling

Interpolating Between Sampling and Search

We can draw samples of multiple configurations to more closely resemble search.

Sampling

Bobak Pezeshki, PhD Final Defense, UCI 2024

Search

Interpolating Between Sampling and Search

We can draw samples of multiple configurations to more closely resemble search.

Bobak Pezeshki, PhD Final Defense, UCI 2024

Abstraction Sampling

Bobak Pezeshki, PhD Final Defense, UCI 2024

A sampling scheme that enables the interpolating between sampling and search by performing abstractions level-by-level.

Original Work Set A Foundation...

Main Questions 1:

- □ How to adapt to the more compact AND/OR spaces?
 - □ Should valid samples consist of only solution subtrees?
 - □ How to abstract across different branches of the AND/OR tree?

Scalable AND/OR Abstraction Sampling (algorithm: AOAS)

Bobak Pezeshki, PhD Final Defense, UCI 2024

AOAS

New AND/OR abstraction sampling scheme that allows for flexible abstractions while still ensuring formation of valid probes.

Key Points:

- □ Allows for flexible abstractions
- Expands along a depth first traversal of the guiding pseudo tree
- Immediately performs recursive pruning of branches that cannot be part of valid configurations

Proposal Distribution

A heuristic function h is used to estimate the value of unexplored subtrees.

$$p(n) \leftarrow \frac{w(n) \cdot \underline{g(n)} \cdot h(n) \cdot r(n)}{\sum_{m \in A_i} w(m) \cdot \underline{g(m)} \cdot h(m) \cdot r(m)}$$

- $\square w(n) \text{ captures the estimated weight of subtrees} \\absorbed by the$ *n*'s ancestors during abstraction
- \Box g(n) is the path cost from the root to n
- \square *h(n)* is the estimated mass of the subtree *n* roots
- \Box r(n) is the estimated ancestor branching mass of n

Estimated via Weighted Mini-bucket Elimination [Liu & Ihler, 2012]

Β

r(n)

n''

w(n)

Ν

h(n)

g(n)

Properties (Unbiasedness)

- □ Proof-Strategy
 - Key observation: at each step in the algorithm, either
 - The probe is expanded
 - An abstraction occurs
 - Pruning occurs

Properties (Unbiasedness)

- □ Proof-Strategy
 - Key observation: at each step in the algorithm, either
 - The probe is expanded
 - An abstraction occurs
 - Pruning occurs
 - Main Idea:
 - Construct an estimator that equals
 - the exact Z value for the unexpanded probe *(base case)*
 - the value of AOAS's estimator for the final probe
 - needs to include consideration of different branchings in the tree
 - can be computed by analyzing the frontier nodes of a single variable
 - Show that, at each step, the expectation of the estimator remains unchanged

Properties (Unbiasedness)

□ Illuminating characteristics

- Works for any valid importance sampling proposal distribution
- Generalizes to BF expansion of the pseudo-tree
- Generalizes to algorithms that allow non-solution trees as samples

Properties (Complexity)

Properties (Complexity)

Properties (Complexity)

Other Properties (see Thesis)

Conditions for exact AOAS estimates
 Proposal-based conditions
 Abstraction-based conditions

Original Work Set A Foundation...

Main Questions 2:

□ How to construct powerful abstraction functions?

Abstraction Function Schemes

What did the previous abstraction schemes capture?

Context-Based Schemes:

RelCB and RandCB only estimate similarity of this piece and based only on graph structure

Value-Based Abstraction Functions - Intuition

- Use relevant quantities to assign a values to nodes
- Use those values to guide abstractions

Value-Based Abstraction Functions - Classes

Potential Candidates:

HB: $\mu(n) = h(n)$

HRB: $\mu(n) = h(n) r(n)$

QB: $\mu(n) = w(n) g(n) h(n) r(n)$

Value-Based Abstraction Functions - Classes

Potential Candidates:

HB: $\mu(n) = h(n)$

HRB:
$$\mu(n) = h(n) r(n)$$

QB: μ(n) = w(n) g(n) h(n) r(n)

(best performing)

Value-Based Abstraction Functions - Partitioning Intuition

- □ Simple and fast
- Group similar nodes together
 Minimize with-in variance of abstract states
- □ Form abstract states of roughly equal mass □ [*Rizzo, 2007*]

Bobak Pezeshki, PhD Final Defense, UCI 2024

Bobak Pezeshki, PhD Final Defense, UCI 2024

Purely Random Abstractions

Empirical Evaluation

- □ Performance of Abstraction Sampling comparing against existing schemes?
- Does sampling over the AND/OR space provide benefits?
- □ What abstraction functions empower Abstraction Sampling most?

Setup

- □ Problems (480+)
 - DBN, Grids, Linkage-Type4, Pedigree, Promedas
- □ Abstraction Sampling Algorithms
 - □ Sampling Schemes:
 - ORAS, proper-restricted-AOAS (pAOAS), AOAS
 - □ Abstraction Functions:
 - Context-Based, Value-Based, and Purely Random abstractions
 - Varying granularities
 - □ Heuristic:
 - Weighted Mini-Bucket Elimination (wMBE)
- Competing Algorithms

 IS, DIS [WMB-IS, IJGP-SS]
 [Gogate and Dechter, 2011]
- **Questions**

- [Lou, Dechter, Ihler, 2019]
- Quality of estimates, Scalability of Abstraction Functions

Plots

grid80x80.f10.wrap

Graph Type: MARKOV, N: 6400, cliques: 19200, K(min): 2, K(max): 2, K(avg): 2.0, Scope Size (max): 2, Fxn Size (max): 4

#p: number of probes

#n/p: number of nodes per probe

est. error: *log*₁₀*Z* error w.r.t. the reference value

Aggregation Tables

Bmk: benchmark name

- Sz: difficulty of subset of problems {small, LARGE}
- **Graph Scheme**: Abstraction Sampling search scheme
- Abs: granularity of abstraction function
- **n***: number of problems solved
- **log(err)**: average log₁₀ Z error
- error distr.: count of problems solved within an error threshold
- **#probes**: average number of probes

#nodes/probe: average number of nodes
 per probe

					_						
		i-Bound	= 10		DIS	Unable to So	lve	(360	0 sec)	
Dmk	<u>د</u> -	Graph	Context	۸hc	۲ *	log(orr)	err	or di	str.	Horoboc	#nodes/
DITIK	52	Scheme	Scheme	ADS	Π	log(err)	0.5	2	10	#probes	probe
	5)			0	7	-32.487	0	0	0	5.52E+05	829
	74		RelCB	4	26	-14.174	1	1	10	1.92E+05	16472
	1/5	AOAS		8	41	-11.090	3	10	26	1.20E+04	463468
_	4 h:58		PandCR	16	26	-1 <mark>8.582</mark>	0	0	9	2.50E+05	10532
)e4	ے ز		Natiued	256	27	-1 <mark>8.221</mark>	0	1	9	1.74E+05	18523
d/	:51			0	8	-27.742	0	0	0	1.14E+07	759
F	Š		KeICB	2	13	-27.201	0	0	1	6.96E+04	280176
b	1.8	pAOAS	(K-3)	4	11	-25.427	0	0	0	8.90E+02	34177733
90 00	., с		PandCP	16	12	-24.204	0	0	1	4.24E+03	8820722
k	22		Nanueb	256	14	-30.930	0	0	0	2.58E+03	24532116
Linl	108			0	7	-29.820	0	0	0	1.42E+06	2520
	р:; С	OPAS	RelCB	4	15	-20.802	0	0	2	5.14E+04	26863
	Э́Е			8	16	-1 <mark>8.971</mark>	0	0	5	2.44E+03	355404
	ARC	-DF3	PandCP	16	13	-22.843	0	0	1	1.05E+04	23723
	L		NanuCB	256	12	-27.151	0	0	0	1.18E+02	288516

[louetal 2019]

iB-10, t-1	200sec, LARGE		[DBN		(Grids	Li	nka	age-Type4		Pro	medas
Class	Scheme	nAbs	Fail	Avg. Error									
	simple	1	0	6.540	16	0	197.931	2048	13	48.681	4	34	11.919
	minVar	2048	0	1.837 📃	1024	0	28.423	256	31	93.058	16	13	5.403
	equalDist	512	0	5.423	2048	0	118.547	2048	22	46.196 🔳	512	15	5.960
QB	equalDist2	2048	0	3.813	2048	0	91.994	1024	21	40.310	2048	12	4.982
	equalDist3	2048	0	1.645 📃	2048	0	19.277	1024	20	37.490	256	5	2.560
	equalDist4	2048	0	1.643 📃	2048	0	18.866	2048	16	30.512	512	5	2.476
	rand	4	0	6.292	16	0	163.973	256	17	156.992	4	28	11.532
СТУ	rand	64	0	5.710	512	0	111.104	2048	53	194.741	256	0	3.222
	rel	1	0	6.267	1024	0	80.633	1024	37	129.189	16	34	11.247
RAND	rand	2048	0	2.123	2048	0	19.053	1024	19	33.804	1024	10	3.936

iB-10, t-1	200sec, LARGE		[DBN		(Grids	Li	inka	ige-Type4		Pro	medas
Class	Scheme	nAbs	Fail	Avg. Error									
	simple	1	0	6.540	16	0	197.931	2048	13	48.681	4	34	11.919
	minVar	2048	0	1.837 📃	1024	0	28.423	256	31	93.058	16	13	5.403
	equalDist	512	0	5.423	2048	0	118.547	2048	22	46.196 🔲	512	15	5.960
QB	equalDist2	2048	0	3.813	2048	0	91.994	1024	21	40.310 🔲	2048	12	4.982
	equalDist3	2048	0	1.645 📃	2048	0	19.277	1024	20	37.490 📕	256	5	2.560
	equalDist4	2048	0	1.643 📃	2048	0	18.866	2048	16	30.512 📕	512	5	2.476
	rand	4	0	6.292	16	0	163.973	256	17	156.992	4	28	11.532
СТУ	rand	64	0	5.710	512	0	111.104	2048	53	194.741	256	0	3.222
	rel	1	0	6.267	1024	0	80.633	1024	37	129.189	16	34	11.247
RAND	rand	2048	0	2.123	2048	0	19.053	1024	19	33.804	1024	10	3.936

iB-10, t-12	200sec, LARGE		Γ	DBN		(Grids	Li	inka	age-Type4		Pro	medas
Class	Scheme	nAbs	Fail	Avg. Error									
	simple	1	0	6.540	16	0	197.931	2048	13	48.681	4	34	11.919
	minVar	2048	0	1.837 🔲	1024	0	28.423	256	31	93.058	16	13	5.403
	equalDist	512	0	5.423	2048	0	118.547	2048	22	46.196 🔲	512	15	5.960
QB	equalDist2	2048	0	3.813	2048	0	91.994	1024	21	40.310 📕	2048	12	4.982
	equalDist3	2048	0	1.645 📃	2048	0	19.277	1024	20	37.490	256	5	2.560
	equalDist4	2048	0	1.643 📃	2048	0	18.866	2048	16	30.512	512	5	2.476
	rand	4	0	6.292	16	0	163.973	256	17	156.992	4	28	11.532
СТУ	rand	64	0	5.710	512	0	111.104	2048	53	194.741	256	0	3.222
	rel	1	0	6.267	1024	0	80.633	1024	37	129.189	16	34	11.247
RAND	rand	2048	0	2.123	2048	0	19.053	1024	19	33.804	1024	10	3.936

iB-10, t-1	200sec, LARGE		[DBN			(Grids		Li	nka	ige-Type4		Pro	medas
Class	Scheme	nAbs	Fail	Avg. E	Error	nAbs	Fail	Avg.	Error	nAbs	Fail	Avg. Error	nAbs	Fail	Avg. Error
	simple	1	0	6.540		16	0	197.931		2048	13	48.681	4	34	11.919
	minVar	2048	0	1.837		1024	0	28.423		256	31	93.058	16	13	5.403
	equalDist	512	0	5.423		2048	0	118.547		2048	22	46.196 🔲	512	15	5.960
QB	equalDist2	2048	0	3.813		2048	0	91.994		1024	21	40.310 🔲	2048	12	4.982
	equalDist3	2048	0	1.645		2048	0	19.277		1024	20	37.490	256	5	2.560
	equalDist4	2048	0	1.643		2048	0	18.866		2048	16	30.512	512	5	2.476
	rand	4	0	6.292		16	0	163.973		256	17	156.992	4	28	11.532
СТУ	rand	64	0	5.710		512	0	111.104		2048	53	194.741	256	0	3.222
	rel	1	0	6.267		1024	0	80.633		1024	37	129.189	16	34	11.247
RAND	rand	2048	0	2.123		2048	0	19.053		1024	19	33.804	1024	10	3.936

iB-10, t-1	200sec, LARGE		[DBN			(Grids		Li	nka	ige-Type4		Pro	medas
Class	Scheme	nAbs	Fail	Avg. Ei	rror	nAbs	Fail	Avg.	Error	nAbs	Fail	Avg. Error	nAbs	Fail	Avg. Error
	simple	1	0	6.540		16	0	197.931		2048	13	48.681	4	34	11.919
	minVar	2048	0	1.837 📃		1024	0	28.423		256	31	93.058	16	13	5.403
	equalDist	512	0	5.423		2048	0	118.547		2048	22	46.196 🔲	512	15	5.960
QB	equalDist2	2048	0	3.813		2048	0	91.994		1024	21	40.310 🔲	2048	12	4.982
	equalDist3	2048	0	1.645 📃		2048	0	19.277		1024	20	37.490 📕	256	5	2.560
	equalDist4	2048	0	1.643 📕		2048	0	18.866		2048	16	30.512	512	5	2.476
	rand	4	0	6.292		16	0	163.973		256	17	156.992	4	28	11.532
СТУ	rand	64	0	5.710		512	0	111.104		2048	53	194.741	256	0	3.222
	rel	1	0	6.267		1024	0	80.633		1024	37	129.189	16	34	11.247
RAND	rand	2048	0	2.123		2048	0	19.053		1024	19	33.804	1024	10	3.936

iB-10, t-1	200sec, LARGE		[OBN			(Grids		Li	nka	ige-Type4		Pro	medas
Class	Scheme	nAbs	Fail	Avg. Er	ror	nAbs	Fail	Avg.	Error	nAbs	Fail	Avg. Error	nAbs	Fail	Avg. Error
	simple	1	0	6.540		16	0	197.931		2048	13	48.681	4	34	11.919
	minVar	2048	0	1.837 📃		1024	0	28.423		256	31	93.058	16	13	5.403
	equalDist	512	0	5.423		2048	0	118.547		2048	22	46.196 🔲	512	15	5.960
QB	equalDist2	2048	0	3.813		2048	0	91.994		1024	21	40.310 🔲	2048	12	4.982
	equalDist3	2048	0	1.645 📃		2048	0	19.277		1024	20	37.490 📕	256	5	2.560
	equalDist4	2048	0	1.643 📕		2048	0	18.866		2048	16	30.512 📕	512	5	2.476
	rand	4	0	6.292		16	0	163.973		256	17	156.992	4	28	11.532
СТУ	rand	64	0	5.710		512	0	111.104		2048	53	194.741	256	0	3.222
	rel	1	0	6.267		1024	0	80.633		1024	37	129.189	16	34	11.247
RAND	rand	2048	0	2.123		2048	0	19.053		1024	19	33.804	1024	10	3.936

iB-10, t-1	200sec, LARGE		[DBN			(Grids		Li	nka	ige-Type4		Pro	medas
Class	Scheme	nAbs	Fail	Avg. E	Error	nAbs	Fail	Avg.	Error	nAbs	Fail	Avg. Error	nAbs	Fail	Avg. Error
	simple	1	0	6.540		16	0	197.931		2048	13	48.681	4	34	11.919
	minVar	2048	0	1.837 📕		1024	0	28.423		256	31	93.058	16	13	5.403
	equalDist	512	0	5.423		2048	0	118.547		2048	22	46.196 🔲	512	15	5.960
QB	equalDist2	2048	0	3.813		2048	0	91.994		1024	21	40.310 📕	2048	12	4.982
	equalDist3	2048	0	1.645		2048	0	19.277		1024	20	37.490	256	5	2.560
	equalDist4	2048	0	1.643		2048	0	18.866		2048	16	30.512	512	5	2.476
	rand	4	0	6.292		16	0	163.973		256	17	156.992	4	28	11.532
СТУ	rand	64	0	5.710		512	0	111.104		2048	53	194.741	256	0	3.222
	rel	1	0	6.267		1024	0	80.633		1024	37	129.189	16	34	11.247
RAND	rand	2048	0	2.123		2048	0	19.053		1024	19	33.804	1024	10	3.936

Comparison of Abstraction Granularity

iB-5,	t-300sec, Ex	kact		DBN		Grids	P	edigree	Ρ	romedas
Class	Scheme	nAbs	Fail	Avg. Error						
		4	0	1.684 📃	0	3.622	0	1.434	2	2.518
	minVar	64	0	0.180	0	1.897 📃	0	0.210	1	1.062
		1024	0	0.060	0	1.566 📃	0	0.479 📕	2	1.837 📃
		4	0	1.594 📃	0	5.861	0	1.668	1	1.804 📃
QB	equalDist3	64	0	0.236	0	2.570	0	0.221	0	0.570
		1024	0	0.051	0	1.844 📃	0	0.155	0	0.462
_		4	0	1.371 🔲	0	5.988	0	1.648	1	1.678 📕
	equalDist4	64	0	0.215	0	2.438	0	0.231	0	0.596
		1024	0	0.150	0	1.891 📃	0	0.150	0	0.455
		4	0	1.381 🔲	0	5.030	0	1.852	7	4.643
CTX ·	rand	64	0	1.763 📃	0	5.950	0	0.598 📃	1	2.659 📃
		1024	0	2.007 📃	0	5.513	0	1.114 📃	1	2.442 📃
		4	0	1.850 🔲	0	5.933	0	1.332	10	5.729
	rel	64	0	3.510	0	4.021	0	0.424 📕	6	4.349
RAND		1024	0	5.086	0	5.136	0	1.041	15	6.688
		4	0	1.018	0	4.329	0	1.705	2	2.947
	rand	64	0	0.418	0	2.094 📃	0	0.212	0	0.757
		1024	0	0.120	0	1.501 📃	0	0.143	0	0.513

Comparison of Abstraction Granularity

iB-5,	t-300sec, E>	kact		DBN		Grids	P	edigree	P	romedas
Class	Scheme	nAbs	Fail	Avg. Error						
		4	0	1.684 📃	0	3.622	0	1.434	2	2.518
	minVar	64	0	0.180	0	1.897 📃	0	0.210	1	1.062
		1024	0	0.060	0	1.566 📃	0	0.479 📕	2	1.837 📃
		4	0	1.594 📃	0	5.861	0	1.668	1	1.804 📃
QB	equalDist3	64	0	0.236	0	2.570	0	0.221	0	0.570
		1024	0	0.051	0	1.844 📃	0	0.155	0	0.462
		4	0	1.371 📕	0	5.988	0	1.648	1	1.678 📕
	equalDist4	64	0	0.215	0	2.438	0	0.231	0	0.596
		1024	0	0.150	0	1.891 📃	0	0.150	0	0.455
		4	0	1.381 📕	0	5.030	0	1.852	7	4.643
	rand	64	0	1.763 📃	0	5.950	0	0.598 📃	1	2.659
OTV		1024	0	2.007 📃	0	5.513	0	1.114	1	2.442 📃
CTX		4	0	1.850 📕	0	5.933	0	1.332	10	5.729
	rel	64	0	3.510	0	4.021	0	0.424 📕	6	4.349
RAND		1024	0	5.086	0	5.136	0	1.041	15	6.688
		4	0	1.018 📕	0	4.329	0	1.705	2	2.947
	rand	64	0	0.418	0	2.094 📃	0	0.212	0	0.757
		1024	0	0.120	0	1.501	0	0.143	0	0.513

Comparison of Abstraction Granularity

iB-5,	t-300sec, Ex	kact		DBN		Grids	P	edigree	Ρ	romedas
Class	Scheme	nAbs	Fail	Avg. Error						
		4	0	1.684 📃	0	3.622	0	1.434	2	2.518
	minVar	64	0	0.180	0	1.897 📃	0	0.210	1	1.062
		1024	0	0.060	0	1.566 🔲	0	0.479 📕	2	1.837 📃
		4	0	1.594 📃	0	5.861	0	1.668	1	1.804 🔲
QB	equalDist3	64	0	0.236	0	2.570 📃	0	0.221 🛽	0	0.570
		1024	0	0.051	0	1.844 📃	0	0.155	0	0.462
		4	0	1.371 🔲	0	5.988	0	1.648	1	1.678 📕
	equalDist4	64	0	0.215	0	2.438 📃	0	0.231 🛽	0	0.596
		1024	0	0.150	0	1.891 📃	0	0.150	0	0.455
		4	0	1.381 🔲	0	5.030	0	1.852	7	4.643
CTX ·	rand	64	0	1.763 📃	0	5.950	0	0.598 📃	1	2.659 📃
		1024	0	2.007 📃	0	5.513	0	1.114 📃	1	2.442 🔲
		4	0	1.850 📃	0	5.933	0	1.332	10	5.729
	rel	64	0	3.510	0	4.021	0	0.424 📕	6	4.349
		1024	0	5.086	0	5.136	0	1.041	15	6.688
		4	0	1.018	0	4.329	0	1.705	2	2.947
RAND	rand	64	0	0.418	0	2.094 🔲	0	0.212	0	0.757
		1024	0	0.120	0	1.501	0	0.143	0	0.513

AS Comparison Chart

Algorithm	Compact Search Space	Scalable Abstractions
OR Abstraction Sampling	No	Yes
"Proper" AO Abstraction Sampling	Yes	No
AOAS	Yes	Yes

Value-Based Abstraction Functions - Best Scheme

Score > 1.0 \Rightarrow better than context-based

	HB	HRB	QB	
simple	2.75	1.12	0.72	
minVar	1.05	1.13	2.95	Many of the new schemes performed better than the context based schemes.
equal Dist	0.75	0.59	1.16	
equalDist2	0.84	0.75	1.82	
equalDist3	1.20	1.01	4.05	equalDistQB3 and equalDistQB4
equalDist4	0.87	1.14	3.90	were best performing!
rand	2.41	0.93	0.60	

Conclusion

AND/OR Abstraction Sampling via AOAS is an efficient effective stratified sampling method for solving summation tasks and can be empowered by use of several of the newly proposed abstraction functions.

End Part 1

Bobak Pezeshki, PhD Final Defense, UCI 2024

K*-Based Computational Protein

TPM 2022 Best Paper Award Bobak Pezeshki, Rada Marmescu, Alex Ihler, and Rina Dechter AND/OR Branch-and-Bound for Computational Protein Design Optimizing K^{art}. Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

Bobak Pezeshki, Radu Marinescu, Alex Ihler, and Rina Dechter. "Boosting AND/OR-Based Computational Protein Design: Dynamic Heuristics and Generalizable UFO". *Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023)*.

BOBAK PEZESHKI,

RADU MARINESCU

ALEX IHLER,

RINA DECHTER
Special thanks to...

THOMAS SCHIEX

Bobak Pezeshki, PhD Final Defense, UCI 2024

Special thanks to...

NATE GUERIN

JONATHAN JOU

GRAHAM HOLT

BRUCE DONALD

Bobak Pezeshki, PhD Final Defense, UCI 2024

Outline

- □ Background: Computational Protein Design (CPD)
- □ K*MAP using AND/OR Search
 - **Problem Formulation**
 - □ AOBB-K* (using wMBE-K*)
 - □ Scalability Improvements
- **D** Empirical Evaluation
- **Conclusion and Future Work**

Contributions

Background: Computational Protein Design (CPD)

□ K*MAP using AND/OR Search

- Problem Formulation
- □ AOBB-K* (using wMBE-K*)
- □ Scalability Improvements

D Empirical Evaluation

Conclusion and Future Work

Background

Bobak Pezeshki, PhD Final Defense, UCI 2024

Computational Protein Design (CPD)

[Re]design proteins to perform desired biological functions.

CPD often manifests as an optimization problem:

Ex. find the optimal composition that maximizes binding between

subunits.

Computational Protein Design

Primary Protein Structure Sequence of a chain of amino acids Secondary Protein Structure Local folding of the polypeptide chain into helices or sheets

Tertiary Protein Structure three-dimensional folding pattern of a protein due to side chain interactions Quaternary Protein Structure protein consisting of more than one amino acid chain

Computational Protein Design

Cannot be made by the human body

Computational Protein Design

Amino Acid Rotamers: Select conformational isomers of an amino acid

Peter Carlsson, Konrad F. Koehler, and Lennart Nilsson Molecular Endocrinology 19(8):1960–1977. https://doi.org/10.1210/me.2004-0203

Proteins are Dynamic Structures

A protein's structural state is probabilistic

Proteins continuously transition between various energetically favorable conformation.

Partition Function

Partition Function (Z) Normalizes the Likelihood of the Protein In A Particular Conformational State

$$Z(r) = \sum_{c \in C(r)} \exp\{-E(c)/RT\}$$

r = amino acid assignments to the residues

C(r) = possible rotamer conformations given a.a. sequence r

E(c) = energy given conformation c

R = universal gas constant (for unit conversion between kJ and K)

T = absolute temperature (Kelvin)

K* Objective [Ojewole et al., 2018, Hill, 1987, Mc-Quarrie, 2000]

K* approximate Ka, the affinity equilibrium constant

$$K^{*}(r) = \frac{Z_{complex}(r)}{Z_{subunit \ 1}(r) \ Z_{subunit \ 2}(r)}$$

Note that K* not only considers the "goodness" of the bonded state (PL),

but also weighs it relative to the "goodness" of the unbound (dissociate) states

K* Objective

$$K^*MAP = \max_R K^*(r)$$

ie. Find the sequence with the greatest K* ~ Ka

- A*-like algorithm for designing proteins to improve binding
- Our objective: solve the same problem with algorithms that offer something more
 - New heuristic
 - Capture independences
 - Sampling

Task Difficulty

$$K^{*}(r) = \frac{Z_{complex}(r)}{Z_{subunit \ 1}(r) \ Z_{subunit \ 2}(r)}$$

• **NP-hard**: exponentially many terms

Marginal MAP (MMAP)

• State-of-the-art search and sampling algorithms

State-of-the-art Marginal MAP (MMAP) algorithms [Marinescu, Lee, Dechter, Ihler, 2018] Learning Depth-First AND/OR Search [Marinescu, Dechter, Ihler, 2018] Stochastic Best-First AND/OR Search [Marinescu, Dechter, Ihler, 2018] Recursive Best-First AND/OR Search [Marinescu, Dechter, Ihler, Kishimoto, Botea, 2018]

State-of-the-art sampling algorithms

Dynamic Importance Sampling [Liu, Dechter, Ihler, 2017]

Abstraction Sampling [Kask, Pezeshki, Broka, Ihler, Dechter, 2020]

K*MAP using AND/OR Search

Bobak Pezeshki, PhD Final Defense, UCI 2024

Problem Formulation

Bobak Pezeshki, PhD Final Defense, UCI 2024

Two Formulations

Subunit 1

R3)

RI

R2

Two Formulations

F1

Due to interactions when dissociated

Problem Formulation: Assumptions

□ Select Residues: Model using only a subset of the residues.

Discrete Rotamers: Use discrete side-chain conformations.

Fixed Backbone: Fix the position of the residues in space.

Problem Formulation: Variables and Domains

$$R = \{ R_i \mid i \in \{1, 2, ..., N\} \}$$

- Residues considered for mutation
 - ie. variables we maximize over
- Domain = possible amino acids

Problem Formulation: Variables and Domains

$$C_X = \{ C_{X(i)} \mid i \in \{1, 2, \dots, N\} \}$$

- Side-chain rotamers of the residues
 - Two for each R_i, one capturing the rotamers of the bound and the other for the unbound states
- Domain = discretized amino acid rotamers

 $X \in \{Bound, Dissociate\}$

Problem Formulation: Functions

□ Interaction energies between amino acid side chain rotamers

 Constraints enforcing consistent assignments between corresponding residue and conformation variables

K*MAP

$$\mathsf{let...} \quad Z_{\gamma}(\boldsymbol{r}) = \sum_{\boldsymbol{C}_{\gamma}} \prod_{\mathscr{C}_{\gamma}} \mathscr{C}_{\gamma(i)}(r_i, c_{\gamma(i)}) \cdot \prod_{\boldsymbol{E}_{\gamma}} e^{-\frac{E_{\gamma(ij)}(c_{\gamma(i)}, c_{\gamma(j)})}{\mathscr{R}T}}$$

$$\label{eq:objective:} {\rm Objective:} \quad K^*(R) = \frac{Z_B(R)}{Z_U(R)}$$

Task:
$$K^*MAP = \max_{\boldsymbol{R}} K^*(\boldsymbol{r})$$

AOBB-K*

Based on AOBB-MMAP [Marinescu, Dechter, Ihler, 2014]

AOBB-K*

- **Branch-and-bound** over **AND/OR** search space
- Uses wMBE-based heuristics to guide search and prune suboptimal paths
- **Uses encodes determinism** and uses Mini SAT to **prune inconsistent paths**
- Enforces biologically-relevant stability constraints
- **Exact**

wMBE Heuristic for MMAP

• Mini-bucket elimination [Dechter & Rish 2001]

- Weighted Mini-bucket [Liu & Ihler, 2012]
 - Holder's inequality

$$\sum_{x}^{w} f(x) \triangleq \left[\sum_{x} f(x)^{\frac{1}{w}}\right]^{w} \qquad w = \sum_{r} w_{r}$$

$$\sum_{E} [\psi(A, E)\psi(C, E)] \le [\sum_{E} \psi(A, E)] [\sum_{E} \psi(C, E)]$$

Bobak Pezeshki, PhD Final Defense, UCI 2024

AOBB-K*

Branch-and-bound over **AND/OR** search space

Uses wMBE-based heuristics to guide search and prune suboptimal paths

Performed well on small problems, but did not scale well

aths

Scalability Improvements

List of improvements tested...

- □ Numerical stability fixes (part of the boosted AOBB-K*-b variant)
- Search the wild-type sequence first (part of the boosted AOBB-K*-b variant)
- □ Improve heuristic lower-estimates (part of the boosted AOBB-K*-b variant)
- □ Weighted heuristic search
- Dynamic heuristic recomputation
- □ Infuse artificial determinism to leverage CP

Underflow-Threshold Optimization (UFO)

General idea:

- During search we can use constraint processing schemes to identify inconsistent paths early on
- Problems may have "near-constraints" (i.e., very small function values) that prevent solutions that contain them in practice
- □ Treat "near-constraints" as constraints by underflowing their value to zero

Underflow-Threshold Optimization (UFO)

Algorithm Sketch:

- □ Set a time limit
- □ Use binary search to find the greatest constant $\tau \in [0, v_{max})$ such that
 - □ If we replace all function values $v < \tau$ with *0*, *t*here still exists a consistent path (ie. path with non-zero cost)
 - **CPD:** wild-type remains consistent
- **a** Relax threshold: $\tau := \tau \cdot \delta, \ \delta \in (0, 1]$
- **Construction** Replace any function value $v < \tau$ with 0.

Empirical Evaluation

- Does formulating the K*MAP task as a graphical model show potential?
- □ Which AOBB-K* scheme is best performing?
- □ How does performance compare to state-of-the-art BBK*?

Setup

□ Real protein benchmarks obtained by the Donald Lab at Duke University

- Contained instances for redesigning 1-3 residues
- These were expanded to also consider redesign of 4-5 residues
- ☐ Algorithms tested
 - □ AOBB-K*
 - $\Box \quad AOBB-K^*-\omega$
 - □ AOBB-K*-b
 - □ AOBB-K*-b-DH
 - □ AOBB-K*-b-UFO
 - □ BBK*

[Ojewole et al., 2018]
Setup

□ Real protein benchmarks obtained by the Donald Lab at Duke University

- Contained instances for redesigning 1-3 residues
- These were expanded to also consider redesign of 4-5 residues
- Algorithms tested
 - AOBB-K³
 - **Δ** AOBB-K*-ω
 - □ AOBB-K*-b
 - □ AOBB-K*-b-DH
 - □ AOBB-K*-b-UFO
 - □ BBK*

[Ojewole et al., 2018]

Redesign of 5 Residues

		AOBB-K*-b	-[C	0H/UFO]				B	BK*
М	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	15.17	1570.30	timeout	14.08	14.73	401.09
	d7-5-1	AOBB-K*-b-DH	3	14.73	57.91	timeout	14.08	14.73	401.09
Ι.		AOBB-K*-b	3	14.73	62.53	timeout	14.08	14.73	401.09
		AOBB-K*-b-UFO	3	14.84	891.90	timeout	14.08	15.60	205.56
	d7-5-3	AOBB-K*-b	3	14.73	67.53	timeout	14.08	15.60	205.56
Ι.		AOBB-K*-b-DH	3	14.73	156.68	timeout	14.08	15.60	205.56
	d27-5-1	AOBB-K*-b	3	15.55	274.30	timeout	15.48	15.55	1270.65
5		AOBB-K*-b-UFO	3	15.55	276.91	timeout	15.48	15.55	1270.65
		AOBB-K*-b-DH	3	15.55	321.02	timeout	15.48	15.55	1270.65
		AOBB-K*-b-UFO	3	7.88	22.35	128.75	7.63	7.88	130.04
	d31-5-1	AOBB-K*-b	3	7.88	129.43	timeout	7.63	7.88	130.04
		AOBB-K*-b-DH	3	7.88	145.63	timeout	7.63	7.88	130.04
		AOBB-K*-b-UFO	3	23.08	2068.22	timeout	22.70	23.05	timeout
	d47-5-1	AOBB-K*-b	3	22.74	222.66	timeout	22.70	23.05	timeout
		AOBB-K*-b-DH	3	22.74	241.88	timeout	22.70	23.05	timeout

Redesign of 5 Residues

		AOBB-K*-b	-[C	H/UFO]			BBK*		
Μ	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	15.17	1570.30	timeout	14.08	14.73	401.09
	d7-5-1	AOBB-K*-b-DH	3	14.73	57.91	timeout	14.08	14.73	401.09
		AOBB-K*-b	3	14.73	62.53	timeout	14.08	14.73	401.09
		AOBB-K*-b-UFO	3	14.84	891.90	timeout	14.08	15.60	205.56
	d7-5-3	AOBB-K*-b	3	14.73	67.53	timeout	14.08	15.60	205.56
		AOBB-K*-b-DH	3	14.73	156.68	timeout	14.08	15.60	205.56
	d27-5-1	AOBB-K*-b	3	15.55	274.30	timeout	15.48	15.55	1270.65
5		AOBB-K*-b-UFO	3	15.55	276.91	timeout	15.48	15.55	1270.65
		AOBB-K*-b-DH	3	15.55	321.02	timeout	15.48	15.55	1270.65
		AOBB-K*-b-UFO	3	7.88	22.35	128.75	7.63	7.88	130.04
	d31-5-1	AOBB-K*-b	3	7.88	129.43	timeout	7.63	7.88	130.04
		AOBB-K*-b-DH	3	7.88	145.63	timeout	7.63	7.88	130.04
		AOBB-K*-b-UFO	3	23.08	2068.22	timeout	22.70	23.05	timeout
	d47-5-1	AOBB-K*-b	3	22.74	222.66	timeout	22.70	23.05	timeout
		AOBB-K*-b-DH	3	22.74	241.88	timeout	22.70	23.05	timeout

Bobak Pezeshki, PhD Final Defense, UCI 2024

Conclusion

This simplified K*MAP task formulated as a graphical model allows existing graphical model algorithms to be adapted to the task and shows potential against current state of the art algorithms.

End Part 2

Bobak Pezeshki, PhD Final Defense, UCI 2024

Special Thank You's

Bobak Pezeshki, PhD Final Defense, UCI 2024

Professor Rina Dechter

Thank you for always kindly pushing me to grow. Your dedication, heart, and wisdom have left a permanent mark on me...

Professor Alexander Ihler

Thank you for investing in me and always helping me to understand complex concepts, both technically and intuitively...

Dear Mentors

Thank you for your guidance and support at all hours, and always taking the initiative and putting more on your shoulders to help the rest of us.

JUNKYU LEE

FILJOR BROKA

Thank you for believing that I can transfer my personality and passion into my work and the hours you stayed late to explain concepts to me.

Thank you for your positivity and all the meetings from across the world. Not to mention tag teaming those conference deadlines...

RADU MARINESCU

PROF. KALEV KASK

Thank you for helping me transition into my first research project with Abstraction Sampling and mentoring me as an instructor.

Partners in the lab...

Thank you for paving the way for our lunches, walks, and talks (research, philosophical, and otherwise). I look forward to many more to come.

NICHOLAS COHEN

ANNIE RAICHEV

Thank you for being the burst of energy in our group. You give the best presentations, and your cats are the cutest. #Barcelona 2024

Also special thanks to... SHUFENG KONG, YASAMAN RAZEGHI, JIAPENG ZHAO, SAKSHI AGARWAL

Bobak Pezeshki, PhD Final Defense, UCI 2024

My Family

My Family

...and friends

And so many others...

- Professors from our department who always have their door open willing to help students, and constantly working to improve our department Prof. Padhraic Smyth, Prof. Erik Sudderth, Prof. Sameer Singh, ...
- Professors who have offer enriching courses from which to grow upon Prof. Stephen Mandt, Prof. Weining Shen, Prof. Michael Dillencourt...
- Professors whom I've TA'ed for and/or are helping me evolve instructionally Prof. Jennifer Wong-Ma, Raymond Klefstad, Prof. Bob Pelayo
- My Cohort: Claudio, Kyu-Seon, Wonnie, Madina, Gabe, John, Akshay, AK, Siwei
- OIT Help Desk for their never-ending support of our technical issues
- ICS/CS Department Staff constantly helping take care of logistics and making sure our departments are running smoothly
- Counseling Staff that helped guide me through this process

END

Ancestor Branching Mass

AND/OR Schemes

"proper" abstractions ensure that every AND/OR probe includes a valid configuration.

Scalability Issues

Properness restricts the scope of abstractions leading to serious scalability issues.

← OR Abstraction Sampling

8 nodes; 2 solutions

Proper AND/OR Abstraction Sampling

Properties

Complexity

where n is the number of variables, and m is the number of abstract states per variable

AOAS is and Unbiased Estimator of the Partition Function

THEOREM 2 (unbiasedness). Given a graphical model $\mathcal{M} = (\mathbf{X}, \mathbf{D}, \Phi)$, algorithm AOAS provides an unbiased estimate for the partition function of \mathcal{M} .

Context-Based Abstractions – Defining Context

Set of pseudo tree ancestors whose assignment causes conditional independence of a variable's subtree with all other variables

Context-based Abstractions - Intuition

We know from search that we can merge nodes that root identical subtrees.

[Dechter and Mateescu, 2006]

Bobak Pezeshki, PhD Final Defense, UCI 2024

Relaxed Context-Based Abstractions – Intuition similar

What if we abstract nodes that root identical subtrees...

Relaxed Context-Based Abstractions

□ Relaxed Context-Based Abstractions (RelCB)

- Use subset of *most recent* context variables
- Granularity parameter limits number context variables
- □ Randomized Context-Based Abstractions (RandCB)
 - Use full context, but randomly hash into a bounded number of abstract states
 - Granularity parameter limits number of abstract states

AOAS vs. DIS [Lou, Dechter, Ihler, 2019]

Problem: benchmark name

Size: difficulty of subset of problems

Total: total number of instances

∈Bnds: number of times AOAS's estimate fell within DIS's 95% probabilistic bounds

AOAS≥ : number times AOAS's^{*} estimates were comparable to or better than DIS's^{**}

AOAS>: number times AOAS's^{*} estimates were strictly better than DIS's

Problem	Size	Total	$\in\!\! Bnds$	AOAS≥	AOAS>	•
DBN	small large	66 48	62 40	57 38	47 35	
Grids	small large	8 19	5 7	5 7	2 6	
Linkage ¹	large	82	82	82	82	
Pedigree	small	24	24	24	19	
Promedas	small large	65 173	58 165	49 141	29 113	

^{*} for this table, AOAS refers to AOAS RandCB-256

**comparable means falling within ±0.1 or ±0.5 of DIS's estimate, for small and large problems respectively

Marginal MAP (MMAP)

$$MMAP(\mathcal{M}, X_{MAP}) = \max_{X_{MAP}} \sum_{X/X_{MAP}} \prod_{\alpha} f_{\alpha}(X_{\alpha})$$

• **NP-hard**: exponentially many terms

MMAP

Influence diagram:

Example: decision making

Sum over random variables (random effects, etc.)

Max over decision variables (specify action policies)

GMEC Objective

Lower Energy → More Stable → Structure More Likely To Exist

Def. Global Minimum-Energy Conformation (GMEC):

• conformation that minimizes the energy of the complex

$$GMEC(r) = \min_{c \in C(r)} E(c)$$

r = amino acid assignments to the residues

C(r) = possible rotamer conformations given a.a. sequence r

E(c) = energy given conformation c

GMEC Objective

$$GMEC MAP = \min_{R} GMEC(r)$$

ie. Find the sequence with the lowest GMEC

• ie. Find sequence that has the most stable conformation

Proteins are Dynamic Structures

Sowmya, Gopichandran & Vaishnavi, A. & Jigisha, A. & Kangueane, Pandjassarame. (2011). Protein-protein complexes.

GMEC Objective

• **NP-hard**: exponentially many terms

Problem Formulation: Functions

$$\boldsymbol{E}_{X}^{sb} = \left\{ E_{X(i)}^{sb}(R_{i}, C_{i}) \middle| i \in \{1, 2, \dots, N\} \right\}$$

• Energy of interactions between residues and their surrounding backbone

 $X \in \{Bound, Dissociate\}$

Е

Problem Formulation: Functions

$$\boldsymbol{E}_{\boldsymbol{X}}^{\boldsymbol{pw}} = \left\{ E_{X(i,j)}^{\boldsymbol{pw}}(R_i, C_i, R_j, C_j) \middle| \forall i, j \text{ st. } R_i \text{ and } R_j \text{ interact} \right\}$$

• Energy of interactions between pairs of residues that interact

 $X \in \{Bound, Dissociate\}$

 $X \in \{Bound, Dissociate\}$

K*MAP

$$K^{*}(\boldsymbol{r}) = \frac{Z_{Bound}(\boldsymbol{r})}{Z_{Dissociate}(\boldsymbol{r})} = \frac{Z_{complex}(\boldsymbol{r})}{Z_{subunit \ 1}(\boldsymbol{r}) \ Z_{subunit \ 2}(\boldsymbol{r})}$$

$$K^*MAP = \max_{\boldsymbol{R}} K^*(\boldsymbol{r})$$

In Collaboration with the Donald Lab, Duke University

Problem Formulation: Subunit-Stability Constraints

Do not want dissociate subunits to be too unstable

 $Z_{subunit i}(r) > Z_{subunit i}(r^{wt}) * \exp\{-5/\mathcal{R}T\}$

Likelihood of naturally occurring version Constant factor to threshold with

i = index of dissociate subunit

r = amino acid sequence assignments

D = indicating dissociate subunit

- r^{wt} = naturally occurring in nature amino acid sequence (wild type)
- **R** = universal gas constant (for unit conversion between kJ and K)

T = absolute temperature (Kelvin)

 $Z_{complex}(r)$

 $\overline{Z_{subunit 1}}(r) Z_{subunit 2}(r)$

Problem Formulation: Pseudo Tree Overview for K*MAP

In Collaboration with the Donald Lab, Duke University

ω-Weighted Search

	(203 ≤ Dmax ≤ 206)									BB-K*	
benchmark	ω	iВ	w*	d	X	UB	pre-t	search	time	К*	
1 murc 00021*	1	4	4	7	13	28.80	123.8	81.3	205.1	11.92	
16WC_00021	0.001	4	4	7	13	28.80	124.3	12.1	136.4	11.32	
2boy 00025*	1	4	6	9	17	42.32	109.8	44.0	153.8	16 18	
200023	0.001	4	6	9	17	42.32	109.3	12.2	121.5	16.18	
2,49,00013*	1	4	6	9	17	37.68	83.0	17.8	100.8	15.03	
2115_00015	0.001	4	6	9	17	37.68	82.8	1.6	84.4	10.05	
2rfa_00012*	1	4	5	8	15	34.07	58.3	2.6	60.9	12.92	
2116_00012	0.001	4	5	8	15	34.07	58.6	0.3	58.9	10.00	
2rfo_00014*	1	4	5	8	15	35.07	58.2	2.4	60.6	14 36	
2116_00014	0.001	4	5	8	15	35.07	58.2	1.3	59.4	14.50	
2rfe_00017*	1	5	5	8	15	26.39	166.8	167.8	334.6	10.86	
2116_00017	0.001	4	5	8	15	27.39	89.1	5.0	94.1		
2rfe_00030*	1	4	5	8	15	31.34	115.2	161.5	276.6	11.1	
2116_00030	0.001	4	5	8	15	31.34	101.4	0.5	101.9	10.9	
2vev 00020*	1	5	5	8	15	26.24	81.8	278.9	360.7	10.96	
	0.001	4	5	8	15	27.24	60.4	8.2	68.6	10.50	
30.77 00009*	1	4	4	7	13	11.41	62.6	36.8	99.5	4.51	
5477_00005	0.001	4	4	7	13	11.41	62.5	2.1	64.7	4.51	
3077 00011*	1	4	4	7	13	28.29	74.0	2.1	76.1	11.25	
3077_00011	0.001	4	4	7	13	28.29	83.4	0.1	83.5	20.22	
4wwi 00019*	1	5	5	8	15	36.96	169.2	12.1	181.3	14.99	
	0.001	4	5	8	15	37.96	62.0	7.2	69.2	14.33	

Boosted Variants of AOBB-K* / wMBE-K*

3 Mut		AOBB-K	(*-b			AOBB-	K*
Problem	i	Soln	Time	wt K*	i	Soln	Time
00007	4	14.73	269.3	14.08	-	-inf	t/o
00009	4	4.51	79.9	4.09	4	4.51	99.5
00011	4	11.85	102.2	11.75	4	11.85	76.1
00012	4	13.93	69.1	13.93	4	13.93	60.9
00013	4	15.03	101.9	13.25	4	15.03	100.8
00014	4	14.36	70.9	13.96	4	14.36	60.6
00017	4	10.86	118.0	10.52	5	10.86	334.6
00019	4	14.99	77.6	14.99	5	14.99	181.3
00020	4	10.96	101.5	10.60	5	10.96	360.7
00021	4	11.92	200.4	9.37	4	11.92	205.1
00025	4	16.18	168.6	10.74	4	16.18	153.8
00030	4	11.12	154.3	10.35	4	11.12	276.6

In Collaboration with the Donald Lab, Duke University

Dynamic Heuristics

M	Problem	Algorithm	i	Soln	Time	OR	AND
	d11-3-1	AOBB-K*-b-DH	3	11.85	24.64	3	15
		AOBB-K*-b	3	11.85	60.99	58	197
		AOBB-K*-b	4	11.85	102.18	3	5
		AOBB-K*-b-DH	3	13.93	22.06	3	13
	d12-3-1	AOBB-K*-b	3	13.93	20.72	21	122
5.		AOBB-K*-b	4	13.93	69.05	3	4
2.		AOBB-K*-b-DH	3	14.36	26.95	3	16
	d14-3-1	AOBB-K*-b	3	14.36	21.92	25	132
		AOBB-K*-b	4	14.36	70.88	3	5
	d30-3-1	AOBB-K*-b-DH	3	11.12	54.02	70	141
		AOBB-K*-b	3	11.12	2019.77	254	3666
		AOBB-K*-b	4	11.12	154.28	22	25
	d18-4-2	AOBB-K*-b-DH	3	16.58	598.38	40	56
Ι.		AOBB-K*-b	3	16.58	3488.56	279	1214
-	d24-4-1	AOBB-K*-b-DH	3	12.96	407.78	92	251
		AOBB-K*-b	3	12.96	487.66	94	437
	407.4.1	AOBB-K*-b-DH	3	15.55	405.89	57	137
Ι.	027-4-1	AOBB-K*-b	3	15.55	254.67	57	137
4	d28-4-1	AOBB-K*-b-DH	3	15.27	37.78	9	12
	020-1-1	AOBB-K*-b	3	15.27	21.62	9	19
	d28.4.2	AOBB-K*-b-DH	3	15.27	576.98	93	230
Ι.	020-4-2	AOBB-K*-b	3	15.27	323.45	59	166
	d42-4-1	AOBB-K*-b-DH	3	22.65	2897.35	18	61
		AOBB-K*-b	3	22.65	3025.80	24	114
	d43-4-2	AOBB-K*-b-DH	3	18.04	483.55	346	476
	and 12	AOBB-K*-b	3	18.04	112.50	56	- 75

In Collaboration with the Donald Lab, Duke University
Conclusion

- Graphical Model formulation for K*MAP task
- □ wMBE-K*, wMBE-based heuristic for bounding K*
- □ AOBB-K*, MMAP-like AND/OR search algorithms for K*MAP
- □ Multiple improvements to improve scalability
 - U Weighted Search
 - □ Tuning of AOBB-K* and wMBE-K*
 - Dynamic Heuristics
 - UFO UFO
 - Also as an independent scheme
- □ Strong performance in comparison to state-of-the-art BBK*

Future Work

- □ Test structures that have conditional independences between their residues
- Extend other well-known approximate anytime methods
- □ More compact sparse representation
- □ Improve heuristic function
 - **Use** sampling / search for lower bound?
 - □ Incorporate pruning constraint
- k-Best Solutions

		AOBB-K*-b	-[D	H/UFO]				В	BK*
Μ	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.99	6.15	621.83	14.99	14.99	34.00
	d19-3-1	AOBB-K*-b-DH	3	14.99	11.31	56.05	14.99	14.99	34.00
		AOBB-K*-b	4	14.99	75.99	76.00	14.99	14.99	34.00
	d20-3-1	AOBB-K*-b-UFO	3	10.96	13.70	480.77	10.60	10.96	1388.13
		AOBB-K*-b-DH	3	10.96	39.67	339.91	10.60	10.96	1388.13
2.		AOBB-K*-b	4	10.96	100.02	100.03	10.60	10.96	1388.13
5.		AOBB-K*-b-UFO	3	11.92	89.03	628.59	9.37	11.72	551.27
	d21-3-1	AOBB-K*-b-DH	3	11.92	136.44	1307.45	9.37	11.72	551.27
		AOBB-K*-b	4	11.92	193.83	196.52	9.37	11.72	551.27
		AOBB-K*-b-UFO	3	16.18	14.02	64.82	10.74	13.65	880.46
	d25-3-1	AOBB-K*-b-DH	3	16.18	51.92	80.22	10.74	13.65	880.46
		AOBB-K*-b	4	16.18	166.74	166.75	10.74	13.65	880.46

		AOBB-K*-b	-[D	H/UFO]				B	BK*
Μ	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.99	6.15	621.83	14.99	14.99	34.00
	d19-3-1	AOBB-K*-b-DH	3	14.99	11.31	56.05	14.99	14.99	34.00
		AOBB-K*-b	4	14.99	75.99	76.00	14.99	14.99	34.00
		AOBB-K*-b-UFO	3	10.96	13.70	480.77	10.60	10.96	1388.13
	d20-3-1	AOBB-K*-b-DH	3	10.96	39.67	339.91	10.60	10.96	1388.13
2		AOBB-K*-b	4	10.96	100.02	100.03	10.60	10.96	1388.13
		AOBB-K*-b-UFO	3	11.92	89.03	628.59	9.37	11.72	551.27
	d21-3-1	AOBB-K*-b-DH	3	11.92	136.44	1307.45	9.37	11.72	551.27
		AOBB-K*-b	4	11.92	193.83	196.52	9.37	11.72	551.27
		AOBB-K*-b-UFO	3	16.18	14.02	64.82	10.74	13.65	880.46
	d25-3-1	AOBB-K*-b-DH	3	16.18	51.92	80.22	10.74	13.65	880.46
		AOBB-K*-b	4	16.18	166.74	166.75	10.74	13.65	880.46

		AOBB-K*-b	-[D	H/UFO]				B	BK*
Μ	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.99	6.15	621.83	14.99	14.99	34.00
	d19-3-1	AOBB-K*-b-DH	3	14.99	11.31	56.05	14.99	14.99	34.00
		AOBB-K*-b	4	14.99	75.99	76.00	14.99	14.99	34.00
	d20-3-1	AOBB-K*-b-UFO	3	10.96	13.70	480.77	10.60	10.96	1388.13
		AOBB-K*-b-DH	3	10.96	39.67	339.91	10.60	10.96	1388.13
2		AOBB-K*-b	4	10.96	100.02	100.03	10.60	10.96	1388.13
		AOBB-K*-b-UFO	3	11.92	89.03	628.59	9.37	11.72	551.27
	d21-3-1	AOBB-K*-b-DH	3	11.92	136.44	1307.45	9.37	11.72	551.27
		AOBB-K*-b	4	11.92	193.83	196.52	9.37	11.72	551.27
		AOBB-K*-b-UFO	3	16.18	14.02	64.82	10.74	13.65	880.46
	d25-3-1	AOBB-K*-b-DH	3	16.18	51.92	80.22	10.74	13.65	880.46
		AOBB-K*-b	4	16.18	166.74	166.75	10.74	13.65	880.46

		AOBB-K*-b	-[D	H/UFO]				B	BK*
Μ	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.99	6.15	621.83	14.99	14.99	34.00
	d19-3-1	AOBB-K*-b-DH	3	14.99	11.31	56.05	14.99	14.99	34.00
		AOBB-K*-b	4	14.99	75.99	76.00	14.99	14.99	34.00
	d20-3-1	AOBB-K*-b-UFO	3	10.96	13.70	480.77	10.60	10.96	1388.13
		AOBB-K*-b-DH	3	10.96	39.67	339.91	10.60	10.96	1388.13
2		AOBB-K*-b	4	10.96	100.02	100.03	10.60	10.96	1388.13
		AOBB-K*-b-UFO	3	11.92	89.03	628.59	9.37	11.72	551.27
	d21-3-1	AOBB-K*-b-DH	3	11.92	136.44	1307.45	9.37	11.72	551.27
		AOBB-K*-b	4	11.92	193.83	196.52	9.37	11.72	551.27
		AOBB-K*-b-UFO	3	16.18	14.02	64.82	10.74	13.65	880.46
	d25-3-1	AOBB-K*-b-DH	3	16.18	51.92	80.22	10.74	13.65	880.46
		AOBB-K*-b	4	16.18	166.74	166.75	10.74	13.65	880.46

		AOBB-K*-b	-[D	H/UFO]				B	BK*
М	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.99	6.15	621.83	14.99	14.99	34.00
	d19-3-1	AOBB-K*-b-DH	3	14.99	11.31	56.05	14.99	14.99	34.00
		AOBB-K*-b	4	14.99	75.99	76.00	14.99	14.99	34.00
		AOBB-K*-b-UFO	3	10.96	13.70	480.77	10.60	10.96	1388.13
	d20-3-1	AOBB-K*-b-DH	3	10.96	39.67	339.91	10.60	10.96	1388.13
2		AOBB-K*-b	4	10.96	100.02	100.03	10.60	10.96	1388.13
5		AOBB-K*-b-UFO	3	11.92	89.03	628.59	9.37	11.72	551.27
	d21-3-1	AOBB-K*-b-DH	3	11.92	136.44	1307.45	9.37	11.72	551.27
		AOBB-K*-b	4	11.92	193.83	196.52	9.37	11.72	551.27
		AOBB-K*-b-UFO	3	16.18	14.02	64.82	10.74	13.65	880.46
	d25-3-1	AOBB-K*-b-DH	3	16.18	51.92	80.22	10.74	13.65	880.46
		AOBB-K*-b	4	16.18	166.74	166.75	10.74	13.65	880.46

		AOBB-K*-b)-[D	H/UFO]				B	BK*
Μ	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.99	6.15	621.83	14.99	14.99	34.00
	d19-3-1	AOBB-K*-b-DH	3	14.99	11.31	56.05	14.99	14.99	34.00
		AOBB-K*-b	4	14.99	75.99	76.00	14.99	14.99	34.00
		AOBB-K*-b-UFO	3	10.96	13.70	480.77	10.60	10.96	1388.13
	d20-3-1	AOBB-K*-b-DH	3	10.96	39.67	339.91	10.60	10.96	1388.13
2		AOBB-K*-b	4	10.96	100.02	100.03	10.60	10.96	1388.13
		AOBB-K*-b-UFO	3	11.92	89.03	628.59	9.37	11.72	551.27
	d21-3-1	AOBB-K*-b-DH	3	11.92	136.44	1307.45	9.37	11.72	551.27
		AOBB-K*-b	4	11.92	193.83	196.52	9.37	11.72	551.27
		AOBB-K*-b-UFO	3	16.18	14.02	64.82	10.74	13.65	880.46
	d25-3-1	AOBB-K*-b-DH	3	16.18	51.92	80.22	10.74	13.65	880.46
		AOBB-K*-b	4	16.18	166.74	166.75	10.74	13.65	880.46

		AOBB-K*-b	-[D	H/UFO]				B	BK*
Μ	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.99	6.15	621.83	14.99	14.99	34.00
	d19-3-1	AOBB-K*-b-DH	3	14.99	11.31	56.05	14.99	14.99	34.00
		AOBB-K*-b	4	14.99	75.99	76.00	14.99	14.99	34.00
	d20-3-1	AOBB-K*-b-UFO	3	10.96	13.70	480.77	10.60	10.96	1388.13
		AOBB-K*-b-DH	3	10.96	39.67	339.91	10.60	10.96	1388.13
2		AOBB-K*-b	4	10.96	100.02	100.03	10.60	10.96	1388.13
		AOBB-K*-b-UFO	3	11.92	89.03	628.59	9.37	11.72	551.27
	d21-3-1	AOBB-K*-b-DH	3	11.92	136.44	1307.45	9.37	11.72	551.27
		AOBB-K*-b	4	11.92	193.83	196.52	9.37	11.72	551.27
		AOBB-K*-b-UFO	3	16.18	14.02	64.82	10.74	13.65	880.46
	d25-3-1	AOBB-K*-b-DH	3	16.18	51.92	80.22	10.74	13.65	880.46
		AOBB-K*-b	4	16.18	166.74	166.75	10.74	13.65	880.46

		AOBB-K*-b	-[D	H/UFO]				B	BK*
М	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.99	6.15	621.83	14.99	14.99	34.00
	d19-3-1	AOBB-K*-b-DH	3	14.99	11.31	56.05	14.99	14.99	34.00
		AOBB-K*-b	4	14.99	75.99	76.00	14.99	14.99	34.00
	d20-3-1	AOBB-K*-b-UFO	3	10.96	13.70	480.77	10.60	10.96	1388.13
		AOBB-K*-b-DH	3	10.96	39.67	339.91	10.60	10.96	1388.13
2		AOBB-K*-b	4	10.96	100.02	100.03	10.60	10.96	1388.13
		AOBB-K*-b-UFO	3	11.92	89.03	628.59	9.37	11.72	551.27
	d21-3-1	AOBB-K*-b-DH	3	11.92	136.44	1307.45	9.37	11.72	551.27
		AOBB-K*-b	4	11.92	193.83	196.52	9.37	11.72	551.27
		AOBB-K*-b-UFO	3	16.18	14.02	64.82	10.74	13.65	880.46
	d25-3-1	AOBB-K*-b-DH	3	16.18	51.92	80.22	10.74	13.65	880.46
		AOBB-K*-b	4	16.18	166.74	166.75	10.74	13.65	880.46

		AOBB-K*-b	-[D	H/UFO]				BBK*	
Ν	1 Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.99	6.15	621.83	14.99	14.99	34.00
	d19-3-1	AOBB-K*-b-DH	3	14.99	11.31	56.05	14.99	14.99	34.00
		AOBB-K*-b	4	14.99	75.99	76.00	14.99	14.99	34.00
		AOBB-K*-b-UFO	3	10.96	13.70	480.77	10.60	10.96	1388.13
	d20-3-1	AOBB-K*-b-DH	3	10.96	39.67	339.91	10.60	10.96	1388.13
	<u> </u>	AOBB-K*-b	4	10.96	100.02	100.03	10.60	10.96	1388.13
	,	AOBB-K*-b-UFO	3	11.92	89.03	628.59	9.37	11.72	551.27
L	d21-3-1	AOBB-K*-b-DH	3	11.92	136.44	1307.45	9.37	11.72	551.27
L		AOBB-K*-b	4	11.92	193.83	196.52	9.37	11.72	551.27
L		AOBB-K*-b-UFO	3	16.18	14.02	64.82	10.74	13.65	880.46
	d25-3-1	AOBB-K*-b-DH	3	16.18	51.92	80.22	10.74	13.65	880.46
		AOBB-K*-b	4	16.18	166.74	166.75	10.74	13.65	880.46

		AOBB-K*-b			В	BK*			
М	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.89	3391.78	timeout	14.08	14.54	278.08
	d7-4-2	AOBB-K*-b-DH	3	14.49	3543.27	timeout	14.08	14.54	278.08
		AOBB-K*-b	3	14.49	3293.62	timeout	14.08	14.54	278.08
		AOBB-K*-b-UFO	3	15.03	12.69	1974.43	13.25	15.03	46.46
	d13-4-1	AOBB-K*-b-DH	3	15.03	22.05	79.88	13.25	15.03	46.46
		AOBB-K*-b	4	15.03	165.48	timeout	13.25	15.03	46.46
		AOBB-K*-b-UFO	3	10.86	29.39	timeout	10.52	10.80	89.94
	d17-4-1	AOBB-K*-b	4	10.86	657.54	timeout	10.52	10.80	89.94
4		AOBB-K*-b-DH	3	10.86	660.16	timeout	10.52	10.80	89.94
Ľ		AOBB-K*-b-UFO	3	11.92	196.30	timeout	9.37	11.72	687.66
	d21-4-1	AOBB-K*-b-DH	3	11.92	614.88	timeout	9.37	11.72	687.66
		AOBB-K*-b	4	11.72	264.92	timeout	9.37	11.72	687.66
		AOBB-K*-b-UFO	3	18.19	76.49	484.69	18.04	18.18	119.88
	d43-4-1	AOBB-K*-b-DH	3	18.19	386.49	timeout	18.04	18.18	119.88
		AOBB-K*-b	3	18.19	896.67	timeout	18.04	18.18	119.88
		AOBB-K*-b-UFO	3	22.87	72.53	239.88	22.70	22.83	1339.15
	d47-4-2	AOBB-K*-b	3	22.74	130.95	timeout	22.70	22.83	1339.15
		AOBB-K*-b-DH	3	22.74	140.66	timeout	22.70	22.83	1339.15

Bobak Pezeshki, PhD Final Defense, UCI 2024

		AOBB-K*-b			В	BK*			
Μ	Problem	Algorithm	i	Soln	Anytime	Time	wt K*	Soln	Time
		AOBB-K*-b-UFO	3	14.89	3391.78	timeout	14.08	14.54	278.08
	d7-4-2	AOBB-K*-b-DH	3	14.49	3543.27	timeout	14.08	14.54	278.08
		AOBB-K*-b	3	14.49	3293.62	timeout	14.08	14.54	278.08
		AOBB-K*-b-UFO	3	15.03	12.69	1974.43	13.25	15.03	46.46
	d13-4-1	AOBB-K*-b-DH	3	15.03	22.05	79.88	13.25	15.03	46.46
		AOBB-K*-b	4	15.03	165.48	timeout	13.25	15.03	46.46
		AOBB-K*-b-UFO	3	10.86	29.39	timeout	10.52	10.80	89.94
	d17-4-1	AOBB-K*-b	4	10.86	657.54	timeout	10.52	10.80	89.94
4		AOBB-K*-b-DH	3	10.86	660.16	timeout	10.52	10.80	89.94
		AOBB-K*-b-UFO	3	11.92	196.30	timeout	9.37	11.72	687.66
	d21-4-1	AOBB-K*-b-DH	3	11.92	614.88	timeout	9.37	11.72	687.66
		AOBB-K*-b	4	11.72	264.92	timeout	9.37	11.72	687.66
		AOBB-K*-b-UFO	3	18.19	76.49	484.69	18.04	18.18	119.88
	d43-4-1	AOBB-K*-b-DH	3	18.19	386.49	timeout	18.04	18.18	119.88
		AOBB-K*-b	3	18.19	896.67	timeout	18.04	18.18	119.88
		AOBB-K*-b-UFO	3	22.87	72.53	239.88	22.70	22.83	1339.15
	d47-4-2	AOBB-K*-b	3	22.74	130.95	timeout	22.70	22.83	1339.15
		AOBB-K*-b-DH	3	22.74	140.66	timeout	22.70	22.83	1339.15

Cochrane 1977

This theorem leads to the following rules of conduct. In a given stratum, take a larger sample if

į.

- 1. The stratum is larger.
- 2. The stratum is more variable internally.
- 3. Sampling is cheaper in the stratum.

AOBB-K*MAP K* Pruning Condition

AOBB-K*MAP Subunit Stability Pruning Condition

key observation: for any node n corresponding to subunit X, the progressively improving ub(Zx) can be computed via the expression: $ub(\mathbb{Z}_{x}) = g(n) ub_{x}(n) \cdot r_{x}(n) + Sum_{x}(n)$ MMAP summation term (n E SUM) ancestor branching factor which can be computed using information from n, par(n), and sibx(n)

AOBB-K*MAP Subunit Stability Pruning Condition

In Collaboration with the Donald Lab, Duke University