Inference in Inheritance Networks using Propositional Logic and
Constraint Networks Techniques

Rachel Ben-Eliyahu
rachel@cs.ucla.edu
Cognitive Systems Laboratory
Computer Science Department
University of California

Los Angeles, California 90024

Abstract

This paper focuses on network default theo-
ries. Etherington [Etherington, 1987] has es-
tablished a correspondence between inheritance
networks with exceptions and a subset of Re-
iter’s default logic called network default the-
ories, thus providing a formal semantics and a
notion of correct inference for such networks.
We show that any such propositional network
default theory can be compiled in polynomial
time into a classical propositional theory such
that the set of models of the latter coincides
with the set of extensions of the former. We
then show how constraint satisfaction tech-
niques can be used to compute extensions and
to identify tractable network default theories.
For any propositional network theory, our algo-
rithms compute all its extensions and verifies if
a given conclusion is in one or all extensions.

1 Introduction

Research in multiple inheritance networks has focused
on two main issues: developing fast algorithms that will
operate on the network links to produce conclusions that
match our intuition, and providing formal semantics for
such networks. Clearly, the second is crucially important
for adequate evaluation of the correctness of the first.

Etherington [Etherington, 1987] had approached the
semantic issue by formalizing inheritance networks,
called network default theories, within Reiter’s default
logic. While his framework has been criticized for de-
manding all exceptions be listed explicitly, his approach
is still valuable in that it embeds the notion of inheri-
tance within this general and widely studied framework
of default logic.

Our paper focuses on the computational aspects of
such network theories. We first present a necessary and
sufficient condition for their coherence, namely, for de-
ciding whether or not they have an extension. Then,
using constraint satisfaction techniques, we present effec-
tive schemes for computing the extensions for any such
network. In contrast, Etherington’s procedure is only
applicable to a subclass of networks theories called “or-
dered network theories”. Moreover, the complexity of

Rina Dechter
dechter@ics.uci.edu
Information & Computer Science

University of California
Irvine, California 92717

our schemes is related to the sparseness of the networks,
as captured by the parameter of induced width.

The approach leading to these results has already been
applied to the subclass of propositional disjunction-free
semi-normal default theories [Ben-Eliyahu and Dechter,
1991a). We have shown there that any such default the-
ory can be compiled in polynomial time into a proposi-
tional theory, such that each of its models corresponds
to an extension of the default theory. Constraint net-
work techniques are then applied to compute extensions
and to i1dentify, analyze and solve tractable subclasses of
this default logic. A generalization of this approach to
network theories requires allowing size-two disjunctions
in the default theory.

Our results pave the way for applying constraint net-
works techniques to logic programming as well since it
has been shown that there is a one-to-one correspon-
dence between stable models of logic programs and ex-
tensions of each of their default interpretations [?]. Elkan
[Elkan, 1990] has also shown that stable models of a logic
program with no classical negation can be represented as
models of propositional logic.

The paper 1s organized as follows: in section 2 we
briefly introduce default logic and inheritance networks.
In section 3 we describe how tasks of default theories are
mapped into equivalent tasks in propositional logic. This
mapping 1s exploited in section 4 where we present new
procedures for query processing and identify tractable
classes using constraint networks techniques. Section 5
provides concluding remarks. Due to space considera-
tions all proofs are omitted. For more details see [Ben-

Eliyahu and Dechter, 1991b].

2 Default logic and inheritance
networks

2.1 Reiter’s default logic

Following is a brief introduction to Reiter’s default logic
[Reiter, 1980]. Let £ be a first order language. A default
theoryis a pair A = (D, W), where D is a set of defaults
and W is a set of closed wffs (well formed formulas) in
L. A default is a rule of the form « : §1, ..., 3,/ , where
a, 1, ...0, and v are formulasin £. The intuition behind
a default can be: if I believe «, and I have no reason to
believe that one of the j; is false, then I can believe 7.

A delault o« - O/ 18 normad 11 7y = 0. A delault 1s semi-
normal if it is in the form « : S Ay/v. A default theory
is closed if all the first order formulas in D and W are
closed.

The set of defaults D induces an eztension on W. In-
tuitively, an extension is a maximal set of formulas that
can be deduced from W using the defaults in D. Let
Th(E) denote the logical closure of E in £. We use the
following definition of an extension:

Definition 2.1 ([Reiter, 1980/ theorem 2.1) Let E C L
be a set of closed wifs, and let A= (D, W) be a closed
default theory. Define!
o Fop=W
e Fori>0 Fip =Th(E;) U {yle: B, -
where « € E; and —p,...—03, ¢ E}.

E is an extension for A iff for some ordering F =
U?ioEi =

Most tasks on a default theory A can be formulated
using one of the following queries:

o Buf/y €D

Coherence: Does A have an extension 7 If so, find one.

Set-Membership: Given a set of formulas S, Is .S con-
tained in some extension of A7

Set-Entailment: Given a set of formulas S, Is .S con-
tained in every extension of A7

In this paper we show how, for a subclass called “net-
work default theories”, the above queries can be reduced
to propositional satisfiability.

2.2 Inheritance networks and network default
theories

The following brief introduction is adopted from [Ether-
ington, 1987] and [Touretzky, 1984].

Inheritance networks are a knowledge representation
scheme in which the knowledge is organized in a tax-
onomic hierarchy, thus allowing representational com-
pactness. If many individuals share a group of common
properties, an abstraction of those properties is created,
and all those individuals can “inherit” from that abstrac-
tion. Inheritance from multiple classes is also allowed.

Usually, the inheritance network is a directed graph
whose nodes represent individuals and abstractions
(“classes”), and whose arcs denote relations between
those nodes. The most common relations are “IS-A”
and “ISN’T-A”.

Consider the following information:
e Mammals are warm-blooded.

e Dolphins are mammals.

e Flipper is a dolphin.

This information can be encoded in the inheritance net-
work shown in figure 1 (where a solid arrow represents
an “IS-A” relation). A reasonable conclusion would be
that Flipper is warm-blooded.

When exceptions to inheritance are allowed, the infer-
ence in those systems becomes non-monotonic, namely,
conclusions might change in light of new evidence. Sup-
pose we start with the following set of axioms:

1Note the appearance of F in the formula for F;yq.

Flipper

T Mammals

O O O
Dolphins Warm-blooded

Figure 1: An inheritance network with no exceptions

Mammals

O O O

Dolphins \Live—on—]and

ng?m—b]ooded

Figure 2: An inheritance network with exceptions

¢ Mammals are warm-blooded.
¢ Mammals live on land.

¢ Dolphins are mammals.

¢ Dolphins do not live on land.

This is an example of an inheritance network with ex-
ception: dolphins are mammals who live in the water.
The network in figure 2 represents this knowledge (“can-
celed” arrows denote “ISN’T-A” relation). Given the in-
formation that Flipper is a mammal, we will conclude
that he lives on land, but the additional evidence that
he 1s a dolphin will force us to retract that conclusion
and adopt the belief that he does not live on land?.

Etherington [Etherington, 1987] proposed a subclass
of default theories called “network default theories” (in
short, “network theories”) as suitable to provide formal
semantics and a notion of sound inference for those net-
works:

Definition 2.2 (Network default theory) [Etherington,
1987] A default theory A is a network default theory iff
it satisfies the following conditions:
o W contains only:
— literals (i.e atomic formulae or their nega-
tions), and

— disjuncts of the form (aV) where o and 3 are
literals.

e D contains only normal and seminormal defaults of
the form: «: B/ or v : BAYL A ... Ayn /B where «,
B and v; are literals. O

2This conclusion is supported by the convention that fea-
tures of a subclass override those of a super-class.

rtneringion suggests a way Lo Iorimalize imheritance
relations in network theories. His translation is as fol-
lows:

Strict IS-A: “A’s are always B’s”. Etherington sug-
gests translating this to the first-order formula
Va.A(x)—B(x). Since we restrict our treatment
to propositional theories, we will translate this link
to the propositional rule schema A(z)— B(z).

Membership: “The individual a belongs to the class
A”. This is represented by the fact A(a) (which
denotes here a propositional literal).

Strict ISN’T-A: “A’s are never B’s”. Ethering-
ton translates this to the first-order formula
Va.A(x)——B(x). We will translate this link to
the propositional rule schema A(z)——B(z).

Nonmembership: “The individual a does not belong
to the class A”. This is represented by the fact
—A(a).

Default IS-A: “A’s are normally B’s, but exceptions
are allowed”. This can be represented by the default
rule schema A(x) : B(z)/B(x).

Default ISN’T-A: “Normally A’s are not B’s, but ex-
ceptions are allowed”. This can be represented by

the default rule schema A(z) : =B(x)/~B(x).

Exception: “Normally A’s are (not) B’s, unless they
have at least one of the properties C1,...,C,,”. This
translates to the default rule schema A(z) : B(z) A
=Ci(2) A ..o A=Cy(x)/B(z)

(A(z) : = B(z) A=Cr(z) A ... AN=C(z)/—B(z))

Example 2.3 The inheritance network in figure 2 will
be translated to the following network theory:
D= Mammal(z):Lives-on-land(x)r-~Dolphine(z)
=1 Lives-on-land
wes-on-land(z)
Dolphine(z):- Lives-on-land(z)
- Lives-on-land(z) 1
W ={ Dolphine(z)}— Mammal(z),
Mammal(z)— Warm-blooded(z) } D

An extension of a network theory then corresponds to
a set of coherent conclusions one could draw from the in-
heritance network it represents. Thus all the queries de-
fined above (coherence, set-membership, set-entailment)
are still very relevant when dealing with network theo-
ries. Etherington has a nondeterministic procedure to
compute an extension of a default theory. If the the-
ory is what he calls an ordered network theory, then his
procedure is guaranteed to produce an extension.

In the sequel we will show a procedure that computes
all extensions for any propositional network theory. In
fact, we deal with a superclass in which the prerequisite
of a default is a conjunction of literals rather than just
a single literal. We will assume, w.l.g., that W is con-
sistent, since when W is inconsistent, the extension is
the inconsistent one. We also assume w.l.g. that each
default has a single literal as a consequent.

7

3 Definitions and preliminaries

We denote propositional symbols by upper case letters
P, @, R...,propositional literals (i.e. P,—P) by lower case

letters p,q,r..., clauses Dy C1,C9,.... 1he number oo 11t-
erals in the clause ¢ is denoted by |¢].

The operator ~ over literals is defined as follows: If
p=-Q,~p=Q, If p=Q then ~p = =Q. If § = « :
B/ is a default, we define pre(8) = «, just(é) = 4 and
concl(8) = 7.

Given a set of formulas .S and a formulaw, Stw means
that w is provable from premises S, and S|Ew means that
S entails w - i.e. that every model of S satisfies w as well.
For propositional formulas, Stw iff SEw, hence we will
use these notations interchangeably.

The logical closure of a set of formulas S is the set
{w|SFw}. We denote by Th(S) the logical closure of a
set of formulas S.

An extension of a default theory is a logically closed
set of formulas. How do we compute the logical closure
of a set of clauses? Since the logical closure is an infinite
set, we will not be able to compute the closure in a finite
time. However, if the initial set of clauses is finite, we
can compute a set which will represent the logical clo-
sure using the notion of prime implicants as presented

by Reiter and de Kleer [Reiter and de Kleer, 1987]:

Definition 3.1 A prime implicant of a set S of clauses
1s a clause ¢ such that

1. Sk=e, and
2. there is no proper subsel ¢ of ¢ such that SEc’.

Given a set of formulas .S, ST will denote the set of its
prime implicants. As Reiter and de Kleer note, a brute
force method of computing ST is to repeatedly resolve
pairs of clauses of .S, add the resolvents to S, and delete
subsumed clauses, until a fixed point is reached®. There
are some improvements to that method, but 1t is clear
that the general problem is NP-Hard since it also solves
satisfiability. Nevertheless, for size-2 clauses the prime
implicants can be computed in polynomial time since a
resolvent of two clauses of size < 2 1s also of size < 2.

The following proposition suggests that for network
theories it is enough to consider extensions of a network
theory containing clauses of size one or two only:

Proposition 3.2 Let E* be an extension of a network
theory, and let E' = {c|c € E* /|| < 2}. Then E’
contains all prime implicants of £*. O

We say that a set of clauses F satisfies the precondi-
tions of 6 if pre(é) € Th(E) and the negation of just(é)
isnot in Th(E). We say that E satisfies a default § if it
does not satisfy the preconditions of § or else, it satisfies
its preconditions and Th(E) contains its conclusion.

A proof of a clause ¢ w.r.t. a given set of clauses E and
a given network theory A = (D, W) is a sequence of rules
61, ...,65, n > 0, such that the following three conditions
hold:

1. ¢ € Th(W|J{concl(é1), ..., concl(é,)}).

2. For all 1 < 7 < n, the negation of just(é;) is not in
Th(E).
3. For all 1 < i < n, pre(§) is a subset of

Th(WJ{concl(é1), ..., concl(6;-1)}).

Tt is clear that this method will not generate all the tau-
tologies, but it is easy to handle this exception.

1ne 1oliowing lemina 1s instrumental throughout the pa-
per:

Lemma 3.3 Th(FE) is an extension of a network theory
A iff Th(E)is a logical closure of a set of clauses E that
satisfies:

1. WCE
2. E satisfies each rule in D.

3. For each clause ¢ € E, there 1s a proof of c in E .
O

We define the dependency graph G(p w) of a network
theory A to be a directed graph constructed as follows:
Each literal p appearing in D or in W is associated with
a node, and an edge is directed from p to 7 iff there is
a default rule where p appears in its prerequisite and »
is its consequent or there is a clause p—7r in W. An
acyclic network theory is one whose dependency graph is
acyclic, a property that can be tested linearly.

4 Compiling a network theory into a
propositional theory

In this section we show how we can compile a given net-
work theory A into a propositional theory P A such that
P has a model iff A has an extension, and vice-versa,
every model of P A has a corresponding extension for A.

The common approach for building an extension,
(used by Etherington [Etherington, 1987], Kautz and
Selman [Kautz and Selman, 1991], and others), is to in-
crement W using rules from D. We make a declarative
account of this process by formulating the conditions of
lemma 3.3 as a set of constraints that the default theory
impose on the set of its extensions. This frees us from
worrying about ordering, however, it requires adding a
constraint guaranteeing that if a formula is in the exten-
sion, then i1t has a non-circular proof. To enforce this
restriction, we associate an index variable with each lit-
eral in the transformed language, and require that p is in
the extension only if 1t is the consequent of a rule whose
prerequisite’s indexes are smaller. Elkan [Elkan, 1990]
used the same technique to insure that the justifications
supporting a node in a TMS are noncircular.

Let #p stand for the “index associated with p”, and
let k£ be its number of values. These “multi-valued vari-
ables” (as opposed to propositional variables which are
bi-valued) can be expressed in propositional logic using
additional O(k?) clauses and literals (see [Ben-Eliyahu
and Dechter, 1991b]). For simplicity, however, we will
use the multi-variable notations, viewing them as abbre-
viations to their propositional counterparts.

Let £ be the underlying propositional language of A.
For each propositional symbol in £, we define two propo-
sitional symbols, Ip and I p. For each pair of literals p
and ¢ in £ , we define the symbol I,y,. We get a new
set of symbols : £' = {Ip, I.p|P € L} {Ipvqlp,q € L}.
Intuitively, Ip stands for “P is in the extension”, I.p
stands for “= P is in the extension”, and I,v, means that
“pV q is in the extension”. For notational convenience
I, and Iy, will stand for the same propositional letter
(same for Inpyy and I,—,).

rFrocedure translate-1(A)
1. Compute W, the set of prime implicants of W.
For each ¢ € W put I, into PA-

N

For each p——q in W add I,—1I; into P .

For each o : 3/p € D, add in(a) A cons(f)—1I, to
PA-

5. For each p ¢ W™ do the following :

Let Cp = {[in(q1 A q2... A qn) A cons(3)]

N#Eq < #p] A A [#an < Fp]
| 36 € D such that é = q1 Aqa... Agn : B/p }.

Let L, = {[in(q) A [#q < #p]] l¢—p € W}

Let S, = CplJLy.

If S, is not empty then add to P the formula
Ip—>[\/a€5poz].

Else, if S, = 0 add =1, to PA.

6. For each pV q ¢ W, p+#q, add =1y, into Px.

-

Figure 3: Algorithm to compile a network theory into a
propositional theory

To further simplify the notation we use the notions of
in(w) and cons(w) that stand for “w is in the extension”,
and “w is consistent with the extension”, respectively.
Formally, in(w) and cons(w) are defined as follows:

o if w = p then in(w) = I,, cons(w) = —l~,.

o if w=pV g then in(w) = L,.

o ifw = pr ApaA...App, then in(w) = in(pr) Ain(p2) A
o ANin(pn), cons(w) = A jeq1,.. 0} ~pvep; -
(Note that p; A ... A p, is “consistent with the ex-
tension” iff =[p1 A ... Apy] is not in the extension iff
(since all prime implicants are of size < 2) for all
i,j, ~p; V ~p; is not in the extension.)

Procedure translate-1 in figure 3 compiles any net-
work theory over £ into a propositional theory over £,
This translation requires adding n index variables, n be-
ing the number of literals in £, each having at most
n values. Since expressing an inequalily 1in proposi-
tional logic requires O(n?) clauses, and since there are
at most n possible inequalities per default, the result-
ing size of this transformation is bounded by O(|D|n?)
propositional sentences. Note also that the complexity
of generating W+ is at most O(n?).

The following theorems summarize the properties of
our transformation. In all of them, P is the set of sen-
tences resulting from translating a given network theory
A using translate-1.

Theorem 4.1 Let A be a network theory. Suppose P
15 satisfiable and 0 15 a model for Pp, and let E =
{c|0(1.) = true}.

Then:

1. E contains all its prime implicants.
2. TKE) is an extension of A. O

1hneorem 4.2 LE LnlL)0e an eriension jor A, LhRen
there is a model 0 for P such that 0(1.) = true iff
c € Th(E) and || <2. O

The above two theorems suggest a necessary and suffi-
cient condition for the coherence of a network theory:

Corollary 4.3 A network theory A has an extension iff
P 15 satisfiable. O

For the next corollaries, we define for each clause ¢ a
formula prime(c) as follows: if ¢ = p; Vpa V...V p,
prime(c) = [V; jeq1..n1dp,vp,]

Corollary 4.4 A set of clauses, C, is contained in an

evtension of A ioff there 1s a model for P A which satisfies
the set {prime(c)|c € C'}.

Corollary 4.5 A clause ¢ is in every extension of a net-

work theory A off P =prime(c). O

These theorems suggest that we can first translate
a given network theory A to Pa and then answer
queries as follows: to test if A has an extension, we
test satisfiability of Pa; to see if a set S of clauses
is a member In some extension, we test satisfiability
of PAlU{prime(c)|c € S}; and to see if S is included
in every extension, we test if P entails the formula
[Acesprime(c)].

Example 4.6

Consider again the network theory from example 2.3 to-
gether with the evidence that Flipper is a mammal (pred-
icates are abbreviated by their initials; parameters are
omitted since Flipper is the only individual):

D={M:LA-D/L, D:-L/~L}
W={D—M,M—Wb, M}

This 1s an acyclic network theory, thus no indices are
required. When translating A to P we get:

W+ = W H{Wb, D— Wb}
Pa=1
following step 2:
Ip—nr, Im—wu, Iws, Ing, ID—wp
following step 3:
Ip—Ir, In— 1wy, Ip—Iws
following step 4:
Iy AN—=Iop A=Ip A=l pvp—11,
Ip N—Ip— 1.1,
following step 5:
Iy, —Ipy AN=Ip, A—=Ip A=l pvp,
I —Ip A=y, =l p, =Ip, =Iop, 71wy
following step 6:
{-Ih—y|lz—y ¢ {D—M, M—Wb,
D—Wb}}

This set of sentences has only one model in which all and
only the following literals are true:

Inas Iws, Lo, Ip—m, IM—wo, ID—sw
which correspond to the extension

Th({M, Wb, L, D—M, M—Wb})

Lxample «.{

Suppose we add the information that Flipper is a dolphin
to what we knew in the previous example. This amounts
to adding the proposition D to W. So we have to take
—Ip out of Ppand add Ip to Pa. The model for Pa

182

Ip, I, Iws, Inn, Ip—ms IM—wo, ID—w
which corresponds to the extension
Th({D,M,Wb,~L, D—M, M—Wb})
which is the only extension.

4.1 An improved translation

Procedure translate-1 can be improved. If a prerequi-
site of a rule is not on a cycle with its consequent, we
do not need to index them, nor enforce the partial or-
der among their indices. Thus, we need indices only for
literals which reside on cycles in the dependency graph.
Furthermore, since we will never have to solve cyclicity
between two literals that do not share a cycle, the range
of the index variables is bounded by the maximum num-
ber of literals that share a common cycle. In fact, we
show that the index variable’s range can be bounded
by the maximal length of an acyclic path in any strongly
connected componentin G(p w). The strongly-connected
components of a directed graph are a partition of its set
of nodes such that for each subset C' in the partition,
and for each =,y € (', there are directed paths from z to
y and from y to in (. This improvement is discussed
in detail in [Ben-Eliyahu and Dechter, 1991b).

5 Tractable network default theories

Processing the network theory using our approach re-
quires two steps: first, compile the default theory into
a propositional theory, and then solve satisfiability. We
have shown that the first step is tractable. The second
step, however, is known to be NP-complete in general.
In this section we show how propositional satisfiability
can be regarded as a constraint satisfaction problem, and
how techniques borrowed from that field can be used to
solve satisfiability and to identify tractable subsets of
propositional and network theories.

In general, constraint satisfaction techniques exploit
the structure of the problem through the notion of a
“constraint graph”. For a propositional theory, the con-
straint graph (also called a “primal constraint graph”)
associates a node with each propositional letter and con-
nects any two nodes whose associated letters appear in
the same clause. Various graph parameters have been
shown as crucially related to solving the satisfiability
problem. These include the induced width, w*, the size
of the cycle-cutset, the depth of a depth-first-search span-
ning tree of this graph and the size of the non-separable
components. It can be shown that the worse-case com-
plexity of deciding consistency is polynomially bounded
by any one of these parameters.

Since these parameters can be bounded easily by sim-
ple processing of the given graph, they can be used
for assessing tractability ahead of time. For instance,

@

Figure 4: Interaction graph for the theory presented in
example 4.6

when the constraint graph is a tree, satisfiability can
be determined in linear time. In [Ben-Eliyahu and
Dechter, 1991a] we have demonstrated the potential of
this approach using one specific technique called Tree-
Clustering [Dechter and Pearl, 1989], customized for
solving propositional satisfiability, and emphasized its ef-
fectiveness for maintaining a default database. We have
also characterized the tractability of the default theories
as a function of the induced width® ®, w*, of their interac-
tion graph. We next generalize those results for network
theories:

The interaction graph of a network theory is an undi-
rected graph where each literal in the theory is associated
with a node, and for each p and for every § = « : 3/p in
D, every q € « and every ~7 such that » € 3, there are
arcs connecting all of them into one clique with p. Also,
for each p——¢q in W, there is an arc between p and gq.

Theorem 5.1 A network theory whose interaction
graph has an induced width w* can decide existence,

membership and entailment in O(n * Qw*'H) when the

theory is acyclic and O(nw*+2) when the theory is cyclic.
O

Example 5.2

Consider the set P generated in example 4.6. The in-
teraction graph is as shown in figure 4 (isolated nodes
are omitted). This graph is already chordal, and if we
take the ordering =D, =L, L M ,D,W we see that w* < 3,
and so this network theory belongs to a class of networks
for which the queries we posed can be answered in time
bounded by exp(4). According to Stillman’s classifica-
tion [Stillman, 1990] this network theory belongs to a
class whose membership problem is NP-complete. O

6 Summary and conclusions

We have presented a necessary and sufficient condition
for coherence of propositional inheritance theories, pro-

*The width of a node in an ordered graph is the number
of edges connecting it to nodes lower in the ordering. The
width of an ordering is the maximum width of nodes in that
ordering, and the width of a graph is the minimal width of
all its orderings. The induced width is the width of the graph
after it was completed to be a chordal graph.

°A graph is chordal if every cycle of length at least four
has a chord.

vided a procedure that computes an €xiension, and 1den-
tified tractable subsets of network default theories. The
algorithm handles membership and entailment queries
as well. Specifically, we have shown that network theo-
ries whose topologies have bounded induced width can
be processed in polynomial time w.r.t. this parameter.

Our approach is to compile a network theory into a
propositional theory such that the set of models of the
latter coincides with the set of extensions of the for-
mer. Consequently, questions of coherence, member-
ship and entailment on the network theory are equiva-
lent to propositional satisfiability. This brings problems
in non-monotonic reasoning into the familhar arenas of
both propositional satisfiability and constraint satisfac-
tion problems. Although we use here a two-step transla-
tion (from inheritance networks to default theories and
then to propositional theories), it is easy to see that
we can translate the inheritance network directly into
a propositional theory.

Our work adds to previous research on network the-
ories and inheritance reasoning. Etherington [Ethering-
ton, 1987] has shown a sufficient condition for coherence
and presented a procedure that computes an extension of
ordered network theories only. Stillman [Stillman, 1990]
has shown that the membership problem for proposi-
tional network theories is NP-Complete and claimed to
have polynomial algorithms for solving membership of a
single literal in restricted subsets of network theories.

In the future we intend to extend our approach to han-
dle preferred extensions, as formulated by Etherington
and Touretzky [Touretzky, 1984], namely, to use only
normal default rules, and define a partial order on the
proof sequences. Using constraint network techniques,
we hope to show that a most preferred extension can be
obtained with the same complexity as those for finding
an arbitrary one. In [Ben-Eliyahu and Dechter, 1991b]
we show how this approach can be applied to any default
theory.

Acknowledgements

This work was supported in part by Air Force Office
of Scientific Research, AFOSR 900136 and by NSF grant
TRI-9157936. The authors wish to thank Judea Pearl for

many useful discussions.

References

[Ben-Eliyahu and Dechter, 1991a] Rachel Ben-Eliyahu
and Rina Dechter. Default logic, propositional logic
and constraints. In AAAI-91: Proceedings of the
9th national conference on artificial intelligence, pages

379-385, Anaheim, CA, USA, July 1991.

[Ben-Eliyahu and Dechter, 1991b] Rachel Ben-Eliyahu
and Rina Dechter. Propositional semantics for de-
fault logic. Technical Report R-172, Cognitive Sys-
tems Lab, UCLA, 1991. This paper will be presented
at the 4th international workshop on nonmonotonic
reasoning, May 1992, Plymouth, Vermont. This pa-
per is a generalization of the paper published in the

proceedings of AAAI-91.

pecnter and reari, 1964 huna pecater and Judea
Pearl. Tree clustering for constraint networks. Ar-

tificial Intelligence, 38:353-366, 1989.

[Elkan, 1990] Charles Elkan. A rational reconstruction
of nonmonotonic truth maintenance systems. Artifi-

ctal Intelligence, 43:219-234, 1990.

[Etherington, 1987] David W. Etherington. Formaliz-
ing nonmonotonic reasoning systems. Artificial Intel-

ligence, 31:41-85, 1987.

[Kautz and Selman, 1991] Henry A. Kautz and Bart
Selman. Hard problems for simple default logics. Ar-

tificial Intelligence, 49:243-279, 1991.

[Reiter and de Kleer, 1987] Raymond Reiter and Johan
de Kleer. Foundations of assumption-based truth
maintenance systems: Preliminary report. In The na-
tional conference on Al pages 183-188, Seattle, WA,
July 1987.

[Reiter, 1980] Raymond Reiter. A logic for default rea-
soning. Artificial Intelligence, 13:81-132, 1980.

[Stillman, 1990] Jonathan Stillman. It’s not my default:
The complexity of membership problems in restricted
propositional default logics. In AAAI-90: Proceedings
of the 8th national conference on artificial intelligence,

pages b71-578, Boston, MA, USA, 1990.

[Touretzky, 1984] David S. Touretzky. Implicit ordering
of defaults in inheritance systems. In AAAI-84: Pro-
ceedings of the 2nd national conference on artificial
intelligence, pages 322-325, Austin, TX, 1984.

