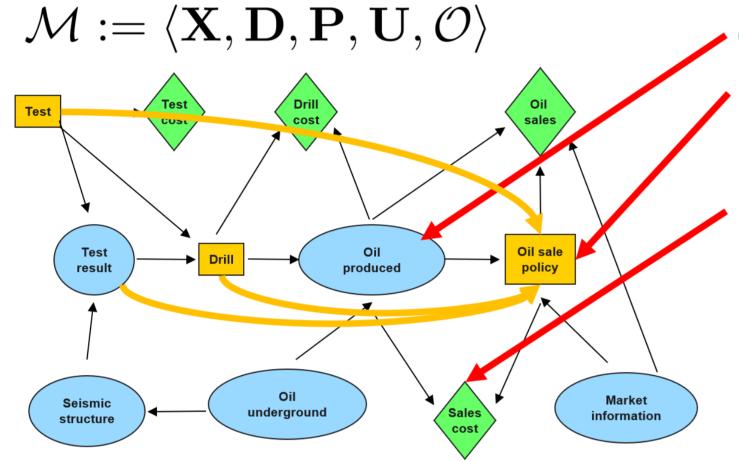

Submodel Decomposition Bounds for Influence Diagrams

Junkyu Lee^{1,2}, Radu Marinescu², Rina Dechter¹

Summary Tree Decomposition for Influence Diagrams and Limited Memory

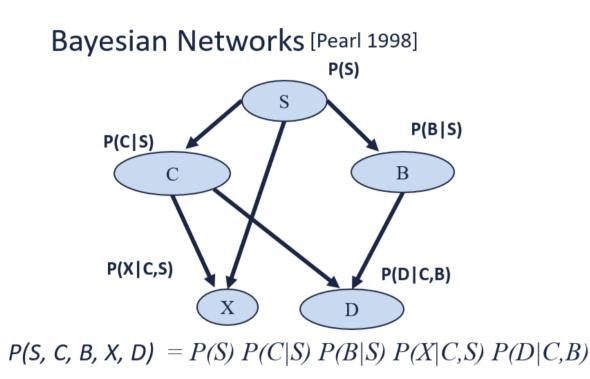
- **Influence Diagrams** Graph separation criteria for identifying single-stage decision problem
- Valuation algebra over submodels using graph-based operations
- Submodel-Tree Clustering and Elimination Scheme

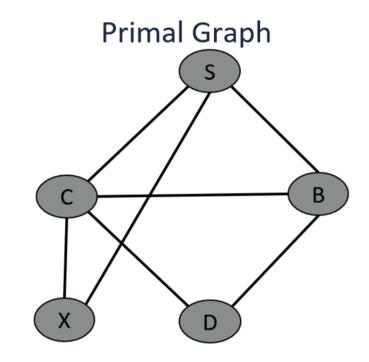

Submodel Decomposition Bounds

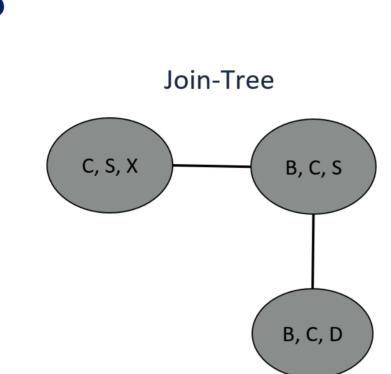
- Bounding MEU by exponentiating utility functions
- Re-use decomposition bounds in Marginal MAP inference

Contributions

- Generate submodel-tree with lower tree-width by removing irrelevant variables and functions in each submodel
- Scalable convex upper bounds for MEU

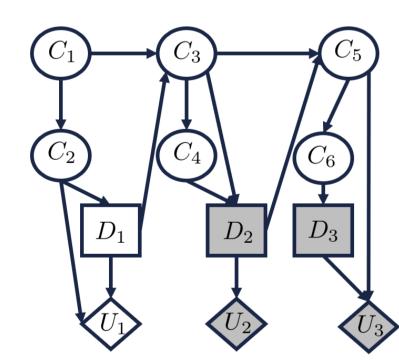

Influence Diagrams [Howard and Matheson, 1984]




Chance variables $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ Decision variables $\mathbf{D} = \{D_1, D_2, \dots, D_m\}$ Probability functions $\mathbf{P} = \{P_1, P_2, \dots, P_n\}$ Utility functions $\mathbf{U} = \{U_1, U_2, \dots, U_r\}$ Policy functions $\Delta = \{\Delta_1, \dots \Delta_m\}$ $\mathcal{O} = \{ \operatorname{pa}(D_1) \prec D_1 \prec \cdots \prec \operatorname{pa}(D_m) \prec D_m \}$ $\Delta_i(D_i|\mathrm{hist}(D_i))$

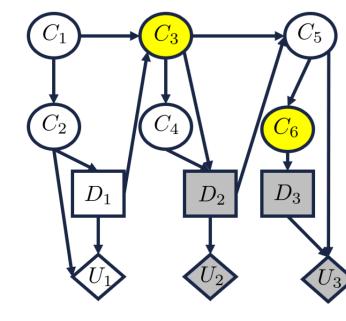
Maximum expected Utility $\max_{\Delta} \mathbb{E}_{P(\mathbf{X}, \mathbf{D})}[\sum_{U_i \in \mathbf{U}} U_i] \quad P(\mathbf{X}, \mathbf{D}) = \prod_{P_i \in \mathbf{P}} P_i \times \prod_{\Delta_i \in \Delta} \Delta_i$ Optimal strategy $\Delta^* = \operatorname{argmax}_{\Delta} \mathbb{E}[\sum_{U_i \in \mathbf{U}} U_i]$

Graphical Models

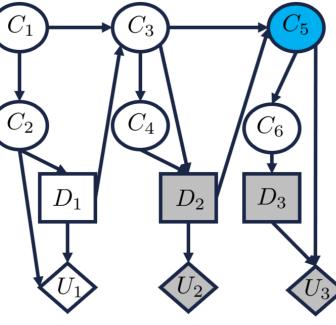


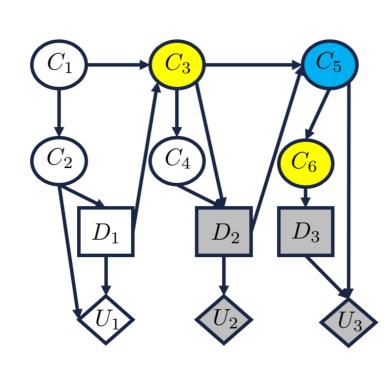
Partial Evaluation and Local MEU

 $LMEU_{\mathcal{M}(\mathbf{D}',\mathbf{U}')} := \max_{\mathbf{\Delta}'} \mathbb{E} \left[\sum_{U_i \in \mathbf{U}'} U_i | pa(\mathbf{D}') \right]$


Evaluate MEU over the subset of decision variables and utility functions

Maximize expected utility U2+U3 over two decision variables D2 and D3


 $\max_{\Delta(D_2|C_3,C_4),\Delta(D_3|C_6)} \sum_{\mathbf{X},\mathbf{D}} \frac{P(\mathbf{X},\mathbf{D})}{P(C_3,C_4,C_6)} [U_2 + U_3]$


Submodel in IDs

• (Definition) Submodel $\mathcal{M}'(\mathbf{D}', \mathbf{U}')$ is a relevant subset of model \mathcal{M} for computing LMEU on $\mathbf{D}' \subseteq \mathbf{D}, \mathbf{U}' \subseteq \mathbf{U}$

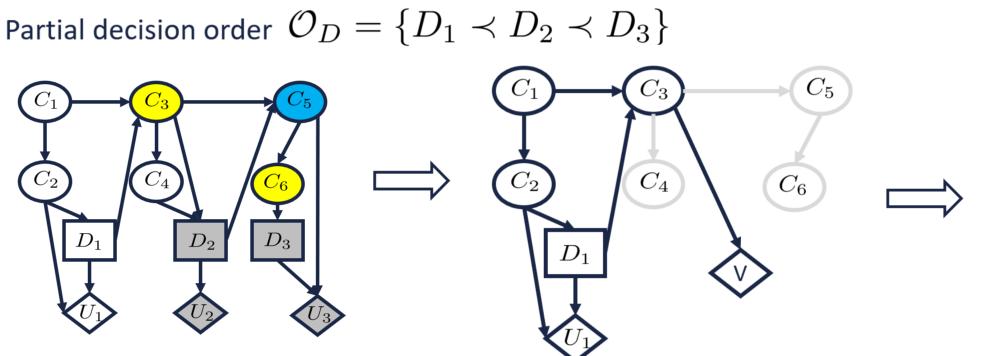
Stable Submodel $\mathcal{M}'(\{D_2,D_3\},\{U_2,U_3\})$

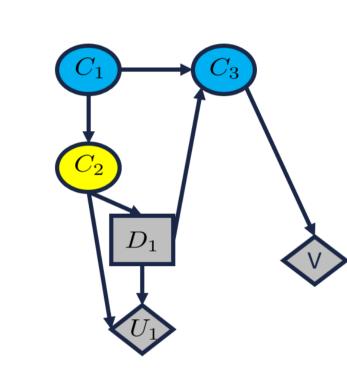
Relevant Observed Variables Relevant Hidden Variables $\mathrm{REL}_O(\mathbf{D}',\mathbf{U}')$

 $\mathrm{REL}_H(\mathbf{D}',\mathbf{U}')$

• (Definition) Submodel $\mathcal{M}'(\mathbf{D}', \mathbf{U}')$ is stable when there is no decision variables in $REL_H(\mathbf{D}', \mathbf{U}')$

Graph-based Submodel Identification

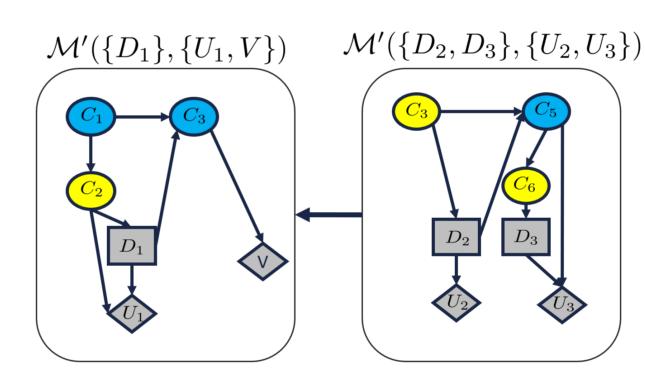

 $REL_O(\mathbf{D}', \mathbf{U}')$ is the backdoor* set between D' and U' (Backdoor) [Pearl 2009]


a set Z satisfies the backdoor criterion relative to (X, Y)

- None of the nodes in Z is a descendant of X
- Z blocks every path between X and Y that contain arrow into X
- $REL_H(\mathbf{D}', \mathbf{U}')$ is the union of all frontdoor* set between pa(D') and ch(U') (Frontdoor) [Pearl 2009]
 - a set Z satisfies the frontdoor criterion relative to (X, Y)
 - Z intercept all directed paths from X to Y
 - There is no backdoor path from X to Z
 - All backdoor paths from Z to Y are blocked by X

Submodel-Tree Decomposition

Process decision nodes in reverse topological order



Identify 2nd Stable submodel Eliminate submodel from ID

Identify 1st Stable Submodel

• Given an ID \mathcal{M} , and the set of stable submodels $\mathbf{M}_{\mathcal{O}_D}$ relative to \mathcal{O}_D , submodel-tree decomposition is a tuple $\mathcal{T}_{ST} := \langle T(\mathcal{C}, \mathcal{S}), \chi, \psi \rangle$

 $T(\mathcal{C},\mathcal{S})$ - Tree of submodel cluster nodes $\,\mathcal{C}\,$ and separator edges $\,\mathcal{S}\,$ $\chi: \mathcal{C} o 2^{\mathrm{dom}(\mathcal{M})}$ Label a cluster with a subset of variables in $\,\mathcal{M}$ $\psi: \mathcal{C} o 2^{\mathbf{M}_{\mathcal{O}_D}}$ Label a cluster with a subset of submodels in $\mathbf{M}_{\mathcal{O}_D}$

Tree-decomposition satisfies running intersection property

Bounding MEU of Each Submodel

Exponentiated Utility Bounds for MEU

$$\max_{\mathbf{\Delta}} \mathbb{E} \Big[\sum_{U_i \in \mathbf{U}} U_i(\mathbf{X}_{U_i}) \Big] \leq \log \max_{\mathbf{\Delta}} \mathbb{E} \Big[\prod_{e^{U_i(\mathbf{X}_{U_i})}} e^{U_i(\mathbf{X}_{U_i})} \Big]$$

LSH: MEU expression with additive utility function

RHS: Upper bound of MEU with log-partition function with exponentiated utility functions

Experiments

Synthetic ID Benchmarks

Domain	n	w_c	w_s	ST-GDD(i=1)	ST-GDD(i=5)	ST-WMB(i=10)	JGDID(i=1)	WMBEID(i=10)
ID-BN	84.6	30.2	21.8	0.19	0.15	0.13 95.37	0.33	0.74
IDBN14w57d12	115	57	42	103.89	96.24		1420	2.2E+4
FH-MDP	105.7	25.5	25.4	0.06 18.92	0.07	0.18	0.16	0.44
mdp9-32-3-8-3	99	43	43		19.71	25.31	23.09	111.81
FH-POMDP pomdp8-14-9-3-12-14	55.9 96	28.1 47	28.1 46	0.31 73.53	0.22 76.37	0.06 67.18	0.56 5.E+08	0.72 5.E+09
RAND	56.2	20.5	17.9	0.22 1309.89	0.24	0.24	0.23	0.46
rand-c70d21o1	84	32	34		1791.93	1752.47	1743.6	2.E+04

- ST-GDD: submodel-tree decomposition + GDD for MMAP [ping et al 2015]
- ST-WMB: submodel-tree decomposition + WMBMMM for MMMAP [marinescu et al 2014]
- JGDID: constrained-join graph + GDD for IDs [Lee et al 2018]
- WMBMEID: constrained mini-bucket tree + WMB/GDD for IDs [Lee et al 2019]

SysAdmin MDP Probabilistic Planning Problem

Instance	С	d	p	u	k	s	w	utime (sec)	$_{ m ub}$	ltime (sec)	lb sogbofa	$\frac{\text{gap}}{\frac{\text{ub}-\text{lb}}{\text{ub}}}$
mdp10-s50-t3	218	150	218	300	3	11	112	149	162.368	240	142.731	12%
mdp10-s50-t4	274	200	274	400	3	11	112	184	217.515	320	183.650	16%
mdp10-s50-t5	330	250	330	500	3	11	113	257	273.332	400	221.450	19%
mdp10-s50-t6	386	300	386	600	3	11	113	19741	327.268	480	257.394	21%
mdp10-s50-t7	442	350	442	700	3	11	113	28013	383.312	560	291.988	24%
mdp10-s50-t8	498	400	498	800	3	11	113	41748	439.826	640	316.600	28%
mdp10-s50-t9	554	450	554	900	3	11	113	34739	494.662	720	345.844	30%
mdp10-s50-t10	610	500	610	1000	3	11	113	58270	549.867	800	364.569	34%