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Background

Bayesian Network (BN)
e Bayesian Network: graphical model (X,D,F)

o Variables: X = {X, Xs,..., Xy}
o Domains: D ={Dx,,Dx,,...,Dx,}
o Parent Functions: F' = {F|, F,, ..., Fy}

Causal Independence (Cl)
e Probabilistic relationship between a set of causes

{cq, ..., ¢, }and an effect e, such that:

e = hy *x hy... *x h,
where each hidden variable h. is some probabilistic
function of its corresponding ¢, and * is some
commutative and associative binary operator
o Summation-type CI. operator “*” is addition “+”

e Network Transformation: Given a Cl BN fragment
{X,D,F} with a set of causes {6’1; Cn}, an effect
e, and hidden variables {h1, ..., h, }, a network

transformation is a new network {X',D’,F’} constructed
over some computational ordering:

e=(...(((hy*ho)*hs)*xhy)*...)%h,

with new intermediate variables:
Yi - {yr = h1*hs, yo =y xhs...}

o Algorithms such as ci-elim-bel (Zhang and Poole,
1996; Rish and Dechter, 1998) exploit network
transformations to accelerate bucket elimination

Applications
e Distributed Computing, Fault Tree Analysis

o N different resource providers with stochastic
availability (k-out-of-n model)

k/n sum network

(1)

e Evolutionary Game Theory (source-sink networks)

Problem Statement

Current Approach

e Network transformations (temporal decomposition),
ci-elim-bel

Proposed Approach

e Eliminate unneeded nodes in summation-type CI
efficiently through the use of the FFT

e |Integrate the FFT with bucket elimination into an
efficient inference algorithm

FFT Reduction

Computing Random Variable Sums
Given a source-sink network:
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The size of the parent function for the node E expressed
as a conditional probability table (CPT) is exponential in
the number of Y nodes

source-sink
network (2)

We would like to reduce the size of the CPT of the
network. This is useful in applications where one wants
to find the marginal distribution of node E such as in:

o Test score prediction

o Evolutionary games

It can be shown that the distribution P(E|S) can be
expressed as a convolution of individual distributions
P(Yi|S)

From the convolution theorem and the application of the
FFT, we know that:

Theorem 2.4 (FFT Time Complexity). Fori.i.d ran-
dom variables X = {X1, Xo, ..., XN} where each vari-
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able has a domain size |D| and their sum Z =) X,
computing P(Z = k) using the FFT will take time
O(N|D|log(N|D|)). For non-i.i.d variables, the time
complexity is O(N?|D|log(N|D)|)).

It follows that:

Theorem 3.1 (FFT Reduction). Let B ={X,D, F}
with X = {8,Y1,...,Yn,E} be a source-sink net-
work with N 1.1.d paths. The network can be trans-
formed into {X', D', F'} such that X' = {S, E} reduc-
ing the CPT for E from size O(|Dg||Dy|Y) to size
O(|Dsl||Dg|) in O(|Ds|Rlog R) time where R is the
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numerical range of random variable E

Furthermore, it can be shown that certain computations
performed in the algorithm ci-elim-bel can also be
formulated as convolutions, leading to an improved
algorithm: ci-elim-FFT

FFT Reduction

FFT reduction .
/4
O(|Ds|Rlog R)

CI-Elim-FFT

Algorithm 2: ci-elim-FEFT
Input: A Bayesian network B, evidence e
Output: P(xz|e)
(Generate a decomposition network from B
Generate ordering o = {Z4,..., 4, } with

Zy = {x,} using B’
for 1 =n —1do // create buckets

Vo € Z;, put all network functions with x as

highest ordered variable in bucket,
end
for 2 =n — 1 do // process buckets
// hy,...,h,, are functions in bucket;
if Z; = {u;;ur}, u=wu + up then

Uy .
Rt = 1_[._}-‘”1( b s ;

hiue — n.j.u.;\-( h; /l..]' .
b= o R s P
else
| use regular ci-elim-bel to compute h%

Put A% in the highest bucket that mentions

h%i’s variable.

end
Return ah™, (« is a normalizing constant).

Complexity on k/n sum network (1)

id.dY!s non-i.i.d Y,'s

BE | O(N|Dx|R2) O(N|Dx|R%)
FET O(|Dx|RZ 10ng) O(N|Dx‘RZ lOng)

L

Experimental Setup

Experimental Setup (Set 1)

e Evaluate FFT reduction for inference on a selection of
networks with summation-CI

e Compare with:
o Vanilla Bucket Elimination (Naive)
o Temporal Decomposition (Temporal)

e Test inference on three types of networks (1), (2), (3)

Experimental Setup (Set 2)

e Evaluate ci-elim-FFT compared to ci-elim-bel on
general two layer additive networks (4):

Two layer additive
network (4)

Inference time for (D = 2) sum network Inference time for (D = 5) sum network
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The FFT reduction method obtains a significant
computational advantage over the naive approach as
well as inference on the temporal decomposition

Inference time for 5-2 additive network Inference time for 100-2 additive network
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ci-elim-FFT demonstrates better scaling with respect to
number of source nodes and domain size in general
additive networks compared to ci-elim-bel

Future Research

e EXxplore integration into existing lifted variable
elimination algorithms
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