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Motivation

▪ Influence diagrams are a powerful formalism for reasoning with sequential decision-making 

problems under uncertainties

– Involve random (or chance) variables, decision variables and utility functions

▪ Task: find the maximum expected utility (MEU) and the corresponding optimal policy

– Notoriously difficult to solve exactly in practice

▪ Recent work focused on bounding the MEU

– E.g., information relaxation, reformulation to Marginal MAP, partitioning over join-trees

▪ Contribution:

– Revisit multi-operator cluster DAG (MCDAG) decompositions for influence diagrams

– Partitioning-based (mini-bucket) approximation for MCDAGs to upper bound the MEU

– Apply cost-shifting to tighten the upper bounds further

– Show empirically that the new scheme produces bounds that are several orders of 

magnitude tighter than those obtained with existing bounding schemes
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Influence Diagrams

▪ An ID is a tuple (𝑋, 𝐷, 𝑃, 𝑈) where:

– 𝑋 = {𝑋1, … , 𝑋𝑛} are chance variables

– 𝐷 = 𝐷1, … , 𝐷𝑚 are decision variables

– 𝑃 = 𝑃1, … , 𝑃𝑛 , 𝑠. 𝑡. 𝑃𝑖 = Pr(𝑋𝑖|𝑝𝑎 𝑋𝑖 )
are conditional probability tables (CPTs)

– 𝑈 = {𝑈1, … , 𝑈𝑟} are local utility functions 

defining global utility 𝒰 = ∑𝑖=1
𝑟 𝑈𝑖

▪ No-forgetness and regularity imply a partial 

ordering: 𝐼0 ≺ 𝐷1 ≺ 𝐼1 ≺ ⋯ ≺ 𝐷𝑚 ≺ 𝐼𝑚

▪ MEU: ∑𝐼0max𝐷1
…∑𝐼𝑚max𝐷𝑚

∑𝐼𝑚(∏𝑃𝑖∑𝑈𝑗)

▪ Variable elimination [Schachter, 1986], 

[Jensen et al., 1994], [Dechter, 2000] ...

max
𝐷0

෍

𝐶1

max
𝐷2

෍

𝐶3

max
𝐷4

𝑃 𝐶1 𝐶3 𝑃(𝐶3)(𝑢1 + 𝑢2 + 𝑢3 + 𝑢4)
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Multi-operator Cluster DAGs (MCDAGs)

▪ Recent decomposition for IDs with smaller 

induced widths than traditional strong join-

tree decompositions [Pralet et al., 2006]

▪ Refines the MEU expression to exploit 

reordering freedom and normalization 

conditions on CPTs

▪ A DAG where each vertex (cluster) 𝑐 has:

– Variables 𝑉(𝑐), functions Ψ(𝑐)
– Child clusters 𝑐ℎ(𝑐)
– Operators ⊕∈ {Σ,𝑚𝑎𝑥} and ⊗∈ {+,×}

such that (⊕,⊗,ℝ) is commutative 

semiring

▪ ⊕: elimination operator

▪ ⊗: combination operator 𝑉 𝑛4 = 𝐷2, 𝐷4 ;Ψ 𝑛4 = ∅; 𝑐ℎ 𝑛4 = 𝑛5, 𝑛6, 𝑛7 ; ⊕= 𝑚𝑎𝑥; ⊗= +

ID

MCDAG
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Variable Elimination over MCDAGs

▪ Compute the MEU via message passing over the MCDAG, from leaves to the root:
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Weighted Mini-Buckets for MCDAGs

▪ Complexity of VE is time and space exponential in the size of the largest message

– i.e., exponential in the induced width of the MCDAG

▪ The idea is to approximate the 𝜆-messages by sets of smaller messages (called compound 

messages) via a partitioning-based (or mini-bucket) approximation

– Compound messages are propagated along the edges of the MCDAG

– Compound messages must be combined in different ways, either by multiplication or 

summation depending on whether the sending cluster is a sum or a max one

▪ Formally, we define two types of compound messages:

– 𝜋-messages: product of functions (i.e., 𝜋 = ∏𝑖 𝑓𝑖) 
– 𝜎-messages: sum of 𝜋-messages (i.e., 𝜎 = ∑𝑗 𝜋𝑗)

▪ The approximation scheme is guaranteed to output an upper bound on the MEU value

▪ Complexity is exponential (time and space) in the i-bound that controls the mini-bucket 

partitioning (i.e., i-bound dictates the number of distinct variables allowed in a mini-bucket) 
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Processing a SUM Cluster

i-bound is 2, therefore we generate
mini-buckets with at most 2 distinct
variables

Generate a 𝜎-message:

𝜎 = {𝜋1, 𝜋2}, where
𝜋1 = 𝜆1 𝐵 , 𝜆2 𝐶 ,
𝜋2 = {𝜆3 𝐵 , 𝜆4(𝐶)} mini-buckets
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Processing a MAX cluster

i-bound is 2, therefore we generate
mini-buckets with at most 2 distinct
variables

Generate a 𝜎-message:

𝜎 = {𝜋1, 𝜋2, 𝜋3, 𝜋4}, where 
𝜋1 = 𝜆1

1 𝐵, 𝐶 ,
𝜋2 = 𝜆2

1 𝐵 , ℎ2 𝐶, 𝐷 ,
𝜋3 = 𝜆3

1 𝐵, 𝐶 ,
𝜋1 = 𝑔4 𝐶, 𝐷 , 𝜆3

2 𝐵

mini-buckets

For MAX clusters, the max operator
is pushed both inside summation as 
well as multiplication (unlike SUM case) 
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Tightening the Bounds by Cost-Shifting

▪ The upper bounds obtained can be tighten further using cost-shifting

– Use weighted elimination instead of regular elimination

▪ ∑𝑋
𝑤 𝑓 = ∑𝑋 𝑓

1

𝑤

𝑤

– Moment-matching between mini-buckets for SUM clusters [Marinescu et al., 2014]

▪ Let 𝑄 = {𝑄1, … , 𝑄𝑅} be a mini-bucket partitioning such that 𝜓𝑟 = ∏𝑓∈𝑄𝑟
𝑓 and assign 

weight 𝑤𝑟 > 0 to each mini-bucket 𝑄𝑟 such that ∑𝑟𝑤𝑟 = 1 (𝑋 is the eliminated)

▪ Re-parameterize 𝜓𝑟 = 𝜓𝑟
𝜇

𝜇𝑟

𝑤𝑟
, 𝜇𝑟 = ∑𝑌𝑟𝜓𝑟

1/𝑤𝑟 , 𝜇 = ∏𝑟 𝜇𝑟
𝑤𝑟 , 𝑌𝑟 = 𝑣𝑎𝑟𝑠 𝑄𝑟 ∖ 𝑋

– Moment-matching between mini-buckets for MAX clusters

▪ Let 𝑄 = {𝑄1, … , 𝑄𝑅} be a mini-bucket partitioning

▪ If 𝜓𝑟 = ∏𝑓∈𝑄𝑟
𝑓 then re-parameterize 𝜓𝑟 = 𝜓𝑟(

𝜇

𝜇𝑟
), 𝜇𝑟 = max

𝑌𝑟
𝜓𝑟 , 𝜇 = ∏𝑟 𝜇𝑟

1/𝑅

▪ If 𝜓𝑟 = ∑𝑓∈𝑄𝑟 𝑓 then re-parameterize 𝜓𝑟 = 𝜓𝑟 − 𝜇𝑟 +
1

𝑅
𝜇, 𝜇𝑟 = max

𝑌𝑟
𝜓𝑟 , 𝜇 = ∑𝑟 𝜇𝑟
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Experimental Results

▪ Algorithms for IDs

– MBE [Dechter, 2000]

▪ Mini-bucket approximation over a join-tree

– WMB [Lee et al., 2019]

▪ Weighted mini-buckets using a valuation algebra for influence diagrams

– MCDAG-MBE

▪ Mini-buckets over MCDAGs

– MCDAG-WMB-MM

▪ Weighted mini-buckets over MCDAGs with moment-matching

▪ Benchmarks

– Random: grids, random graphs, POMDPs

– Planning: system administrator [Guestrin et al., 2003]
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Results: random influence diagrams

Gap 𝜌 =
(𝑈−𝑈∗)

𝑈
, relative to the tightest upper bound 𝑈∗

𝑤∗- induced width (join-tree); 𝑠∗- induced width (MCDAG)

Lower (closer to 0) is better
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Results: planning instances (sysadmin)

Smaller values are better
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Conclusion

▪ Revisit MCDAG decompositions for influence diagrams and develop a partitioning-based 

approximation scheme for bounding the maximum expected utility

▪ MCDAGs are more sensitive to the underlying problem structure than strong join-trees

– Smaller induced width led to a partitioning that yields more accurate bounds

▪ Apply cost-shifting by moment-matching to tighten the bounds further

▪ Experiments on difficult benchmark problem instances demonstrate the effectiveness of our 

proposed bounding scheme compared with existing state-of-the-art approaches

▪ Future work: using these bounds as heuristics for guiding search algorithms for finding optimal 

policies, as well as developing a more powerful iterative cost-shifting scheme between the 

clusters of the MCDAG decomposition   


