Fast Fourier Transform Reductions for Bayesian Network Inference Vincent Hsiao¹, Dana Nau¹, Rina Dechter²

University of Maryland, College Park¹, University of California, Irvine²

Background

Bayesian Network (BN)

- Bayesian Network: graphical model (X,D,F)
- \circ Variables: $X = \{X_1, X_2, ..., X_N\}$
- \circ Domains: $D = \{D_{X_1}, D_{X_2}, \dots, D_{X_N}\}$
- Parent Functions: $F = \{F_1, F_2, \dots, F_N\}$

Causal Independence (CI)

- Probabilistic relationship between a set of causes $\{c_1,...,c_n\}$ and an effect e, such that: $e = h_1 * h_2 ... * h_n$
- where each hidden variable h, is some probabilistic function of its corresponding c_i and * is some commutative and associative binary operator
- Summation-type CI: operator "*" is addition "+"
- Network Transformation: Given a CI BN fragment {X,D,F} with a set of causes $\{c_1,...,c_n\}$, an effect e, and hidden variables $\{h_1,\ldots,h_n\}$, a network transformation is a new network {X',D',F'} constructed over some computational ordering:
- $e = (\dots(((h_1 * h_2) * h_3) * h_4) * \dots) * h_n$ with new intermediate variables:

$$y_i: \{y_1 = h_1 * h_2, y_2 = y_1 * h_3 \ldots \}$$

 Algorithms such as ci-elim-bel (Zhang and Poole, 1996; Rish and Dechter, 1998) exploit network transformations to accelerate bucket elimination

Applications

- Distributed Computing, Fault Tree Analysis
- N different resource providers with stochastic availability (k-out-of-n model)

k/n sum network

Evolutionary Game Theory (source-sink networks)

Problem Statement

Current Approach

 Network transformations (temporal decomposition), ci-elim-bel

Proposed Approach

- Eliminate unneeded nodes in summation-type CI efficiently through the use of the FFT
- Integrate the FFT with bucket elimination into an efficient inference algorithm

FFT Reduction

Computing Random Variable Sums

Given a source-sink network:

source-sink network (2)

The size of the parent function for the node E expressed as a conditional probability table (CPT) is exponential in the number of Y nodes

We would like to reduce the size of the CPT of the network. This is useful in applications where one wants to find the marginal distribution of node E such as in:

- Test score prediction
- Evolutionary games

It can be shown that the distribution P(E|S) can be expressed as a convolution of individual distributions $P(Y_i|S)$

From the convolution theorem and the application of the FFT, we know that:

Theorem 2.4 (FFT Time Complexity). For i.i.d random variables $X = \{X_1, X_2, \dots, X_N\}$ where each variable has a domain size |D| and their sum $Z = \sum X_i$, computing P(Z = k) using the FFT will take time $O(N|D|\log(N|D|))$. For non-i.i.d variables, the time complexity is $O(N^2|D|\log(N|D|))$.

It follows that:

Theorem 3.1 (FFT Reduction). Let $B = \{X, D, F\}$ with $X = \{S, Y_1, \dots, Y_N, E\}$ be a source-sink network with N i.i.d paths. The network can be transformed into $\{X', D', F'\}$ such that $X' = \{S, E\}$ reducing the CPT for E from size $O(|D_E||D_Y|^N)$ to size $O(|D_S||D_E|)$ in $O(|D_S|R\log R)$ time where R is the numerical range of random variable E.

Furthermore, it can be shown that certain computations performed in the algorithm *ci-elim-bel* can also be formulated as convolutions, leading to an improved algorithm: ci-elim-FFT

FFT Reduction

CI-Elim-FFT

Algorithm 2: ci-elim-FFT Input: A Bayesian network B, evidence eOutput: $P(x_1|e)$

Generate a decomposition network from BGenerate ordering $o = \{Z_1, \ldots, Z_n\}$ with $Z_1 = \{x_1\} \text{ using } B'$ for $i = n \rightarrow 1$ do // create buckets

 $\forall x \in Z_i$, put all network functions with x as highest ordered variable in $bucket_i$ enc

for $i = n \rightarrow 1$ do // process buckets $// h_1, \ldots, h_m$ are functions in bucket_i if $Z_i = \{u_l; u_k\}, u = u_l + u_k$ then $h^{u_l} = \prod_{j,u_l \in h_j} h_j \; ;$ $h^{u_k} = \prod_{j,u_k \in h_j} h_j$; $h^{Z_i} = \mathcal{F}^{-1}\{\mathcal{F}\{h^{u_l}\}\cdot\mathcal{F}\{h^{u_k}\}\}$

use regular ci-elim-bel to compute h^{Z_i} Put h^{Z_i} in the highest bucket that mentions h^{Z_i} 's variable.

Return αh^{x_1} , (α is a normalizing constant).

Complexity on k/n sum network (1)

	$i.i.d Y_i's$	non- $i.i.d Y_i's$
BE	$O(N D_X R_Z^2)$	$O(N D_X R_Z^2)$
FFT	$O(D_X R_Z\log R_Z)$	$O(N D_X R_Z\log R_Z)$

Experimental Setup

Experimental Setup (Set 1)

- Evaluate FFT reduction for inference on a selection of networks with summation-CI
- Compare with:
- Vanilla Bucket Elimination (Naive)
- Temporal Decomposition (Temporal)
- Test inference on three types of networks (1), (2), (3)

Experimental Setup (Set 2)

• Evaluate *ci-elim-FFT* compared to *ci-elim-bel* on general two layer additive networks (4):

Two layer additive network (4)

Results

The FFT reduction method obtains a significant computational advantage over the naive approach as well as inference on the temporal decomposition

(3)

ci-elim-FFT demonstrates better scaling with respect to number of source nodes and domain size in general additive networks compared to *ci-elim-bel*

Future Research

 Explore integration into existing lifted variable elimination algorithms

Acknowledgements

This work supported in part by NSF grant IIS-2008516 and AFOSR grant 1010GWA357.