
Value-Based Abstraction Functions for Abstraction Sampling

(Supplemental Materials)

Bobak Pezeshki1 Kalev Kask1 Alexander Ihler1 Rina Dechter1

1University of California, Irvine

Abstract

For revised supplemental materials, please visit https://ics.uci.edu/~dechter/publications.
html. This document includes supplemental background, descriptions, details, and results in extension to the
main paper. Given its size, we suggest using the table of contents to navigate. For an additional background on
graphical models, AND/OR search trees, and variable elimination, please view the EXTENDED BACKGROUND
supplemental document.

CONTENTS

1 AOAS Background 3

1.1 Sample Algorithm Trace . 3

1.2 Detailed Algorithm . 3

2 Probe Size Variability 5

3 Exact Abstraction Proofs 7

3.1 ORAS . 7

3.2 AOAS . 8

4 Paradigms Intuiting Abstraction Strategies 10

4.1 Search Paradigms . 10

4.2 Sampling Paradigms . 10

5 Additional Information About Value-Based Abstractions 12

6 Detailed Descriptions of Ordered Partitioning Schemes for Value Based Abstractions 13

6.0.1 simpleVB . 13

6.0.2 minVarVB . 14

6.0.3 equalDistVB . 15

mailto:<pezeshkb@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<kkask@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<ihler@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<dechter@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024
https://ics.uci.edu/~dechter/publications.html
https://ics.uci.edu/~dechter/publications.html

6.0.4 equalDistVB2 . 16

6.0.5 equalDistVB3 . 17

6.0.6 equalDistVB4 . 17

6.0.7 randVB . 18

7 Extended Results 19

7.1 Summary Comparison. 19

7.1.1 Exact Problems . 19

7.1.2 LARGE Problems . 21

7.2 Comparison using 100 Samples. 23

7.2.1 Exact Problems . 23

7.2.2 LARGE Problems . 23

7.3 Time Series Plot . 24

7.3.1 LARGE Problems . 24

8 Additional Results 28

8.1 Probe Size . 28

8.2 Abstraction Speed . 28

1 AOAS BACKGROUND

Taken with permission directly from Kask et al. [2020].

1.1 SAMPLE ALGORITHM TRACE

Here we show a trace of abstraction sampling using the AOAS algorithm using an abstraction function that groups AND
nodes of the same domain value together in an abstract state.

B

0 1

A C

0 1 0 1

A C

0 1 0 1

D

0 1

D

0 1

D

0 1

D

0 1

(a)

B

A

0

C

0 1

A

1

C

0 1

D

0 1

D

0 1

D

0 1

D

0 1

0 10 1

(b)

B

A

0

C

0 1 0 1

A

1

C

0 1

X

D

0 1

D

0 1

D

0 1

D

0 1

(c)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(d)

B

A

0

C

0 1 0 1

D

0 1

D

0 1

(e)

B

A

0

C

0 1 0 1

D

1

D

0

(f)

Figure 1: From Kask et al. [2020], a sample trace of AOAS following DFS ordering B → A→ C → D. Transparent nodes
indicate portions of the reachable search space yet to be explored. Gray boxes indicate nodes considered for abstraction.
Nodes with the same domain values (also indicated by the same color) are abstracted into the same abstract state. Only one
node of each color is stochastically selected as a representative for its respective abstract state. Step (c) shows an optional
optional pruning step. Step (f) shows the final example probe capturing four full configurations: B = 0, A = 0, C = 0, D =
0, B = 0, A = 1, C = 0, D = 0, B = 0, A = 0, C = 1, D = 1, B = 0, A = 1, C = 1, D = 1.

Starting with variable B (Figure 1a), each node belongs to a different abstraction and is therefore kept. Next, we expand to A
and abstract across its nodes (Figure 1b). Not restricted to proper abstractions, we partition across all nodes of A, regardless
of whether they fall under B=0 or B=1. We see two nodes in each abstract state (denoted by the red and blue coloring).
Next we calculate their respective proposals (line 21). Note that the proposal of each node n relies on r(n) (line 15), which
captures the values of the nodes in its Out(path(n)), in this case nodes of C. Since the nodes of C have not been expanded
yet, we use their heuristic values as an approximation of their values. We then stochastically choose a representative from
each abstract state (line 23). Suppose that both red and blue representatives are stochastically chosen from under B=0
(Figure 1c). Since A has no descendant, we backtrack to B, updating its node values (line 33) and performing a pruning step
(line 31). In pruning, we remove AND nodes of B that do not extend to AND nodes of A, and thus prune B=1 (denoted by
the red "X" in Figure 1c), in order to ensure formation of proper AND/OR probes. Finally, we expand and abstract C and D
(Figures 1d-1f). The r(n) for D’s nodes is inherited from the r(nC) of its respective nC parent. We backtrack from D to the
root updating values (no further pruning was necessary). The result is a valid probe (Figure 1f) containing four solutions:
(B=0, A=0, C=0, D=0), (B=0, A=0, C=1, D=1), (B=0, A=1, C=0, D=0), and (B=0, A=1, C=1, D=1). We estimate
the partition function by computing Ẑ(B).

1.2 DETAILED ALGORITHM

Algorithm 1: AOAS.
Input: Graphical modelM = (X,D,Φ), a pseudo tree T forM rooted at a dummy singleton variable D, an

abstraction function a, heuristic function h. For any node n, g(n) = its path cost, w(n) = its importance weight,
and Ẑ(n) = its estimated value (initialized to h(n)).

Output: ẐM, an estimate of the partition function ofM

1 Function AOAS(T , h, a)
2 begin
3 PROBE ← nD, g(nD), w(nD), r(nD), Ẑ(nD)←1
4 STACK ← push(empty stack, D)
5 while STACK is not empty do
6 X ← top(STACK)
7 if X has unvisited children in T then
8 Y ← the next unvisited child of X
9 foreach nX ∈ PROBE do

10 PROBE ← PROBE expanded from nX to Y
11 F ′Y ← newly added AND nodes of Y ∈ PROBE
12 foreach nY ∈ F ′Y do
13 w(nY)← w(nX)
14 g(nY)← g(nX) · c(nY)

15 r(nY)← r(nX) ·
∏
{S ̸=Y ∈chT (X)} V̂ (SnX

)

16 end
17 end
18 A← {Ai |Ai={nY ∈PROBE | a(n)= i}}
19 foreach Ai ∈ A do
20 foreach n ∈ Ai do
21 p(n)← w(n)·g(n)·h(n)·r(n)∑

m∈Ai
w(m)·g(m)·h(m)·r(m)

22 end
23 nYi ∝p Ai ; // randomly select
24 w(nYi

)← w(nYi
)/p(nYi

)

25 Ẑ(nYi)← 1
26 PROBE ← PROBE \Ai ∪ {nYi}
27 end
28 push(STACK, Y)

29 else
30 pop(STACK), W ← top(STACK)
31 PROBE ← PROBE s.t. all nW without descendants are pruned
32 foreach nW in PROBE do
33 Ẑ(nW)← Ẑ(nW) ·

∑
nX←child(nW) Ẑ(nX) · c(nX) · w(nX)

w(nW)

34 end
35 if X = D then ẐM = Ẑ(D);
36 end
37 end
38 return ẐM
39 end

2 PROBE SIZE VARIABILITY

Even with the same abstraction function and granularity (ie. allowed number of abstract states per level), probe sizes can
vary greatly. One reason for this is due to abstractions causing nodes from certain branches of the probe to replaced by
representative from other branch, and thus the current branch will no longer be extended. We provide a paired example
in Figure 3 and Figure 4 where in both cases the probes are constructed according to the pseudo tree shown in Figure 2,
an abstraction function is used that groups nodes with the same domain value together (indicated by yellow coloring for
grouping of nodes with a domain value of 0 and blue coloring grouping nodes together that have domain value of 1) is used,
and the abstraction granularity is set to nAbs = 2 (meaning that nodes are abstracted into at most two abstract states).

Figure 2: A linear psuedo tree.

(a) Variable A is expanded.
Each node is placed into
a separate abstract state
and each is selected to rep-
resent their respective ab-
stract state.

(b) Variable B is expanded from each ex-
isting node of A. B nodes with domain
value 0 are joined together into an ab-
stract state (yellow); B nodes with do-
main value 1 constitute a different ab-
stract state (blue). For each resulting ab-
stract state, the corresponding node un-
derneath the branch of A← 0 is stochas-
tically selected as the representative. As
there are no selected representatives un-
derneath the branch of A ← 1, those
nodes will no longer be extended (and
can be pruned).

(c) Variable C is expanded from each representa-
tive node of B. C nodes with domain value 0 are
joined together into an abstract state (yellow);
C nodes with domain value 1 constitute a differ-
ent abstract state (blue). For each resulting ab-
stract state, the corresponding node underneath
the branch of A ← 0, B ← 0 is stochastically
selected as the representative. As there are no
selected representatives underneath the branch
of A ← 0, B ← 1, those nodes will no longer
be extended (and can be pruned).

Figure 3: An example of a "skewed" probe construction following the pseudo tree in Figure 2, using an abstraction function
that groups nodes of the same domain value into the same abstract state, and using a granularity of nAbs = 2. At each level,
representatives of all abstract states are chosen under the same single branch, thus only extending only one path in the probe.

(a) Variable A is expanded.
Each node is placed into
a separate abstract state
and each is selected to rep-
resent their respective ab-
stract state.

(b) Variable B is expanded from each ex-
isting node of A. B nodes with domain
value 0 are joined together into an ab-
stract state (yellow); B nodes with do-
main value 1 constitute a different ab-
stract state (blue). The stochastically se-
lected representative from the B = 1 ab-
stract state ends up under the A ← 0
branch while the representative from the
B = 0 abstract state is selected from un-
der A← 1. As a result, both A← 0 and
A ← 1 branches have an extension to a
node from B and will continue to be ex-
tended.

(c) Variable C is expanded from each existing
node of B. C nodes with domain value 0 are
joined together into an abstract state (yellow); C
nodes with domain value 1 constitute a different
abstract state (blue). The stochastically selected
representative from the C = 1 abstract state
ends up under the A← 0, B ← 1 branch while
the representative from the C = 0 abstract state
is selected from under A ← 1, B ← 0. As a
result, both A← 0, B ← 1 and A← 1, B ← 0
branches have an extension to a node from C
and will continue to be extended.

Figure 4: An example of a "balanced" probe construction following the pseudo tree in Figure 2, using an abstraction function
that groups nodes of the same domain value into the same abstract state, and using a granularity of nAbs = 2. At each level,
representatives of all abstract states are chosen under the same single branch, thus only extending only one path in the probe.

3 EXACT ABSTRACTION PROOFS

Required Definitions.

Definition 3.0.0.1 (Abstraction Function h(n) vs. Z(n) Proportionality)
An abstraction function a(n) maintains h(n) vs. Z(n) proportionality if, for every abstract state Ai formed by a(n),
∀n ∈ Ai, h(n) = αZ(n), for some constant α specific to Ai.

Definition 3.0.0.2 (Abstraction Function h(n)r(n) vs. Z(n)R(n) Proportionality)
An abstraction function a(n) maintains h(n)r(n) vs. Z(n)R(n) proportionality if, for every abstract state Ai formed by
a(n), ∀n ∈ Ai, h(n)r(n) = αZ(n)R(n), for some constant α specific to Ai.

Definition 3.0.0.3 (Exact Abstraction Function)
An abstraction function a(.) is exact for an abstraction sampling algorithm, AS, if use of a(.) with AS always leads to AS
estimates having zero variance and Ẑ = Z for every AS probe.

3.1 ORAS

Theorem 3.1.0.1 (ORAS Exact Abstractions from h(n) vs. Z(n) Proportionality)
If an abstraction function a(.) maintains h(n) vs. Z(n) Proportionality, then it is an exact abstraction function for ORAS.

Proof. We know that if we were to use exhaustive search, we would arrive at the true Z value. We use a proof by induction
that assumes that after each abstraction step we will compute the rest of the probe exactly using exhaustive search. Thus, if
abstractions are performed layer by layer down from the root, after each abstraction we know that Z(n′) will be computed
exactly for the selected node n′.

We denote the estimate that would be generated by a probe constructed after t time steps as Ẑ(t)(PROBE). (As we will
describe, each time step will correspond to an abstraction step). As a base case, Ẑ(t=0)(PROBE) = Z since all values will
be computed exactly via exhaustive search. In the inductive step, we will show that after each time step t, if instead of using
exhaustive search immediately, we first perform an abstraction on the current level of the probe, the resulting estimate of the
newly abstracted probe Ẑ(t+1)(PROBE) will remain unchanged. Namely, we will show that

Ẑ(t)(PROBE)− Ẑ(t+1)(PROBE) = 0

This shows that the abstractions maintain exactness of the probe’s estimate.

Starting from the left hand side

LHS = Ẑ(t)(PROBE)− Ẑ(t+1)(PROBE)

We note the difference in the overall probe estimates during an Abstraction Sampling is due to the change in the probe
estimate that results from each individual abstraction step (namely selection and reweighing of a representative node n′

from an abstract state Ai). Thus for our time steps, we will focus on the difference in value resulting from a single arbitrary
abstraction step.

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− w(t+1)(n′)g(n′)Z(n′)

Above, the left term shows the contribution to the partition function due to nodes of abstract state Ai (still assuming we will
perform exhaustive search below each one), and the right term is the contribution of a selected node n′ after abstraction
(note the adjustment to the selected node’s weight).

Using the fact that w(t+1)(n′) = w(t)(n′)
p(n′) (from the importance weight modification), we now get

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− w(t)(n′)

p(n′)
g(n′)Z(n′)

(Note that p(n′) cannot be zero, otherwise n′ would not have been selected).

Noting that for p(n′) = w(t)(n′)g(n′)h(n′)∑
n∈Ai

w(t)(n)g(n)h(n)
and substituting we get

=
∑
n∈Ai

w(t)(n)g(n)Z(n)

− w(t)(n′)g(n′)Z(n′)

∑
n∈Ai

w(t)(n)g(n)h(n)

w(t)(n′)g(n′)h(n′)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− Z(n′)

h(n′)

∑
n∈Ai

w(t)(n)g(n)h(n)

Now, per our assumption, ∀n ∈ Ai, let h(n) = αZ(n), where α is the proportionality constant by which h(n) differs from
Z(n). Then

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− Z(n′)

αZ(n′)

∑
n∈Ai

w(t)(n)g(n)αZ(n)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)− α

α

∑
n∈Ai

w(t)(n)g(n)Z(n)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)−
∑
n∈Ai

w(t)(n)g(n)Z(n)

= 0 = RHS

3.2 AOAS

Theorem 3.2.0.1 (AOAS Exact Abstractions from h(n)r(n) vs. Z(n)R(n) Proportionality)
If an abstraction function a(.) maintains h(n)r(n) vs. Z(n)R(n) Proportionality, then it is an exact abstraction function
for AOAS.

Proof. We know that if we were to use exhaustive search, we would arrive at the true Z value. We use a proof by induction
that assumes that after each abstraction step we will compute the rest of the probe exactly using exhaustive search. Thus, if
abstractions are performed layer by layer down from the root, after each abstraction we know that Z(n′) will be computed
exactly for the selected node n′. We also assume that, R(n) for every node will be computed exactly. This assumption holds
true before we perform any abstractions (as everything is computed exactly via exhaustive search) and continues to hold if
we can show that, after each abstraction step, the resulting estimates remains unchanged (and thus remains exact).

We denote the estimate that would be generated by a probe constructed after t time steps as Ẑ(t)(PROBE). (As we will
describe, each time step will correspond to an abstraction step). As a base case, Ẑ(t=0)(PROBE) = Z since all values will
be computed exactly via exhaustive search. In the inductive step, we will show that after each time step t, if instead of using
exhaustive search immediately, we first perform an abstraction on the current level of the probe, the resulting estimate of the
newly abstracted probe Ẑ(t+1)(PROBE) will remain unchanged. Namely, we will show that

Ẑ(t)(PROBE)− Ẑ(t+1)(PROBE) = 0

This shows that the abstractions maintain exactness of the probe’s estimate.

Starting from the left hand side
LHS = Ẑ(t)(PROBE)− Ẑ(t+1)(PROBE)

We note the difference in the overall probe estimates during an Abstraction Sampling is due to the change in the probe
estimate that results from each individual abstraction step (namely due to the selection and reweighing of a representative
node n′ from an abstract state Ai). Thus for our time steps, we will focus on the difference in value resulting from a single
arbitrary abstraction step.

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)− w(t+1)(n′)g(n′)Z(n′)R(n′)

Above, the left term shows the contribution to the partition function due to nodes of abstract state Ai (still assuming we will
perform exhaustive search below each one), and the right term is the contribution of a selected node n′ after abstraction
(note the adjustment to the selected node’s weight).

Using the fact that w(t+1)(n′) = w(t)(n′)
p(n′) (from the importance weight modification), we now get

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)− w(t)(n′)

p(n′)
g(n′)Z(n′)R(n′)

(Note that p(n′) cannot be zero, otherwise n′ would not have been selected).

Noting that for p(n′) = w(t)(n′)g(n′)h(n′)r(n′)∑
n∈Ai

w(t)(n)g(n)h(n)r(n′)
and substituting we get

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

− w(t)(n′)g(n′)Z(n′)R(n′)

∑
n∈Ai

w(t)(n)g(n)h(n)r(n)

w(t)(n′)g(n′)h(n′)r(n′)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

− Z(n′)R(n′)

h(n′)r(n′)

∑
n∈Ai

w(t)(n)g(n)h(n)r(n)

Now, per our assumption, ∀n ∈ Ai, let h(n)r(n) = αZ(n)R(n), where α is the proportionality constant by which h(n)r(n)
differs from Z(n)R(n). Then

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

− Z(n′)R(n′)

αZ(n′)R(n′)

∑
n∈Ai

w(t)(n)g(n)αZ(n)R(n)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

− α

α

∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

=
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)−
∑
n∈Ai

w(t)(n)g(n)Z(n)R(n)

= 0 = RHS

4 PARADIGMS INTUITING ABSTRACTION STRATEGIES

Next we review concepts from search and sampling that offer paradigms from which we draw ideas for abstraction functions.

4.1 SEARCH PARADIGMS

In [tree] search, one can merge nodes that have the same value to produce a more efficient graph search Mateescu et al.
[2008]. Abstraction functions by Broka et al. [2018] focused on this paradigm and approached it by using the concept of
a node’s context - the assignments to the smallest subset of a node’s ancestor variables that dictates its value. Due to the
potentially large context size for variables, and consequently the exponentially high number of combinations of assignments
to the context, the full context of variables could not be used in most cases. Broka et al. [2018] resolved this by creating
two context-based abstraction functions that were relaxed to allow nodes with different contexts to be grouped in the same
abstract state. However, sharing the same partial context does not necessarily imply the same, nor even similar, node values.
Our new Heuristic-Based abstractions hope to provide more accurate abstractions based on the same ideology.

4.2 SAMPLING PARADIGMS

Consider wanting to compute the Ep∗ [f(x)] =
∑

x f(x)p
∗(x) for a distribution p∗(.) over a variable X that is

difficult to sample from but easy to evaluate, and given a positive value function f(x). Using a proposal distribu-
tion p(.) that is easy to sample from, and noticing the equivalency of the target quantity with

∑
x

f(x)p∗(x)
p(x) p(x),

we can be estimate the quantity by importance sampling by drawing m samples to estimate the equivalent quantity
Ep[f(x)

p∗(x)
p(x)] ≈

1
m

∑m
j=1 f(x

(j))p
∗(x(j))
p(x(j))

, x(j)iid∼p. it is well known that importance sampling achieves zero variance when
1) p(x) = 0 =⇒ p∗(x) = 0, and 2) otherwise p(x) is proportional to p∗(x)f(x) Kahn and Marshall [1953], Owen [2013].

Lemma 4.2.0.1 (Importance Sampling Exact Proposal Based on Proportionality with Target Distribution)
Given a distribution p∗(.) over a variable X that is easy to evaluate, and given a positive value function f(x), importance
sampling to estimate Ep∗ [f(x)] achieves zero variance when using a proposal function p(.) such that 1) p(n) = 0 =⇒
p∗(n)f(n) = 0, and 2) p(n) ∝ p∗(n)f(n), otherwise.

Note that we can also use importance sampling to simply compute
∑

x f(x) =
∑

x
f(x)
p(x)p(x) = Ep[

f(x)
p(x)] ≈

1
m

∑m
j=1

f(n(j))
p(x(j))

, x(j)iid∼p. Note that the partition function over a graphical model, Z =
∑

x F (x),F (x) =
∏

f∈F f(x), has
the form of this task.

In fact, expanding an AND/OR search tree level-by-level, the partition function Z with respect to the nodes n at any variable
X can be written as Z =

∑
n g(n)Z(n)R(n). Thus, using a proposal p(.) to perform importance sampling at any level we

could instead estimate

Z =
∑
n

g(n)Z(n)R(n) =
∑
x

g(n)Z(n)R(n)

p(n)
p(n) (1)

≈ 1

m

m∑
j=1

g(n(j))Z(n(j))R(n(j))

p(n(j))
, n(j) iid∼p (2)

Thus, sampling at any level would also allow for zero variance / exact computation if similarly p(n) ∝ g(n)Z(n)R(n).

Note that in Abstraction Sampling each abstract state involves a node selection procedure analogous to importance
sampling and that AOAS uses a proposal p(n) ∝ g(n)h(n)r(n). g(n) can always be evaluated exactly. Then assuming that
h(n) = 0 =⇒ Z(n) = 0 and r(n) = 0 =⇒ R(n) = 0, it naturally follows that designing each abstract states Ai such
that ∀n ∈ Ai, h(n)r(n) = α g(n)Z(n)R(n), for some constant α, we similarly achieve zero variance.

Definition 4.2.0.1 (Abstraction Function h(n)r(n) vs. Z(n)R(n) Proportionality)
An abstraction function a(n) maintains h(n)r(n) vs. Z(n)R(n) proportionality if, for every abstract state Ai formed by
a(n), ∀n ∈ Ai, h(n)r(n) = αZ(n)R(n), for some constant α specific to Ai.

Definition 4.2.0.2 (Exact Abstraction Function)
An abstraction function a(.) is exact for an abstraction sampling algorithm, AS, if use of a(.) with AS always leads to AS
estimates having zero variance and Ẑ = Z for every AS probe.

Thus, we can say:

Theorem 4.2.0.2 (AOAS Exact Abstractions from h(n)r(n) vs. Z(n)R(n) Proportionality)
If an abstraction function a(.) maintains h(n)r(n) vs. Z(n)R(n) Proportionality, then it is an exact abstraction function
for AOAS. (Proof in Supplemental Materials)

Normally we neither have access to the proportionality constant α or even know whether nodes have the same α. However
one idea is to use the magnitude of h(n)r(n) itself as a heuristic for similarities in α. This drives the intuition for a new
HR-Based class of abstractions.

Also from a sampling perspective, Rizzo [2007] showed the following about stratified importance sampling when sampling
from equal area strata under the proposal:

Proposition 4.2.0.3 (Stratified Importance Sampling Variance Reduction)
Suppose that M = mk is the number of replicates for an importance sampling estimator θ̂I , and ˆθSI is a stratified importance
sampling estimator, with estimates θ̂j for θj on the individual strata, each with m replicates. If V ar(θ̂I) = σ2/M and
V ar(θ̂j) = σ2

j /m, j = 1, ..., k, then

σ2 − k

k∑
j=1

σ2
j ≥ 0, (3)

with equality if and only if θ1 = ... = θk. Hence stratification never increases variance, and there exists a stratification that
reduces the variance except when [the proposal function] g(x) is constant.

Two takeaways from this proposition are that 1) we can achieve variance reduction with respect to importance sampling
(analogous to Abstraction Sampling with all nodes placed into a single abstract state) by stratifying into equal area strata
under the proposal, and 2) reducing the variance of each strata σ2

j leads to greater variance reduction. These will help drive
the intuition for a new Q-Based abstraction class, as well as motivate several new partitioning schemes.

5 ADDITIONAL INFORMATION ABOUT VALUE-BASED ABSTRACTIONS

As described in the main paper, value-based abstraction functions consist of two parts: (1) a value function µ : n → R
that assigns a real value on a positive scale to nodes n that are to be abstracted, and (2) a partitioning scheme that then
abstracts nodes based on µ(n). And because µ(n) are values on a positive scale (implying semantics between smaller vs.
larger values), the partitioning schemes can be designed to partition the nodes in a way that maintains an ordering of µ(n).
This results in what we call value-based ordered abstractions.

Algorithm 2: General Value-0Ordered Abstraction Function Scheme
input :A set of nodes n to be partitioned into abstract states; an abstraction value function µ(·); a parameter nAbs bounding the

number of abstract states; a partitioning function Ψo(·) that partitions n into abstract states such that nodes are ordered by
µ(n) according to sort-order o

output :Nodes n partitioned into abstract states A = {Ai | i <= nAbs} such that sort order o of µ(n) is maintained across all Ai.
1 begin
2 if |n| <= nAbs then
3 A = {{n} | n ∈ n}
4 else
5 A = Ψo(n, µ, nAbs)
6 return A

7 end

6 DETAILED DESCRIPTIONS OF ORDERED PARTITIONING SCHEMES FOR VALUE
BASED ABSTRACTIONS

We now present seven schemes, each defined by a unique sort order o and partition strategy Ψ combination. Each scheme
uses a different method to partition nodes into abstract states keeping the nodes in sort order according to o. With a provided
value function µ(.), each scheme can be used to form an ordered value abstraction function. In addition to defining each
scheme, we also describe the motivation behind its creation.

Running Example As we motivate and describe the schemes, we will also provide an example of abstract states that
would result from partitioning the following nodes:

{1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100} (4)
into nAbs = 4 abstract states by each of partitioning schemes that will be presented.

6.0.1 simpleVB

ΨsimpleVB (Algorithm 3)

Algorithm 3: ΨsimpleVB

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)
output :n partitioned into abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that ∀Ai,Aj ∈ A,−1 ≤ |Ai| − |Aj | ≤ 1

1 begin
2 baseCardinality ← ⌊ |n|

nAbs
⌋

3 extras← |n| mod nAbs
4 n∗ ← SORT (n, µ, low-to-high)
5 jbegin ← 1
6 foreach i← 1, ..., nAbs do
7 if extras > 0 then
8 jend ← jbegin + baseCardinality
9 extras← extras− 1

10 else
11 jend ← jbegin + baseCardinality − 1
12 Ai ← {n∗

jbegin
, ..., n∗

jend
}

13 jbegin ← jend + 1

14 end
15 A← ∪nAbs

i=1 Ai

16 return A

17 end

The simpleVB (simple value-based) scheme follows the motivation of grouping nodes of similar value in the same abstract
state by a simple 2-step method: 1) first, nodes are ordered by their heuristic value (low to high), and 2) next the ordered
nodes are partitioned into [approximately] equal cardinality abstract states.

Time Complexity.
Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.
No more than linear space is required. O(|n|)

Result on Running Example.
{1.0, 1.1}, {1.2, 1.3}, {1.4, 1.5}, {10, 100}

Through its simplicity, this method aims to leverage speed allowing for abstractions to be formed much quicker leading to
greater number of samples.

1Such that nodes maintain sort order o across all abstract states.

6.0.2 minVarVB

Ψ = ΨminVarVB (Algorithm 4)

Algorithm 4: ΨminVarVB

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)
output :n partitioned into abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} satisfying min

∑
Ai∈A V ar(Ai, v)

1 begin
2 A = WardsMethod(n, nAbs, µ(·),Euclidian distance)
3 return A

4 end

As mentioned in Section 4.2, Proposition 4.2.0.3, Rizzo [2007] showed that in stratified importance sampling minimizing
variance of the estimates within individual strata can lead to a reduction in overall variance.

The minVarVB scheme was designed based on this intuition. The scheme uses Ward’s Minimum Variance Hierarchical
Clustering (or Ward’s Method, for short) Ward [1963] to group nodes into a nAbs abstract states so as to minimize variance
within each abstract state with respect to the provided value function µ(.).

Ward’s Minimum Variance Hierarchical Clustering is an agglomerative hierarchical clustering algorithm designed to create
a dendrogram by iteratively merging clusters. The primary objective is to minimize the total within-cluster variance. Ward’s
method works as outlined in Algorithm 5.

Algorithm 5: Ward’s Method
1. Initialization: Treat each data point as an individual cluster. Assign each cluster a label or identifier.

2. Compute Pairwise Distances: Calculate the pairwise distances between all clusters. Various distance metrics can be
used, such as Euclidean distance.

3. Cluster Merging Iteration:
(a) Identify the pair of clusters Ci and Cj that, when merged into a new cluster Cij , results in the smallest increase

in the overall within-cluster variance. This is determined using the formula:
∆V ar = V ar(Cij)− (V ar(Ci) + V ar(Cj))

where V ar(Cij) is the variance of the merged cluster, and V ar(Ci) and V ar(Cj) are the variances of clusters
Ci and Cj , respectively.

(b) Update distance measures between the newly merged cluster and all other clusters.

4. Repeat: Repeat steps 2-3 until the desired number of clusters is achieved.

Ward’s Method can be combined with Lance-Williams linear distance updates Lance and Williams [1967] to increase
efficiency. Lance-Williams linear distance updates, in the context of agglomerative clustering, refer to the formula used to
calculate the distance between clusters as they are merged during the hierarchical clustering process. The general form of
Lance-Williams distance updates can be expressed as follows:

d(ij)k = αidik + αjdjk + αdij + γ|dik − djk| (5)
where:

• dij , dik, and djk are the pair-wise distances between clusters Ci, Cj , and Ck

• d(ij)k is the distance between the newly merged cluster Ci ∪Cj and cluster Ck

• αi, αj , α, and γ are coefficients that depend on the linkage criterion used

In the case of Ward’s method, the coefficients are specific to the minimization of within-cluster variance and are calculated

as follows:

αi =
|Ci|+ |Ck|

|Ci|+ |Cj |+ |Ck|

αj =
|Cj |+ |Ck|

|Ci|+ |Cj |+ |Ck|

α = − |Ck|
|Ci|+ |Cj |+ |Ck|

γ = 0

(6)

(The inclusion of γ provides additional flexibility in the more general case, adjusting the distance updates based on the
specific clustering criterion being used).

Time Complexity.2
The choice of clusters to merge generally leads to having a O(|n|3) time complexity due to the need to compare pair-wise
distances between all clusters at each iteration. However, in the case where nodes are distributed linearly in one dimension,
use of a priority queue, and using Lance-Williams distance updates, the time complexity is can be reduced to O(|n|2).

Space Complexity.2
The space complexity is implementation dependent, with most time-efficient variants making use of a distance matrix
leading to O(|n|2) space complexity.

Result on Running Example.
{1.0, 1.1, 1.2}, {1.3, 1.4, 1.5}, {10}, {100}

In contrast to simpleVB, minVarVB places considerable resources into computing abstractions, leading to fewer samples,
but with potentially better estimates with an appropriate value function µ(.).

6.0.3 equalDistVB

ΨequalDistVB (Algorithm 6)

Algorithm 6: ΨequalDistVB

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)

output : With µ(A1,...,i) = (
∑i

j=1

∑
n′∈Aj

µ(n′), nlast
Ai

be the last node in Ai, andQi =
i·
∑

n∈n∗ µ(n)

nAbs
, n partitioned into

abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that for i = 1, ..., nAbs in order, (µ(A1,...,i) ≥ Qi) ∧
((Ai = {}) ∨ (µ(A1,...,i)− µ(nlast

Ai
) < Qi))

1 begin
2 n∗ ← SORT (n, µ, low-to-high)
3 j ← 1
4 foreach i← 1, ..., nAbs do
5 Ai ← {}
6 while µ(A1,...,i) < Qi do
7 Ai ← Ai ∪ {n∗

j}
8 j ← j + 1

9 end
10 end
11 A← ∪nAbs

i=1 Ai

12 return A

13 end

In sampling it is generally beneficial to predominantly sample high impact regions of the search/sampling space. Allowing
the provided value function µ(.) to serve as a heuristic of nodes that are part of these high impact spaces, equalDistVB
attempts to balance this intuition with the notion of variance reduction from minVarVB in attempts to group fewer predicted
high impact nodes together in abstract states and allowing for the predicted lower impact nodes to be part of larger abstract
states. Also inspired by the simplicity of simpleVB, the scheme works by greedily adding nodes in value order (low to high)
into abstract state Ai until the total sum of node values from A1, ...,Ai reaches or exceeds the i

nAbs quantile.

2Assuming µ(n) is O(1) in both time and space.

When paired with the QB abstraction class, the equalDistVB schemes also attempts to partition notes into abstract states
of equal mass under the proposal. This in corresponds to the condition for Proposition 4.2.0.3 for stratified importance
sampling variance reduction.

Time Complexity.2
µ(A1...i) can be updated progressively in constant time, and thus computation of Qi at each iteration can also be done in
constant time. Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100}, {}, {}, {}

Although, this method hopes to find a balance between intuitions previously explored, and without compromising speed and
efficiency of abstract state generation, from the running example we can see how this method yield undesirable results in the
presence of certain distributions of node values. In this example, the first quantile is only reached after all the nodes have
been added to the first abstract state, leaving no nodes remaining to be partitioned into the subsequent abstract states.

6.0.4 equalDistVB2

ΨequalDistVB2 (Algorithm 7)

Algorithm 7: ΨequalDistVB2

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)

output : With µ(A1,...,i) = (
∑i

j=1

∑
n′∈Aj

µ(n′), nlast
Ai

be the last node in Ai, andQi =
i·
∑

n∈n∗ µ(n)

nAbs
, n partitioned into

abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that for i = 1, ..., nAbs in order, (µ(A1,...,i) ≥ Qi) ∧
((Ai = {}) ∨ (µ(A1,...,i)− µ(nlast

Ai
) < Qi))

1 begin
2 n∗ ← SORT (n, µ, high-to-low)
3 j ← 1
4 foreach i← 1, ..., nAbs do
5 Ai ← {}
6 while µ(A1,...,i) < Qi do
7 Ai ← Ai ∪ {n∗

j}
8 j ← j + 1

9 end
10 end
11 A← ∪nAbs

i=1 Ai

12 return A

13 end

By simply reversing the sort order, equalDistVB2 is able to use the same partitioning strategy ΨequalDistVB associated with
equalDistVB meanwhile mitigate some of the overfilling of abstract states.

Time Complexity.2
µ(A1...i) can be updated progressively in constant time, and thus computation of Qi at each iteration can also be done in
constant time. Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{100}, {}, {}, {10, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0}

We see that equalDistVB2 can still be subject to over packing of abstract states. Next we present two more equalDistvB
variants that continue to mitigate this artifact.

6.0.5 equalDistVB3

ΨequalDistVB3 (Algorithm 8)

Algorithm 8: ΨequalDistVB3

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)

output : With µ(A1,...,i) = (
∑i

j=1

∑
n′∈Aj

µ(n′), nlast
Ai

be the last node in Ai, andQi =
i·
∑

n∈n∗ µ(n)

nAbs
, n partitioned into

abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that for i = 1, ..., nAbs in order, (µ(A1,...,i) ≥ Qi) ∧
((|Ai| = 1) ∨ (µ(A1,...,i)− µ(nlast

Ai
) < Qi))

1 begin
2 n∗ ← SORT (n, µ, high-to-low)
3 j ← 1
4 foreach i← 1, ..., nAbs do
5 Ai ← {n∗

j}
6 j ← j + 1;
7 while µ(A1,...,i) < Qi do
8 Ai ← Ai ∪ {n∗

j}
9 j ← j + 1

10 end
11 end
12 A← ∪nAbs

i=1 Ai

13 return A

14 end

In order to lessen over packing and ensure abtract states are not left empty, equalDistVB3 modifies equalDistVB2 so that,
after processing of each abstract state, the next state is forced an addition of at least a single node by default.

Time Complexity.2
µ(A1...i) can be updated progressively in constant time, and thus computation of Qi at each iteration can also be done in
constant time. Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{100}, {10}, {1.5}, {1.4, 1.3, 1.2, 1.1, 1.0}

Still highly efficient, equalDistVB3 manages to ensure that the provided nAbs granularity is honored, allowing users better
control of the search vs. sampling interpolation possible with Abstraction Sampling.

6.0.6 equalDistVB4

ΨequalDistVB4 (Algorithm 9)

The final varaint of the equalDist schemes, equalDistVB4 attempts to perform a more even partitioning than the previous
variants by recomputing quantiles. Each time the algorithm progesses to processing a new abstract state, remaining nodes
and abstract states are used to compute new quantiles which are then used to guide filling of the current abstract state in the
same way previously done.

Time Complexity.2
µ(A1...i) can be updated progressively in constant time, and thus computation of Q̂i at each iteration can also be done in
constant time. Partitioning is achieved via one pass through |n∗| leading to O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{100}, {10}, {1.5, 1.4, 1.3}, {1.2, 1.1, 1.0}

Still highly efficient, equalDistVB3 manages to ensure that the provided nAbs granularity is honored, allowing users better

Algorithm 9: ΨequalDistVB4

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)

output : With µ(A1,...,i) = (
∑i

j=1

∑
n′∈Aj

µ(n′), nlast
Ai

be the last node in Ai, and Q̂i =
µ(n∗)−µ(A1,...,i−1)

nAbs−i+1
, n partitioned

into abstract states1 A = {Ai | i ∈ {1, ..., nAbs}} such that for i = 1, ..., nAbs in order, (µ(Ai) ≥ Q̂i) ∧
((|Ai| = 1) ∨ (µ(Ai)− µ(nlast

Ai
) < Q̂i))

1 begin
2 n∗ ← SORT (n, µ, high-to-low)
3 j ← 1
4 foreach i← 1, ..., nAbs do
5 Ai ← {}
6 while µ(Ai) < Q̂i do
7 Ai ← Ai ∪ {n∗

j}
8 j ← j + 1

9 end
10 end
11 A← ∪nAbs

i=1 Ai

12 return A

13 end

control of the search vs. sampling interpolation possible with Abstraction Sampling.

6.0.7 randVB

ΨrandVB (Algorithm 10)

Algorithm 10: ΨrandVB

input :A set of nodes n to be partitioned into nAbs abstract states; a value function µ(.)
output :n partitioned into abstract states1 A = {Ai | i ∈ {1, ..., nAbs}}

1 begin
2 n∗ ← SORT (n, µ, high-to-low)
3 s ∼ Unif({M ⊆ {1, ..., |n∗| − 1} | |M | = nAbs− 1})
4 s∗ ← SORT (s)
5 j ← 1
6 foreach i← 1, ..., nAbs−1 do
7 Ai = {n∗

j , ..., n
∗
s∗i
}

8 j ← s∗i + 1

9 end
10 AnAbs = {n∗

j , ..., n
∗
|n∗|}

11 A = ∪nAbs
i=1 Ai

12 return A

13 end

If the quality of µ(.) as a measure of similarity is unknown or poor, it could instead be beneficial to rely on randomness to
ensure a diverse sampling of abstractions. randVB does this by sampling nAbs−1 partition points between the sorted nodes
n∗ uniformly at random and without replacement, and then partitions the nodes accordingly. As a result, abstract states are
formed such that nodes are still grouped according to µ(.), but the size of those groups varies.

Time Complexity.2
O(|n| log|n|) time complexity due to sorting.

Space Complexity.2
No more than linear space is required. O(|n|)

Result on Running Example.
{100, 10}, {1.5}, {1.4, 1.3, 1.2}, {1.1, 1.0};
{100}, {10, 1.5, 1.4, 1.3}, {1.2, 1.1}, {1.0}; ...etc.

7 EXTENDED RESULTS

In extension to the main paper, here we show a more comprehensive set of aggregated data tables, now also including the
standard deviation of the errors, the average number of samples drawn, and average probe sizes.

7.1 SUMMARY COMPARISON.

7.1.1 Exact Problems

Class Scheme nAbs Fail
simple 2048 0 0.440 0.862 354 233936
minVar 1 0 1.361 2.840 600260 136

equalDist 1 0 1.365 2.835 634640 136
equalDist2 1 0 1.570 3.292 493719 196
equalDist3 1 0 1.489 3.018 489934 196
equalDist4 1024 0 2.819 5.501 114 2965761

rand 256 0 0.496 0.796 2840 30952
simple 2048 0 0.491 0.976 353 233936
minVar 1 0 1.500 2.972 635538 136

equalDist 1 0 1.305 2.508 654598 136
equalDist2 1 0 1.549 3.405 664595 136
equalDist3 1 0 1.405 3.014 662702 136
equalDist4 1 0 1.511 3.064 664347 136

rand 2048 0 0.451 0.719 358 233936
simple 1 0 1.469 2.920 677854 136
minVar 2048 0 0.050 0.173 10 233936

equalDist 4 0 1.174 2.407 478845 181
equalDist2 2048 0 0.736 1.831 17787 3326
equalDist3 2048 0 0.042 0.137 346 233936
equalDist4 2048 0 0.130 0.378 1969 153490

rand 1 0 1.295 2.723 683431 136
rand 4 0 1.381 2.626 197143 476
rel 1 0 1.472 3.093 695636 136

RAND rand 2048 0 0.104 0.243 359 233936

DBNiB-5, t-1300sec, Exact

Avg. Probe SizeAvg. Num. Samplesstd(Avg. Error)

HB

HRB

QB

CTX

Avg. Error

Table 1

Class Scheme nAbs Fail
simple 1024 0 2.202 3.807 1536 365339
minVar 16 0 3.251 5.615 37401 6295

equalDist 2048 0 10.854 19.810 12787 36088
equalDist2 512 0 8.050 14.709 44538 11654
equalDist3 2048 0 2.764 4.210 588 805429
equalDist4 64 0 6.029 11.585 10521 359937

rand 2048 0 2.248 3.933 709 737966
simple 4 0 9.667 17.275 441504 1678
minVar 64 0 2.319 3.816 3046 25570

equalDist 256 0 10.635 18.892 86568 6357
equalDist2 2048 0 6.790 11.752 12056 35124
equalDist3 1024 0 2.292 3.951 1259 396048
equalDist4 512 0 1.829 3.057 2787 188320

rand 4 0 6.122 10.479 465813 1643
simple 16 0 10.076 17.905 113719 6499
minVar 1024 0 1.566 2.844 14 397296

equalDist 2048 0 8.134 16.643 12162 70457
equalDist2 2048 0 4.405 9.051 11932 71415
equalDist3 2048 0 1.771 3.391 612 788719
equalDist4 512 0 1.754 3.159 2793 190568

rand 256 0 6.048 10.294 6041 100691
rand 4 0 5.030 9.168 471163 1421
rel 64 0 4.021 7.528 36934 14867

RAND rand 1024 0 1.501 2.530 1504 390548

CTX

iB-5, t-300sec, Exact Grids
Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

Avg. Error std(Avg. Error)

Table 2

Class Scheme nAbs Fail
simple 2048 0 0.150 0.564 393 1208067
minVar 64 0 0.422 0.894 1904 34760

equalDist 1024 0 0.303 0.626 1104 406884
equalDist2 1024 0 0.315 0.536 1090 410306
equalDist3 1024 0 0.279 0.539 727 606552
equalDist4 512 0 0.214 0.622 1526 305759

rand 2048 0 0.185 0.473 406 1170793
simple 256 0 0.225 0.378 3637 155656
minVar 256 0 0.309 0.543 131 149534

equalDist 1024 0 0.638 0.921 1653 247759
equalDist2 16 0 0.457 0.646 83869 5396
equalDist3 16 0 0.537 0.843 63832 8067
equalDist4 64 0 0.483 0.836 14789 34813

rand 64 0 0.666 0.983 17216 36226
simple 256 0 0.297 0.510 3672 153687
minVar 64 0 0.210 0.561 1939 36977

equalDist 2048 0 0.144 0.646 524 808760
equalDist2 1024 0 0.145 0.637 1067 410631
equalDist3 512 0 0.148 0.643 1403 324983
equalDist4 512 0 0.134 0.600 1415 322792

rand 16 0 0.740 1.021 76974 8055
rand 16 0 0.540 0.827 169911 2790
rel 64 0 0.424 0.653 28214 29061

RAND rand 1024 0 0.143 0.619 878 620063

iB-5, t-300sec, Exact Pedigree
Avg. Error std(Avg. Error)

CTX

Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

Table 3

Class Scheme nAbs Fail
simple 1024 0 0.575 1.288 7878163 215898
minVar 16 2 2.509 5.329 4119191 2304

equalDist 1024 0 2.332 3.857 8057221 145513
equalDist2 64 0 2.123 4.632 8086745 8209
equalDist3 256 0 2.196 4.354 8212578 53287
equalDist4 2048 0 1.355 2.486 8106429 471471

rand 2048 0 0.752 1.476 8136226 382946
simple 2048 0 0.705 1.594 8281435 444640
minVar 16 1 2.801 5.552 8302630 2403

equalDist 16 4 4.055 7.212 8505442 1255
equalDist2 16 2 3.445 6.549 8445561 1667
equalDist3 16 2 2.656 5.561 8389700 2330
equalDist4 2048 0 2.024 3.247 8278922 429451

rand 1024 1 2.165 4.691 8284836 184056
simple 256 1 3.164 5.634 8156519 44804
minVar 64 1 1.062 3.999 8149950 13097

equalDist 2048 0 0.583 1.053 8159447 85975
equalDist2 2048 0 0.539 1.098 8146812 87006
equalDist3 2048 0 0.412 0.917 8136397 517395
equalDist4 512 0 0.437 1.062 8155880 126503

rand 16 2 5.988 12.148 8401169 1892
rand 1024 1 2.442 4.755 8045093 2016
rel 64 6 4.349 7.852 8384108 3268

RAND rand 1024 0 0.513 1.033 8047804 228960

iB-5, t-300sec, Exact Promedas
Avg. Error std(Avg. Error)

CTX

Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

Table 4

7.1.2 LARGE Problems

Class Scheme nAbs Fail

simple 512 0 3.059 5.994 466 213236

minVar 1 0 6.372 10.410 170425 434

equalDist 1 0 6.354 10.259 171742 434

equalDist2 1 0 6.172 9.889 146566 598

equalDist3 1 0 6.548 10.206 144646 598

equalDist4 1 0 6.525 10.576 162296 434

rand 64 0 1.855 2.986 3682 27039

simple 2048 0 3.202 6.388 116 844724

minVar 1 0 6.102 9.811 167382 434

equalDist 1 0 6.273 10.219 165303 434

equalDist2 1 0 6.689 10.719 164615 434

equalDist3 1 0 6.564 10.301 163186 434

equalDist4 1 0 6.606 10.704 162441 434

rand 2048 0 1.915 3.994 116 844724

simple 1 0 6.540 10.583 162844 434

minVar 2048 0 1.837 4.023 11 844724

equalDist 512 0 5.423 9.545 28518 50129

equalDist2 2048 0 3.813 7.105 11104 162286

equalDist3 2048 0 1.645 3.853 115 844724

equalDist4 2048 0 1.643 3.847 170 758313

rand 4 0 6.292 9.781 52602 1721

rand 64 0 5.710 8.760 4947 22519

rel 1 0 6.267 10.128 165870 434

RAND rand 2048 0 2.123 4.214 116 844724

DBN
Avg. Error std(Avg. Error) Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

CTX

iB-10, t-1200sec, LARGE

Table 5

Class Scheme nAbs Fail

simple 2048 0 73.710 117.967 585 5281698

minVar 64 0 71.628 112.070 1948 184817

equalDist 2048 0 149.888 252.503 6894 438547

equalDist2 1024 0 119.823 195.442 12859 247710

equalDist3 64 0 82.927 124.857 15758 197893

equalDist4 1024 0 63.194 97.515 1020 2846847

rand 2048 0 82.203 132.286 527 5492402

simple 1024 0 193.654 311.138 1042 3061184

minVar 512 0 37.972 56.653 29 1534848

equalDist 2048 0 127.990 216.992 6524 475696

equalDist2 2048 0 104.502 168.754 6388 501514

equalDist3 2048 0 38.936 52.976 429 6090687

equalDist4 2048 0 34.676 50.051 460 5664129

rand 16 0 160.168 262.678 78263 48729

simple 16 0 197.931 331.349 73034 51032

minVar 1024 0 28.423 44.701 7 3064517

equalDist 2048 0 118.547 209.112 6013 932447

equalDist2 2048 0 91.994 160.979 5935 939064

equalDist3 2048 0 19.277 31.795 429 6135039

equalDist4 2048 0 18.866 34.470 462 5658527

rand 16 0 163.973 270.397 78137 48849

rand 512 0 111.104 189.309 53385 66495

rel 1024 0 80.633 131.304 1990 1210381

RAND rand 2048 0 19.053 30.561 517 5915471

Grids
Avg. Error std(Avg. Error) Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

CTX

iB-10, t-1200sec, LARGE

Table 6

Class Scheme nAbs Fail

simple 2048 21 47.383 124.818 215 6362535

minVar 256 37 133.377 208.955 118 526228

equalDist 2048 37 136.462 209.952 806 1725651

equalDist2 2048 36 132.531 206.716 775 1763041

equalDist3 2048 32 118.653 191.472 373 4231305

equalDist4 2048 29 98.222 180.908 260 5348049

rand 2048 21 52.171 117.178 258 5548243

simple 2048 17 48.474 105.528 201 7170175

minVar 512 38 138.131 211.272 31 1203151

equalDist 2048 32 123.253 192.089 1138 1438777

equalDist2 2048 34 129.751 198.056 1114 1453506

equalDist3 2048 31 118.091 185.967 405 4586845

equalDist4 2048 26 95.895 158.305 335 5182785

rand 1024 18 127.021 162.172 576 3170049

simple 2048 13 48.681 102.256 165 7582217

minVar 256 31 93.058 176.650 115 595380

equalDist 2048 22 46.196 128.408 324 3606296

equalDist2 1024 21 40.310 115.108 823 1613744

equalDist3 1024 20 37.490 115.666 428 3151667

equalDist4 2048 16 30.512 104.300 155 7276760

rand 256 17 156.992 197.622 2123 786014

rand 2048 53 194.741 250.879 78237 12693

rel 1024 37 129.189 210.249 911 2128473

RAND rand 1024 19 33.804 107.942 531 3043774

Linkage-Type4
Avg. Error std(Avg. Error) Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

CTX

iB-10, t-1200sec, LARGE

Table 7

Class Scheme nAbs Fail

simple 1024 16 5.981 14.402 5303 316842

minVar 16 25 9.433 17.375 135360 3961

equalDist 64 23 9.664 16.936 122333 11729

equalDist2 16 22 9.465 17.026 438953 3209

equalDist3 16 18 8.534 16.129 364644 3961

equalDist4 16 19 8.011 15.663 368986 3973

rand 64 22 8.296 16.348 129906 14836

simple 512 15 5.849 14.157 10763 158416

minVar 16 24 9.577 17.048 130796 4001

equalDist 16 32 11.596 19.010 546356 2629

equalDist2 4 25 10.380 17.881 1755156 841

equalDist3 16 22 9.779 17.253 388573 3844

equalDist4 16 22 9.217 16.843 383539 3876

rand 64 27 9.556 17.661 128420 15010

simple 4 34 11.919 19.156 2214241 849

minVar 16 13 5.403 13.076 127451 4261

equalDist 512 15 5.960 13.509 21151 61005

equalDist2 2048 12 4.982 12.955 5495 230190

equalDist3 256 5 2.560 8.629 16078 90936

equalDist4 512 5 2.476 8.229 7638 187975

rand 4 28 11.532 19.413 2330332 841

rand 256 0 3.222 5.085 160087 12862

rel 16 34 11.247 18.992 761684 2399

RAND rand 1024 10 3.936 11.615 5010 348002

Promedas
Avg. Error std(Avg. Error) Avg. Num. Samples Avg. Probe Size

HB

HRB

QB

CTX

iB-10, t-1200sec, LARGE

Table 8

7.2 COMPARISON USING 100 SAMPLES.

7.2.1 Exact Problems

Table 9

Class Scheme nAbs Fail Fail Fail Fail
simpleQB 256 0 1.601 0 4.768 0 0.337 14 3.121
minVarQB 256 0 5.028 0 5.134 0 0.615 1 5.423
equalDist 256 0 5.269 0 15.958 1 2.145 13 6.556

equalDist2 256 0 5.966 0 11.009 0 1.384 6 6.464
equalDist3 256 0 6.203 0 5.804 0 0.669 1 5.480
equalDist4 256 0 4.501 0 22.576 0 1.103 1 4.382

randQB 256 0 0.712 0 5.515 0 0.531 13 4.988
simpleQB 256 0 1.638 0 15.757 0 0.721 14 3.014
minVarQB 256 0 4.703 0 2.404 0 0.287 1 4.295
equalDist 256 0 6.030 0 16.132 1 2.817 13 8.830

equalDist2 256 0 6.361 0 10.462 0 2.546 6 8.272
equalDist3 256 0 6.613 0 4.236 0 2.291 1 7.427
equalDist4 256 0 6.753 0 3.179 0 1.241 1 5.552

randQB 256 0 0.720 0 9.838 0 1.818 13 7.074
simpleQB 256 0 5.350 0 17.406 0 1.059 14 9.659
minVarQB 256 0 0.111 0 1.911 0 0.223 1 1.634
equalDist 256 0 5.619 0 15.533 1 0.858 13 5.420

equalDist2 256 0 2.319 0 11.220 0 0.563 6 3.479
equalDist3 256 0 0.173 0 3.615 0 0.206 1 1.473
equalDist4 256 0 0.277 0 2.305 0 0.180 1 1.373

randQB 256 0 4.982 0 12.653 0 3.211 13 19.441
rand 256 0 3.587 0 9.568 2 4.695 3 14.386
rel 256 0 5.265 0 8.013 0 1.097 36 10.845

RAND rand 256 0 0.288 0 2.464 0 0.325 3 2.570

QB

CTX

HRB

HB

iB-5, m-100, Exact DBN Grids Pedigree Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

7.2.2 LARGE Problems

Table 10

Class Scheme nAbs Fail Fail Fail Fail
simpleQB 256 0 4.179 0 108.953 0 189.141 14 16.389
minVarQB 256 0 8.219 0 45.460 0 182.791 1 17.221
equalDist 256 0 8.013 0 164.767 1 230.627 13 19.890

equalDist2 256 0 8.233 0 119.203 0 231.620 6 18.944
equalDist3 256 0 7.905 0 67.626 0 219.364 1 18.612
equalDist4 256 0 7.588 0 54.643 0 199.565 1 17.186

randQB 256 0 3.741 0 108.760 0 203.436 13 18.494
simpleQB 256 0 4.203 0 190.126 0 180.424 14 15.857
minVarQB 256 0 7.770 0 29.575 0 188.654 1 17.492
equalDist 256 0 7.947 0 151.765 1 235.331 13 20.390

equalDist2 256 0 8.616 0 114.215 0 229.609 6 20.395
equalDist3 256 0 7.653 0 37.005 0 222.866 1 19.932
equalDist4 256 0 8.201 0 31.368 0 213.918 1 18.694

randQB 256 0 3.254 0 150.130 0 205.219 13 19.157
simpleQB 256 0 7.921 0 194.220 0 180.487 14 22.732
minVarQB 256 0 2.848 0 22.838 0 182.296 1 11.742
equalDist 256 0 6.443 0 140.283 1 192.449 13 17.245

equalDist2 256 0 4.583 0 96.859 0 193.109 6 15.704
equalDist3 256 0 3.036 0 25.042 0 170.706 1 11.426
equalDist4 256 0 2.715 0 20.978 0 162.793 1 11.885

randQB 256 0 7.791 0 163.214 0 205.186 13 23.984
rand 256 0 4.789 0 97.951 2 232.778 3 16.285
rel 256 0 7.664 0 65.146 0 188.194 36 20.609

RAND rand 256 0 3.070 0 26.185 0 178.273 3 13.957

QB

CTX

HRB

HB

iB-10, m-100, LARGE DBN Grids Linkage-Type4 Promedas
Avg. Error Avg. Error Avg. Error Avg. Error

7.3 TIME SERIES PLOT

7.3.1 LARGE Problems

Plot 1: Z estimates from various algorithms versus time on DBN problem rus_100_200_7_1 using iB = 10. The dashed
black line shows the estimated true Z value.

Plot 2: Z estimates from various algorithms versus time on Grids problem grid80x80.f10.wrap using iB = 10. The dashed
black line shows the estimated true Z value.

Plot 3: Z estimates from various algorithms versus time on Linkage-Type4 problem grid20x20.f15 using iB = 10. The
dashed black line shows the estimated true Z value.

Plot 4: Z estimates from various algorithms versus time on Promedas problem or_chain_43.fg using iB = 10. The dashed
black line shows the estimated true Z value.

8 ADDITIONAL RESULTS

8.1 PROBE SIZE

In our running abstraction example discussed in Supplemental Section 6, we observed that despite employing the same
granularity, certain Ordered Partitioning Schemes may underutilize the allotted number of abstract states. Moreover, paths
extended during initial iterations may become incomplete in subsequent iterations . These truncated paths may be pruned
altogether and cut the number of nodes. To assess how effectively different schemes handle continual extension of paths, we
fixed nAbs at 2048 and plotted the Probe Size against the number of variables for each problem in the Promedas benchmark
(Plot 5).

Plot 5: For the given abstraction granularity and benchmark, the size of the probe (in log10) relative to the number of
problem variables (in log10) using iB-10.

0.977 1.319 1.662 2.004 2.347 2.689 3.032 3.374
log10 nVars

0.000

0.644

1.288

1.931

2.575

3.219

3.863

4.507

5.151

5.794

lo
g1

0
pr

ob
e

siz
e

Probe Size vs. nVars
(Benchmark=Promedas, nAbs=2048)

equalDistQB
equalDistQB2
equalDistQB3
equalDistQB4
minVarQB
randCB
randQB
relCB
simpleQB

Even with the same granularity different abstraction functions can lead to vastly different utilization of abstract states,
pruning, and thus probe sizes. Plot 5 highlights this. As seen in the plot (and generalizes across the different benchmarks and
abstraction value classes) the simpleQB, minVarQB, equalDistQB3, equalDistQB4, and randQB schemes tend to produce
larger probes, indicating more of the allotted abstract states utilized and fewer branches being pruned.

8.2 ABSTRACTION SPEED

In order to understand more about the speed of each scheme at performing abstractions, in Figure ?? we plot the number of
samples versus average probe size for problems of the Promedas benchmark. (For other benchmarks and nAbs, please see

the Supplemental Materials).

Plot 6: For the given abstraction granularity and benchmark, the number of samples (in log10) relative to the probe size (in
log10) using iB-10.

0.000 0.644 1.288 1.931 2.575 3.219 3.863 4.507 5.151 5.794
log10 probe size

0.000
0.853
1.705
2.558
3.410
4.263
5.116
5.968
6.821
7.674

lo
g1

0
nu

m
be

r o
f s

am
pl

es

Number of Samples vs. Probe Size
(Benchmark=Promedas, nAbs=2048)

equalDistQB
equalDistQB2
equalDistQB3
equalDistQB4
minVarQB
randQB
simpleQB

Plot 6 shows the number of samples that were able to be drawn relative to the size of generated probes, thus providing an
understanding of the speed abstractions occur. As expected, we notice the minVar scheme (which utilizes a computationally
intensive hierarchical clustering process to abstract nodes) has the lowest sample efficiency. The other schemes have
comparable abstraction speeds.

References

Filjor Broka, Rina Dechter, Alexander. Ihler, and Kalev Kask. Abstraction sampling in graphical models. In Proceedings of
the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10,
2018, pages 632–641, 2018. URL http://auai.org/uai2018/proceedings/papers/234.pdf.

H. Kahn and A. W. Marshall. Methods of reducing sample size in monte carlo computations. Journal of the Operations
Research Society of America, 1(5):263–278, 1953. ISSN 00963984. URL http://www.jstor.org/stable/
166789.

Kalev Kask, Bobak Pezeshki, Filjor Broka, Alexander Ihler, and Rina Dechter. Scaling up and/or abstraction sampling.
In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, pages 4266–4274. International Joint Conferences on Artificial Intelligence Organization, 7 2020. doi:
10.24963/ijcai.2020/589. URL https://doi.org/10.24963/ijcai.2020/589. Main track.

G. N. Lance and W. T. Williams. A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems. The
Computer Journal, 9(4):373–380, 02 1967. ISSN 0010-4620. doi: 10.1093/comjnl/9.4.373. URL https://doi.org/
10.1093/comjnl/9.4.373.

Robert Mateescu, Rina Dechter, and Radu Marinescu. AND/OR multi-valued decision diagrams (aomdds) for graphical
models. J. Artif. Intell. Res. (JAIR), 33:465–519, 2008. doi: 10.1613/jair.2605. URL http://dx.doi.org/10.
1613/jair.2605.

Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/mc/, 2013.

Maria L. Rizzo. Statistical computing with R. Chapman & Hall/CRC, 2007.

Joe H. Ward. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58
(301):236–244, 1963. ISSN 01621459. URL http://www.jstor.org/stable/2282967.

http://auai.org/uai2018/proceedings/papers/234.pdf
http://www.jstor.org/stable/166789
http://www.jstor.org/stable/166789
https://doi.org/10.24963/ijcai.2020/589
https://doi.org/10.1093/comjnl/9.4.373
https://doi.org/10.1093/comjnl/9.4.373
http://dx.doi.org/10.1613/jair.2605
http://dx.doi.org/10.1613/jair.2605
https://artowen.su.domains/mc/
http://www.jstor.org/stable/2282967

	AOAS Background
	Sample Algorithm Trace
	Detailed Algorithm

	Probe Size Variability
	Exact Abstraction Proofs
	ORAS
	AOAS

	Paradigms Intuiting Abstraction Strategies
	Search Paradigms
	Sampling Paradigms

	Additional Information About Value-Based Abstractions
	Detailed Descriptions of Ordered Partitioning Schemes for Value Based Abstractions
	simpleVB
	minVarVB
	equalDistVB
	equalDistVB2
	equalDistVB3
	equalDistVB4
	randVB

	Extended Results
	Summary Comparison.
	Exact Problems
	LARGE Problems

	Comparison using 100 Samples.
	Exact Problems
	LARGE Problems

	Time Series Plot
	LARGE Problems

	Additional Results
	Probe Size
	Abstraction Speed

