Graph Neural Networks for Dynamic Abstraction SamplingVincent Hsiao¹, Dana Nau¹, Rina Dechter²

University of Maryland, College Park¹, University of California, Irvine²

Background

Graphical Model

- o Variables: $X = \{X_1, X_2, ..., X_N\}$
- o Domains: $D = \{D_{X_1}, D_{X_2}, \dots, D_{X_N}\}$
- \circ Functions: $\Psi = \{\Psi_1, \Psi_2, ... \Psi_M\}$

Probabilistic Inference

Task: determine configuration probability

$$\Pr(X = \mathbf{x}) = \frac{\prod_{i} \Psi_{i}(\mathbf{x})}{\sum_{x} \prod_{i} \Psi_{i}(x)}$$

- Denominator is a normalization constant known as the partition function (Z)
- Search spaces: Alternative representation for graphical model
- Z can be computed recursively:

$$Z(n_{v_i}) = \sum_{n_{v_i} \in ch(n_{v_i})} c(n_{v_i}) Z(n_{v_j})$$

where Z(root) is the partition function

Can estimate Z using sampling

Abstraction Sampling

- Sample subtrees (probes) from root:
 - Each level has a set of frontier nodes
 - Abstraction function: assigns each frontier node to an abstract state:

- Select representative for each state using importance sampling
- Add representatives to probe and repeat for next level

Abstract

- Abstraction sampling is a sampling scheme for computing the partition function over probabilistic graphical models.
- Its performance depends on the quality of the abstraction function that is used.
- In this paper we develop a method for learning the abstraction function using reinforcement learning and GNNs during the sampling process.
- Our initial results on several benchmarks show good performance compared with currently practiced abstraction functions.

Reinforcement Learning Problem

Key points:

- Better abstraction functions induce a lower variance in abstraction sampling.
- Task: Minimize expected variance of our sampled Z estimates:

$$\theta' = \arg\inf_{\theta} E[(\hat{Z}_{\theta} - Z)^2]$$

 Each frontier node has a context assignment that uniquely determines the value of its rooted subtree.

Markov Decision Process

- States: subtrees of the search space
- Actions: abstract state assignment of the frontier nodes
- Transition: given a current state (partial probe), we can define transition probabilities to the partial (or full) probe using importance sampling
- Reward: negative variance of a full probe
- An abstraction function is a policy for selecting an abstract state assignment for frontier nodes (action) conditioned on the current context (state)

Graph Neural Networks

Bipartite Context Graph

- GNN maps context representation to node-level abstract state assignments.
- Bipartite context graph serves as input to our GNN:
 - U: the set of frontier nodes
- Y: a node for each value for each variable in the context of X
- Nodes in U are connected to nodes in Y if the nodes context assignments match the variable-value node

Bipartite Context Graph

Architecture

- Aggregate-Combine GNN
- Each node in the bipartite context graph has a vector in \mathbb{R}^d where d is the number of abstract states.
- Output: distribution over abstract state assignments for that node.

AC-GNN for 1 layer of computation

For each output vector, apply H: ℝ^d → {1,...,d} to get the final assignment for a node to abstract state.

Example H function (argmax)

Dynamic Abstraction Sampling

Evolutionary Strategies

- We use a (r/1 + λ)-ES scheme:
- L: population size
- m: rollouts per iteration
- r: number of parents
- Fitness function:

$$f(\theta_i) = -\frac{1}{m} \sum_{i=1}^{m} \|Z_{est} - \hat{Z}_{i,j}\|^2$$

 We optimize with respect to the current running average:

$$Z_{est} = \frac{1}{m \cdot L \cdot g} \sum_{k=1}^{g} \sum_{i=1}^{L} \sum_{j=1}^{m} \hat{Z}_{k,i,j}$$

Results

Empirical results for 1 hr of computation

Problem Instance	Truth	RandCB	GNN
grid20x20.f2	291.732	291.310	291.537
grid20x20.f5	665.116	661.149	661.859
grid20x20.f10	1311.983	1302.819	1307.786
grid20x20.f15	1962.977	1944.677	1949.414
grid20x20.f15.wrap	1979.962	1966.380	1968.297
rbm20	58.530	57.354	57.058
rbm21	63.112	57.592	62.829
rbm22	66.553	61.219	65.454
or_chain_10.fg	-8.330	-8.810	-8.391

• Transfer learning: small instance (1hr) to large instance (1hr) in Grid benchmark.

Base	Truth	RandCB	GNN	
Trained on grid20x20.f15				
grid40x40.f5	2792.203	2743.674	2747.990	
grid40x40.f10	5491.076	5402.128	5392.410	
grid40x40.f15	8198.61	8022.986	8037	
grid80x80.f5	11163	10901	10902	
grid80x80.f10	21785.5	21225.005	21226.268	
grid80x80.f15	32550	31655	31750	

 Some problems show significant gain when using learned abstraction function.

Future Research

 Explore architectural changes, different optimization algorithms, more empirical evaluation

Acknowledgements

This work supported in part by NSF grant IIS-2008516 and AFOSR grant 1010GWA357.