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SUMMARY

Our task: bounding marginal MAP (MMAP) of a discrete graphical model
(exact computation intractable in general -- NP** [Park 2002] ).

MMAP: Ty = argmax m(xy), Z H fa(Ta)
where TMERM 2sE€EXs fo €F
X ={X1,Xo,..., X, } --discrete variables
F={fi,fo, ..., fm} -- non-negative functions
Am C X -- maximization (MAX) variables
Xg = X\ Xum -- summation (SUM) variables
It Is a generalization of
MAP' The partition function:
—argmax H fa 'Toz 4 = Z H fa($a)
TEX f.eF reX fo€F

Example: influence diagrams & optimal decision-making
The “oil wildcatter” problem (e.g., [Raiffa 1968; Shachter 1986]).

\<> VSV

O|I Oil sale
—| Drill
produced policy
Oil \ / Market
M underground mformatlon

Our contributions:

1 We propose a Mixed Dynamic Importance Sampling (MDIS) algorithm that
provides anytime finite-sample bounds (i.e., they hold with probability 1 — o for
some confidence parameter o) for MMAP.

1 It provides both upper and lower bounds that are guaranteed to be tight given enough
time.

1 It 1s able to predict high-quality MAP solutions whose values converge to the
optimum; the exploration-exploitation trade-off of searching MAP solutions
controlled by the number of replicates of the marginalized variables.

J It runs In an anytime/anyspace manner, which gives flexible trade-offs between
memory, time, and solution quality.
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Generalize dynamic importance sampling [Lou, Dechter, lhler 2017]
to provide finite-sample bounds for a series of summation objectives
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Dynamic importance sampling (DIS):
_1 Provides finite-sample bounds and an unbiased estimate for the partition function.

_1 Interleaves search with sampling in a way that search generates a set of improving
proposal distributions where samples are drawn to produce probabilistic bounds.

St+1 @ Sample aggregation issue for DIS:

d  Samples are independent but not i.1.d.
 later samples come from improving proposals.

Weighted average of Importance weights:
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l Draw IN; samples via ‘ Z <HM(U) (boundedness)
A two-step sampling ~ EZ =7 (unbiasedness)

Finite-sample bounds of DIS:
Pr[Z<Z+A]>1-6 (and Pr[Z > Z — A] > 1—0)

2Var({Z;/Ui},) In(2/8) | 7In(2/5)
A = HMU) (\/ N 3N 1))
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Mixed dynamic importance sampling (MDIS):

1 Connect MMAP to a pure summation task of an augmented model by replicating the
summation variables and their associated factors.

Original model O -- MAX variable Q - SUM variable

/ copies of Xg

Let Xaug (XMjXéI) IDX§{)
and faug(maug) — sz:l f(xl\/[axé)
replicate SUM variables and factors The partition function of the augmented model:

aug Z H faug CEaug Z i (371\/[)

Taug k=1

Augmented model

Bound the MMAP optimum using the partition
function of the augmented model:

(Zang/| X )V < m(ay) < Zolg'

" size of the MAP space
1 DIS applicable to the augmented model to bound its partition function.

» Complexity independent of the replicates K.

» NOT compatible to pruning of the MAP space during search.

Key observation:
A A A
M EA = Z,/|Al <7 (afy) < Z7,, where Z7, = Z ™ (2m).

v EA
Connect the MMAP optimum to a series of summation objectives:
HMU/|A|) 15 K > 5 HMU) -~ Zie
HM(U) IE! [ZaugI S 7I- (:C ) S E [Zau :| Zaug T N Zzzl Uz
1 N 11-1 1 al 1 A
HM(U) — IN Z FI 9 U/IAI [N Z I K IZaugI Zaug S U
=1 ° i=1

J Finite- sample bounds for MMAP:

PI‘[ ( M) ( aug‘I‘A) ]>1—5, Pr [71‘(33’1'\‘/[)2(

2VarIn(2/6) =~ 7In(2/6)
A_HMIUI(\/ N +3(]\7—1))

EMPIRICAL EVALUATION

Experimental settings:

] Baselines: two state-of-the-art search algorithms: UBFS [Lou et al. 2018], a unified best-first
search algorithm that emphasizes rapidly tightening the upper bound. AAOBF [Marinescu et al.
2017], a best-first/depth-first hybrid search algorithm that balances upper bound quality with
generating and evaluating potential solutions. T e ororoin o

J Benchmarks: four benchmarks; three out of the # instances 50 50 44 15

four formed by instances selected from recent UAI avg. # variables  1243.20 982.10  109.55 1122.33
avg. % of MAX vars  10% 10% 10% 12%

competitions, where 10% variables randomly set t0 = o worfuctors 124820 99476 304.64 1127.67
MAX variables. The fourth benchmark formed by ave. max domainsize 2.00  2.00 8100 3.00
instances from probabilistic conformant planning & maxscope - 3.00 = 500 200 - 5.00

) .. i : avg. induced width ~ 124.82  108.14  15.84  165.00
with a finite-time horizon [Lee et al. 2016a]. ave pseudo tree depth 228.92 15878 3352  799.33

Statistics on the right. avg. ind. widthof sum 4344 4032 1020  49.67

1 Other settings: 6=0.025; memory: 4GB; runtime: 1hr; implementation: all in C/C++ by the
original authors.

Table: Number of instances that an algorithm achieves the best lower/upper bounds at each timestamp
(1 min, 10 min, and 1 hour) for each benchmark. Entries for UBFS are blank because UBFS does not
provide lower bounds.

grid promedas protein planning grid promedas protein planning

# instances S0 S0 44 15 # instances S0 50 44 15
Timestamp: 1min/10min/Thr Timestamp: 1min/10min/Thr
MDIS (K=5) 47/44/45 32/34/31  31/27/28 14/13/13 MDIS (K=5) 0/0/0 9/12/13 S/9/15 1/1/1
MDIS (K=10) 3/2/1 4/5/6 11/13/14 1/2/2 MDIS (K=10) 0/0/0 10/13/14  9/10/13 1/2/3
UBFS ~/-/- -/-/- ~/-/- /-1~ UBFS 50/50/50 50/50/50  36/32/26 14/14/13
AAOBF 0/4/4 16/21/24 2/4/4 0/0/0 AAOBF 0/0/1 2/4/6 2/2/2 1/1/1

Figure 1: Anytime bounds for MMAP on Instances from four benchmarks. The max domain sizes of
those instances from (a)-(d) are 2, 2, 81, 3 respectively, and the induced widths of the internal
summation problems are 25, 28, 8, 24, respectively.
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Figure 2: (a) Image denoising results for one instance per digit. The first row is for the ground truth
Images. The second row Is for the noisy inputs created from the ground truth by randomly flipping 5%
pixels. Below the first two rows are denoised images from UBFS, AAOBF, MDIS (K=5) respectively.
(b) An example on MAP solution quality comparison. (c) lllustration of the CRBM model used for the
Image denoising task.
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RELATED WORK

1 Deterministic approaches:

» Exact solvers based on depth-first branch and bound, e.g., [Park & Darwiche 2003; Yuan &
Hansen 2009].

» Search equipped with variational heuristics, e.g., [Marinescu et al. 2014; Lee et al. 20160D;
Marinescu et al. 2017; Lou et al. 2018].

» Variational methods, e.g., [Liu & Ihler 2013; Ping et al. 2015].
» Factor set elimination based [Maua & de Campos 2012].

] Monte Carlo approaches:
» Random hashing based, e.g., [Xue et al. 2016].
» Markov chain Monte Carlo based, e.g., [Yuan et al. 2004; Doucet et al. 2002].



