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Motivation

Influence diagrams are a powerful formalism for reasoning with sequential decision-making

problems under uncertainties
— Involve random (or chance) variables, decision variables and utility functions

Task: find the maximum expected utility (MEU) and the corresponding optimal policy
— Notoriously difficult to solve exactly in practice

Recent work focused on bounding the MEU
— E.g., information relaxation, reformulation to Marginal MAP, partitioning over join-trees

Contribution:
— Revisit multi-operator cluster DAG (MCDAG) decompositions for influence diagrams
— Partitioning-based (mini-bucket) approximation for MCDAGs to upper bound the MEU
— Apply cost-shifting to tighten the upper bounds further
— Show empirically that the new scheme produces bounds that are several orders of
magnitude tighter than those obtained with existing bounding schemes < .
)
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Influence Diagrams

An ID is a tuple (X, D, P, U) where:
- X = {Xy, ..., X, } are chance variables
— D ={D,, ..., D,,} are decision variables
=P ={Py, .., Ry}, s.t. Py = Pr(X;|pa(X;))
are conditional probability tables (CPTs)
- U = {U,, ..., U, } are local utility functions
defining global utility U = Y7, U;

No-forgetness and regularity imply a partial
ordering: Iy < D; <I; < -+ <D,, <[,

MEU: ¥, max ... L, max 21, ([TP2U))
1 m

Variable elimination [Schachter, 1986],
[Jensen et al., 1994], [Dechter, 2000] ...
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Multi-operator Cluster DAGs (MCDAGS)

= Recent decomposition for IDs with smaller
induced widths than traditional strong join-
tree decompositions [Pralet et al., 2000]

= Refines the MEU expression to exploit
reordering freedom and normalization
conditions on CPTs

= A DAG where each vertex (cluster) ¢ has:

— Variables V (¢), functions ¥(c)

— Child clusters ch(c)

— Operators @€ {Z, max} and Q€ {+,x}
such that (©,&, R) is commutative
semiring

= @P: elimination operator
= &: combination operator
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Variable Elimination over MCDAGSs

= Compute the MEU via message passing over the MCDAG, from leaves to the root:

Mlmaxp, |+

"2 | X [ ui(Do) " v, | X

"4 maxp, p, |+
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5 0| X ua (Do, C1, Dy)
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P(C1|C3); P(Cs)
ug(Da, C3)

MEU:H]BaX)Q_'_)\S
)\Qzul(Do)
)\322)\4

C1
Ay = A A A
4 I%%Xfrjlji}(( 5+ A6 + A7)

A5 = Ag - ug(Da, Dy)

A6 = Ag - uz(Do, C1, Dy)

A7 =) P(Cs)- P(C1|Cs) - ug(Ds, Cs)
Cs

As = Y P(Cs)- P(Cy|Cs) PEERN



Weighted Mini-Buckets for MCDAGSs

Complexity of VE is time and space exponential in the size of the largest message
— i.e., exponential in the induced width of the MCDAG

The idea is to approximate the A-messages by sets of smaller messages (called compound
messages) via a partitioning-based (or mini-bucket) approximation
— Compound messages are propagated along the edges of the MCDAG
— Compound messages must be combined in different ways, either by multiplication or
summation depending on whether the sending cluster is a sum or a max one

Formally, we define two types of compound messages:
— m-messages: product of functions (i.e., T = []; f;)
— o-messages: sum of m-messages (i.e., 0 = X; ;)

The approximation scheme is guaranteed to output an upper bound on the MEU value

Complexity is exponential (time and space) in the i-bound that controls the mini-bucket
partitioning (i.e., i-bound dictates the number of distinct variables allowed in a mini—bucke{ '3\.“‘1‘1\1
xéi

Y
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Processing a SUM Cluster

I-bound is 2, therefore we generate T
mini-buckets with at most 2 distinct n 5, [x

variables 3

Generate a o-message:
W(A,B,C) = hl(A,B) . hQ(A,C)

A,B,C) = gi1(A A,C A,B) - gi(A,C
o = {m;,m,}, where SO T LB e @O e B el

1 = {11(B), 4,(0)}, A= Zfl (A, B) - (A, B) - g1(A, B} ha(A, C) - gaA, C)
> mini-buckets

— (13(B). A4 (C
T2 = (42(B), 44(C)) +Zf1 (A.B) - h1(A. B) - 3(A, B)}- ha(A.C) - gs(A.C)

< Zfl (A,B)-hi(A,B) - g1(A,B)) - (O ha(A,C) - g2(A, C))
A A

+ (Zfl(A’B) ’ hl(AJB) '93(A7 B)) ’ (Zh2(‘470) '94(A7 C))
A A

= M (B) - 22(C) + A3(B) - A(C) B
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Processing a MAX cluster

o(B,C,D) = A(B,C) 4 hy(C, D) - \y(B) + A5(B, C) + g4(C, D) - X2(B)

I-bound is 2, therefore we generate T
mini-buckets with at most 2 distinct
variables %

fi(A, B) f2(4,0) m(A, B,C, D) o(A,B,C,D)

Generate a o-message:

ﬂ-(A7BaC7D) = hl(A7B) ’ hQ(Ca D)
0 = {ﬂliﬂ21ﬂ31ﬂ4}’ where o(A,B,C,D) = g1(A, B) - g2(A, C) JrQ:S(A B) - g4(C, D)
T[l - {/11(31 C)}l -----------------------------------------------------------------------------

Ty, = {/1% (B), h, (C,D)}, A= max_fl (A B) + f2<A C) +i hl (A B) h2(C D) mini-buckets
— U2 N0/ o O A A S S A
e e ) +91(4,B)- 92(4,0) + 95(4, ) -9s(C, D)
LT B < max(f1(4, B) + f2(A, C)) + maxhi (4, B) - ha(C, D)
For MAX clusters, the max operator ~ +maxgi(4, B) - g2(4, C) +max g1(4, B) - 94(C, D) e
IS pushed both inside summation as _ _ 1 1 _ W ”
well as multiplication (unlike SUM case) AL(B, C) + X(B) - h2(C, D) + X3(B, O) + Ay(B) 9E " LL)
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Tightening the Bounds by Cost-Shifting

= The upper bounds obtained can be tighten further using cost-shifting
— Use weighted elimination instead of regular elimination

1 w
“Xxf = (Zx fW)
— Moment-matching between mini-buckets for SUM clusters [Marinescu et al., 2014]
= Let @ = {Q4, ..., Qr} be @ mini-bucket partitioning such that ¥, = []¢¢q, f and assign

weight w,. > 0 to each mini-bucket Q,- such that )., w,, = 1 (X is the eliminated)

. Wr 1/wy -
= Re-parameterize ¥, = 1, (l%) U = Dy, v ou =TT, Y, = vars(Q.) \ X

— Moment-matching between mini-buckets for MAX clusters
= et Q = {Q4, ..., Qg} be a mini-bucket partitioning

+ If1f, = [7eq, f then re-parameterize , = (), uy = max 1 = ([T )7
. 17
= If i, = ZfeQrf then re-parameterize ¥, = ¥, — pu, + M Hr = H%,aleruu = D Uy
N

D))
))
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Experimental Results

= Algorithms for IDs
— MBE [Dechter, 2000]
= Mini-bucket approximation over a join-tree
— WMB [Lee et al., 2019]
= Weighted mini-buckets using a valuation algebra for influence diagrams
— MCDAG-MBE
= Mini-buckets over MCDAGSs
- MCDAG-WMB-MM
= Weighted mini-buckets over MCDAGs with moment-matching

= Benchmarks
— Random: grids, random graphs, POMDPs
— Planning: system administrator [Guestrin et al., 2003]
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Results: random influence diagrams

grid16 - Average gap - w* = 34; s* = 22 rand30 - Average gap - w* = 72; s* = 64

pomdpl6 - Average gap - w* = 83; s* = 80

WMB WMB
-= MBE -= MBE
-+ MCDAG-MBE

-+ MCDAG-MBE
—— MCDAG-WMB-MM

— MCDAG-WMB-MM

avgerage gap (U-U*)/U
average gap (U-U*)/U

avgerage gap (U-U*)/U

02 ‘\

i WMB
o0 S -= MBE wl] T
-+ MCDAG-MBE

-02 —+ MCDAG-WMB-MM

—— e

w 1z w16 18 20 2 3 5 5 w0 1 1 u s 7
i-bound i-bound i-bound

Gap p =

(U_UU*), relative to the tightest upper bound U*

w’*- induced width (join-tree); s*- induced width (MCDAG)

Lower (closer to 0) is better L %))
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Results: planning instances (sysadmin)

instance algorithm i=2 =10 =18

sysl_s=10_t=3 MBE 2.09E+34 2.38E+18 7.70E+13
c=79,d=30 MCDAG-MBE 2.82E+24 2.88E+09 2.60E+06
w*=60 WMB 1.02E+10 8.37E+07 4.34E+06
s*=58,k=3 MCDAG-WMB-MM 3.44E+07 8.79E+03 4.31E+02
sysl_s=10_t=4 MBE 1.72E+46 3.01E+26 1.11E+19
c=102,d=40 MCDAG-MBE 1.93E+35 3.79E+14 1.39E+10
w*=8() WMB 6.59E+13 2.87E+11 3.04E+08
s*¥=78 k=3 MCDAG-WMB-MM 1.18E+11 2.68E+06 3.98E+04
sysl_s=10_t=5 MBE 1.38E+58 5.43E+30 6.27E+22
c=125,d=50 MCDAG-MBE 1.33E+46 3.18E+19 9.12E+13
w*=100 WMB 1.80E+17 7.67E+13 4.34E+11
s*¥*=98.k=3 MCDAG-WMB-MM 4.09E+14 1.36E+09 1.46E+07
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Conclusion

= Revisit MCDAG decompositions for influence diagrams and develop a partitioning-based
approximation scheme for bounding the maximum expected utility

= MCDAGSs are more sensitive to the underlying problem structure than strong join-trees
— Smaller induced width led to a partitioning that yields more accurate bounds

= Apply cost-shifting by moment-matching to tighten the bounds further

= Experiments on difficult benchmark problem instances demonstrate the effectiveness of our
proposed bounding scheme compared with existing state-of-the-art approaches

= Future work: using these bounds as heuristics for guiding search algorithms for finding optimal
policies, as well as developing a more powerful iterative cost-shifting scheme between the
clusters of the MCDAG decomposition
Q
< ) )
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