
Generalized Dual Decomposition for Bounding
Maximum Expected Utility of Influence Diagrams with Perfect Recall

Junkyu Lee, Alexander Ihler and Rina Dechter
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, CA 92697, USA

Abstract

We introduce a generalized dual decomposition bound for
computing the maximum expected utility of influence dia-
grams based on the dual decomposition method generalized
to Lp space. The main goal is to devise an approximation
scheme free from translations required by existing variational
approaches while exploiting the local structure of sum of utility
functions as well as the conditional independence of probabil-
ity functions. In this work, the generalized dual decomposition
method is applied to the algebraic framework called valuation
algebra for influence diagrams which handles probability and
expected utility as a pair. The proposed approach allows a
sequential decision problem to be decomposed as a collection
of sub-decision problems of bounded complexity and the up-
per bound of maximum expected utility to be computed by
combining the local expected utilities. Thus, it has a flexible
control of space and time complexity for computing the bound.
In addition, the upper bounds can be further minimized by
reparameterizing the utility functions. Since the global objec-
tive function for the minimization is nonconvex, we present a
gradient based local search algorithm in which the outer loop
controls the randomization of the initial configurations and the
inner loop tightens the upper-bound based on block coordinate
descent with gradients perturbed by a random noise. The ex-
perimental evaluation demonstrates highlights of the proposed
approach on finite horizon MDP/POMDP instances.

Introduction
An Influence Diagram (ID) (Howard and Matheson 2005) is
a graphical representation of a sequential decision problem
for a single agent maximizing the total expected utility under
uncertainty. In this paper, we assume that the agent is non-
forgetting, i.e., the previous history is available when making
a sequence of decisions. The Maximum Expected Utility
(MEU) query asks for a strategy that maximizes the sum
of the expected value of local utilities over the probability
distribution conditioned on the strategy. Exact algorithms
for solving IDs are based on either variable elimination or
reduction of the diagram. The variable elimination algorithms
include strong junction tree algorithm (Jensen, Jensen, and
Dittmer 1994), bucket elimination algorithm (Dechter 2000b),
and multi-operator cluster DAG architecture (Pralet, Schiex,
and Verfaillie 2006). The reduction type of algorithms use

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

node removal and arc reversal techniques to transform the
input ID to an ID with a sinlge node representing MEU
(Shachter 1986), (Tatman and Shachter 1990), and (Hansen,
Shi, and Khaled 2016). Since the complexity of the MEU
query is NPPP complete (Mauá 2016), exact algorithms are
intractable.

Previous works on the systematic search algorithms for
solving IDs are depth-first AND/OR search algorithm exploit-
ing the problem decomposition (Marinescu 2010), and depth-
first branch and bound search with the heuristic evaluation
function generated by relaxing the subset of hidden variables
to be observed (Yuan, Wu, and Hansen 2010) and (Khaled,
Hansen, and Yuan 2013). Although depth-first search only
requires linear memory, the space complexity for finding the
optimal strategy is exponential in the length of the past his-
tory due to the perfect recall assumption. Recently, stochastic
constrain programming solvers are combined with AND/OR
branch and bound search with the interval arithmetic heuristic
(Babaki, Guns, and De Raedt 2017). Various approximation
algorithms are proposed in the literature: mini-bucket elimi-
nation for ID (Dechter 2000a), sampling based methods (Or-
tiz and Kaelbling 2000) and (Garcia-Sanchez and Druzdzel
2004), and sum-product network learning approach (Melibari,
Poupart, and Doshi 2016). On the other hand, local search
algorithms improving a subset of policies are proposed for
solving limited memory influence diagrams that relax the
non-forgetting assumptions and avoid the exponential space
complexity (Lauritzen and Nilsson 2001) and (Mauá and
Cozman 2016). (Mauá 2016) presented a translation scheme
from an ID to marginal MAP, hence any marginal MAP infer-
ence algorithm can be applied to solve IDs. The variational
framework provides bounds of the MEU when the global
utility function can be factorized as a product of local func-
tions. (Liu and Ihler 2012) presented a variational form of
the MEU query under multiplicative utility functions, and
proposed message passing algorithms tightening the dual
form of the MEU. (Cheng et al. 2013) applied variational
belief propagation algorithm to MDP planning. (Ping, Liu,
and Ihler 2015) generalized dual decomposition for MAP
(Sontag, Globerson, and Jaakkola 2011) to marginal MAP
which can also be applied to solve IDs with a translation.

Contributions: In this paper, we present a generalized
dual decomposition bound for the MEU of perfect recall
IDs free from translations to other queries. The proposed

bounding scheme decomposes a sequential decision problem
by the join-graph decomposition. Then, the generalized dual
decomposition method is applied to the decomposed clusters
of the join-graph providing the upper bound of the MEU.
This bound can also be minimized by reparameterizing utility
functions. We present and demonstrate a gradient based local
search algorithm that tightens the proposed upper bound on
several MDP/POMDP domains to highlight the potential of
the proposed approach.

Background
Influence Diagrams
An influence diagram is a tuple, MMM “ xC,D,P,U, T y,
where C “ tCi : i P NCu is a set of discrete chance
variables with a set of domains tΩCi : i P NCu, and
D “ tDi : i P NDu is a set of discrete decision variables
with a set of domains tΩDi : i P NDu. A chance variable is
drawn as a circle and decision variable is drawn as a square.
Index sets NX “ t0, 1, ¨ ¨ ¨ , |X| ´ 1u are collection of non-
negative integers representing the index of each element in
a set X. P “ tpi“ PrpCi|papCiqq : @i P Ncu is a set
of conditional probability functions indexed by the set Nc,
where each pi is defined over a set of chance variables Ci
and its parent variables papCiqĂ CYD´tCiu. The node for
a parent variable connects its child node with a directed edge.
U “ tui“uipXiq:@i P Nuu is a set of discrete real-valued
utility functions indexed by a set Nu, where each ui is de-
fined on a subset of variables XiĂ CY D. A utility node
is drawn as a diamond. The parent nodes of a utility node
correspond to the variable in the scope of the utility function.
For the ease of notation, we assume that all decision vari-
ables follow the predefined T stage temporal ordering, which
is the sequence in the index set Nd. IDs define a partition
of chance variables, called information sets tIk : k P Ndu

associated with the decision variable Dk, where the chance
variables in Ik are observed immediately before making a de-
cision for Dk. The partial temporal ordering on the variables
O:tI0ăD0ă¨ ¨ ¨ăIT´1ăDT´1ăIT u can be read off from an
ID since the informational arcs connect chance nodes in Ik
to the decision variable Dk. Note that the chance variables
in the last information set IT are unobserved variables. Then,
the MEU of a T stage ID can be written as,

ÿ

I0

max
D0

¨ ¨ ¨
ÿ

IT´1

max
DT´1

ÿ

IT

p
ź

piPP

piqp
ÿ

uiPU

uiq. (1)

The set of policies is called a strategy ∆∆∆“t∆k:k PNdu and
each policy ∆k is a probability distribution defined over the
past history and the decision variables by a mapping ∆k :
Ś

iĺkpp
Ś

CPIi
ΩCq

Ś

ΩDiq Ñ r0, 1s. The optimal strategy
∆∆∆˚ can be found by maximizing each decision variable Dk

per all instantiations of variables in the past history.

Variable Elimination for Solving IDs
The valuation algebra (Shenoy and Shafer 1990) is a gen-
eral algebraic framework for various reasoning architec-
tures and it allows unified representation for the variable
elimination algorithm for IDs. Here, we introduce essen-
tials of valuation algebra for IDs following the notations

in (Mauá, de Campos, and Zaffalon 2012). A valuation
of IDs ψpXq with a scope X Ď CYD is a pair of func-
tions pp, uq, each defined over a set of variables X, where
p is the probability component and u is the expected util-
ity component. From a valuation ψpXq, P pψpXqq denotes
the probability component and EUpψpXqq denotes the ex-
pected utility component. Given two valuations of an ID
ψ1pX1q:“ pp1, u1q with scope X1 and ψ2pX2q:“ pp2, u2q
with scope X2, the combination of two valuations is de-
fined as ψ1pX1q b ψ2pX2q :“ pp1p2, p1u2 ` p2u1q with
new scope X1 YX2. Now, we define the marginalization
of a valuation. Let ψ :“ pp, uq with scope X. Then, the
marginalization of a variable Y P X from valuation ψ is
óY ψpXq :“ pÓY p, ÓY uq with new scope X´tY u. The
marginalization operator ÓY acting on each component is
ř

Y if Y P C and maxY if Y P bD. Then, the MEU of a T
stage ID with the temporal ordering O can be rewritten by
valuation algebra as,

EUpóO tbpiPPppi, 0qu b tbuiPUp1, uiquq, (2)

where each conditional probability function pi P P and utility
function ui P P is converted to a valuation respectively
as, ppi, 0q and p1, uiq. In equation (2), all valuations are
combined with a single combination operator and a variable
is eliminated following the elimination ordering O.

Join-Graph Decomposition of IDs
Given an IDMMM “ xC,D,P,U, T y, a join-graph decomposi-
tion is a tripleDDD “ xGJ , χ, ψy, where GJ “ pV,Eq is a graph
and χ and ψ are labeling functions which associate with each
node v P V two sets, χpvq Ď CYD and ψpvq Ď PYU such
that: (1) for each function fi P PYU, there exists only one
vertex v P V such that fi P ψpvq, and scopepfiq Ď χpvq, (2)
for each variable xi P C YD, the set tv P V : xi P χpvqu
induces a connected subgraph of GJ . Given two adjacent
nodes u and v in join-graph GJ , the separator of u and v
is defined as Suv “ θpu, vq, where the θpu, vq is an edge-
labeling function satisfying θpu, vq Ď χpuq X χpvq and two
nodes containing a variable xi can be connected by a path
whose every edge label includes xi. Finally, an edge-labeled
join-graph is minimal if no variable can be removed from any
label while maintaining the connectedness property.

Join-Graph Structuring Bucket elimination (BE) is a
join-tree decomposition algorithm and its space time com-
plexity is exponential in the induced-width of a problem
(Dechter 1999). BE processes variable elimination in the fol-
lowing steps. First, collect all functions in a bucket with the
variable to be eliminated by an elimination order. Then, com-
bine functions in a bucket, marginalize the combined function
by the elimination variable associated with the bucket, and
send a message to the next bucket to be processed. Mini-
bucket elimination (Dechter and Rish 2003) is a bounded
inference scheme that controls the space and time complexity
of variable elimination by limiting the maximum number of
variables in each bucket to be less than the bounding parame-
ter i` 1, called i-bound. Given an influence diagram, a min-
imal join-graph can be structured by schematic mini-bucket
elimination with an i-bound (Dechter, Kask, and Mateescu

2002). In this paper, each node C in the join-graph GJ is
associated with a mini-bucket, χpCq is a set of variables in
the associated mini-bucket, and ψpCq is a set of functions
allocated to the mini-bucket.

Generalized Dual Decompoistion for MMAP
Here, we briefly review the generalized dual decomposition
for marginal MAP inference in graphical models. Given a
graphical model G “ xX,D,Fy, where X “ tXi : i P NV u

is a set of random variables index by an index set NV ,
D “ tΩXi : Xi P Xu is a set of finite domains of vari-
ables, and F “ tFαpXαq : α P NF qu is a set of discrete
non-negative real-valued functions indexed by the set NF ,
where Fα is defined over a subset of variables Xα P X,
called its scopepFαq. G defines a factorized distribution
P pXq “ expr

ř

αPNF θαpXαq´Φpθqs, where θα “ logpFαq

and Φpθq “ log
ř

X P pXq. The powered-sum elimination
operator is defined by

řw
x fpxq “ r

ř

x |fpxq|
1
w sw, which is

the generalization of summation (w “ 1.0) and maximiza-
tion (w Ñ 0`). Then, the marginal MAP inference task can
be written as computing the weighted log partition function,

Φpθq “ log
wn
ÿ

Xn

¨ ¨ ¨

w1
ÿ

X1

expr
ÿ

αPNF

θαpXαqs, (3)

where the weights wi are zero for maximization variables
and one for summation variables.

The generalized dual decomposition bound for MMAP
(Ping, Liu, and Ihler 2015) bounds the weighted log partition
function by generalization of Hölder’s inequality (Liu and
Ihler 2011),

log
w
ÿ

X

ź

αPNF

exprθαpXαqs ď log
ź

αPNF

wα
ÿ

Xα

exprθαpXαqs, (4)

where the non-negative weights wi P w distributed to
the factors θα are summed to the original weight wi “
ř

tα:XiPXαu
wαi . This bound can be tightened by dual decom-

position (Sontag, Globerson, and Jaakkola 2011). Introduc-
ing cost-shifting functions δpα,βqpXα XXβq between a pair
of factors θαpXαq and θβpXβq, the weighted log partition
function can be reparameterized by

Φpθqď log
ź

αPNF

wα
ÿ

Xα

exprθαpXαq̀
ÿ

βPNF

δpα,βqpXαXXβqs, (5)

where the cost-shifting functions between two factors cancels
each other δα,β ` δβ,α “ 0. Since the upper-bound of Φpθq
in equation (5) is convex with respect to the cost-shifting
functions and weights, efficient optimization algorithms are
available for tightening the upper bound.

Generalized Dual Decomposition for MEU
In this section, we show the generalized dual decomposition
upper bound for the MEU of IDs and a gradient based local
search algorithm for optimizing the bound.

Derivation of the GDD Bound for MEU
Let NC be the set of clusters of a join-graph decompo-
sition D “ xGJ , χ, ψy of an influence diagram M “

xC,D,P,U, T y with a partial variable ordering O : tI0 ă

D0 ă ¨ ¨ ¨ ă IT´1 ă DT´1 ă IT u. From equation
(2), the combination of all valuations can be factorized
over the join-graph GJ by ΨpC,Dq “ bCPNCΨCpXCq,
where ΨCpXCq is a local combination of valuations at each
cluster C P NC , i.e., ΨCpXCq “ bfiPψpCqΨfipXfiq with
Ψfi “ pfi, 0q if fi P P and Ψfi “ p1, fiq if fi P U.
Following the definition of marginalization of a valuation
of IDs, we define the powered-sum elimination operator
for valuations as

řw
Opp, uq :“ p

řw
O p,

řw
O uq, where

řw
O

eliminates all the variables in O with the set of weights
w “ twi : @i P O, wi ě 0u associated with each variable.
Then, the generalized decomposition bound of IDs is shown
in the following theorem 1.

Theorem 1 (GDD Bound for MEU). Given an influence di-
agram M and its join-graph decomposition D “ xGJ , χ, ψy,
the MEU can be bounded by the expected utility component
of the combination of powered sum-marginalized valuations
from each cluster NC ,

w
ÿ

O
pbCPNCΨCpXCq ď bCPNC

wC
ÿ

O
ΨCpXCq, (6)

where wC is a set of non-negative weights distributed to the
cluster C such that wi “

ř

CPNC w
C
i and 0 ď wC

i ď 1 for
each variable Xi P CYD.

Proof. Let ΨPC pXCq and ΨEUC pXCq denote a probability
and expected utility component of valuation ΨCpXCq at clus-
ter C P NC . The MEU can be bounded by applying absolute
value inequality from (7) to (8), Minkowski’s inequality from
(8) to (9) and Hölder’s inequality from (9) to (10) as shown
in the following steps.

EUp
w
ÿ

O
pbCPNCΨCpXCqq

:“
w
ÿ

O
EUpbCPNCΨCpXCq

:“
w
ÿ

O

ÿ

iPNC

ΨEUipXiq
ź

jPNC ,j‰i

ΨPj pXjqq (7)

ď

w
ÿ

O

ÿ

iPNC

|ΨEUipXiq|
ź

jPNC ,j‰i

ΨPj pXjqq (8)

ď
ÿ

iPNC

w
ÿ

O
|ΨEUipXiq|

ź

jPNC ,j‰i

ΨPj pXjqq (9)

ď
ÿ

iPNC

wi
ÿ

O
|ΨEUipXiq|

ź

jPNC ,j‰i

wj
ÿ

O
ΨPj pXjqq (10)

“ EUpbCPNC

wC
ÿ

O
ΨCpXCqq

Algorithm 1 Gradient Based Local Search GDD-ID(i)
Require: Influence diagram,M “ xC,D,P,U, T y, elimination

ordering O, weights wi associated with a variable Xi P O,
i-bound, iteration limit Miter , restarting limit Mres

Ensure: GDD upper bound Lbest for MEU,
1: Find D “ xGJpNC ,NSq, χ, ψy with the input i-bound
2: Allocate Ψi to GJ by factor labeling function ψ of D, where

Ψi P tppi, 0q@pi P P, p1, uiq@ui P Uu
3: ASSIGN-UNIFORM-WEIGHT(GJ)
4: INITIALIZE-COST(GJ) Ź Random or Minibucket cost shifting
5: iter=0, Lbest “ inf , Lold “ inf .
6: while iter ăMiter do
7: for pi, jq P NS do LÐ UPDATE-COST(GJ , pi, jq)
8: end for
9: for Xi P O do LÐ UPDATE-WEIGHT(GJ , Xi)

10: end for
11: if Lbest ą L then Lbest Ð L
12: else if abspLold´L

Lold
q ă ε then

13: ASSIGN-UNIFORM-WEIGHT(GJ)
14: INITIALIZE-COST(GJ)
15: end if
16: iter Ð iter ` 1, Lold Ð L
17: end while

Algorithm 2 Update-Cost by Randomized Gradient Descent
Require: Valuations at node i and j, Ψi, Ψj , initial step size η0,

final step size ηM iteration limit Miter ,
1: for (iter Ð 0; iter ăMiter; iter++) do
2: Evaluate Gradient∇L1 by equation (14)
3: Interpolate gradient scaling factor η Ð fpiter, η0, ηM q
4: Add random noise to gradient∇L1 Ð ∇L1 ` U
5: δUij Ð δUij ´ ηp∇L1q
6: ΨUi Ð ΨUi ` δUij , ΨUj Ð ΨUj ´ δUij
7: end for

Note that, the upper bound in Theorem 1 bounds both joint
probability and the total expected utility. The expected utility
component of the bound can be obtained by combining local
expected utilities of subproblems generated by the join-graph
structuring process with i-bound, hence space and time com-
plexity for computing the bound is exponential in i-bound.
The complexity can be easily decreased by decreasing the
i-bound, which also decrease the quality of the bound.

When combining the local expected utilities, the non-
negative weights w are distributed to each cluster C by wC .
The upper bound of the total expected utility is the sum of
the local expected utility

řwC

O ΨEUC pXCq at each cluster C
multiplied by marginalized probabilities of all other clusters
ś

iPNC ,i‰C
řwi

O ΨPipXiq.

Cost Shifting Scheme for Tightening the Bound
Let NS be the set of separators defined over the edges of
the join-graph GJpV,Eq as tSij : pi, jq P Eu, where each
separator Sij also defines the intersection of scopes at both
clusters Xij “ ψpiq X ψpjq. We can introduce arbitrary
auxiliary valuations at the nodes adjacent to the separator
Sij ; δijpXijq for cluster i and δjipXijq for cluster j such
that δijpXijq b δjipXijq “ p1, 0q. Then, the cost shifting
scheme can be applied to the GDD bound for MEU shown

in Theorem 1. The new bound incorporated with pairs of
probability and expected utility functions δjipXijq at each
separator Sij can be written as,

w
ÿ

O
pbCPNCΨCpXCq ď bCPNC

wC
ÿ

O
Ψ
1

CpXCq, (11)

where the cost shifted valuation at cluster C is combination
of all the cost shifting valuations introduced at the cluster,
Ψ
1

CpXCq “ ΨCpXCqbrbSCjPNSδCjpXCjqs. Now, we set the
reparameterized upper bound in equation (11) as an objective
function to minimize,

Lp∆, ωq :“
ÿ

iPNC

wi
ÿ

O
Ψ1EUipXiq

ź

jPNC ,j‰i

ÿ

wj

Ψ1Pj pXjq. (12)

The Lp∆, ωq is a function of the set of all cost shifting
functions ∆“tδij : pi, jqPEu and the set of all weights
ω “ twC : C P NCu.

Gradient based Optimization Algorithms
Algorithm 1 describes the outline of the gradient based local
search for optimizing the bound Lp∆, ωq. First, it performs
join-graph structuring with the input i-bound and decom-
poses the input influence diagram M to a graph of local
clusters NC . Then, each function f P PYU is allocated to
a cluster in GJ subject to the labeling function ψpfq of the
join graph decomposition, and each weight wC

i of the chance
variable Xi at cluster C is assigned uniformly by wC

i “
1
M ,

where the M is the number of clusters having Xi in its scope.
Before calling the inner optimization procedures, we also
initialize the bound by propagating mini-bucket messages or
uniform random costs δijpXijq,@Sij P NS between cluster i
and j as random initialization step of the local search. The in-
ner optimization loop uses block coordinate descent updates
that will be described in the following part. After each step
of local optimization, weights and costs are initialized again
when the improvement is less than ε to ensure the exploration
of other regions of the state space. We set ε “1e´4 in the
experiments.

Block Coordinate Descent For the efficiency and simplic-
ity, we present inner optimization procedures based on the
block coordinate descent, which divides the whole set of
optimization variables of Lp∆, ωq into set of costs ∆ and
weights ω. Hence, each set is updated while the other is fixed.
While optimizing Lp∆, ωq with respect to ∆, the local opti-
mization routine Update-CostpGJ , pi, jqq is called per edge
pi, jq P GJ . Similarily, Update-WeightpGJ , Xi) is called
per variable Xi P O to optimize the bound with respect to
the weights wC

i associated with Xi.

Updating Costs For the local updates involving a cost shift-
ing pair pδPij , δEUij q, we will restrict the form of pairs to
be p1, δUij q with introducing a new notation for the normal-
ized utility component ΨU pXq :“ ΨEU pXq{ΨP pXq. Note,
δEUij “ δUij when δPij “ 1. This choice of fixing δPij “ 1
renders the nonconvex and complicated global objective func-

tion Lp∆, ωq in equation (12) to a simpler convex local ob-
jective function L1pδUij q as follows.

L1pδUij q“ρi

wi
ÿ

O
ΨPi |rΨUi δ̀Uij s|̀ ρj

wj
ÿ

O
ΨPj |rΨUi δ́Uij s|,

(13)
where ρi “

řwi

O ΨEUi{
řwi

O ΨPi . The gradient of L1 with
respect to δUij can be evaluated by

BL1

BδUij
“ ρi

ÿ

XizXij

ΛipΨEUiq

ΨUi

´ρj
ÿ

XjzXij

ΛjpΨEUj q

ΨUj

, (14)

where ΛipZ0pXqq is called a pseudo belief of the cluster i
(Liu 2014). When evaluating a pseudo belief, the Z0pXq can
be either probability component ΨPi or expected utility com-
ponent ΨEUi . In equation (14), pseudo beliefs are evaluated
by expected utility components. Let Xk be the k-th variable
of O associated with wk, and Xi:j denotes the sequence of
variables from the i-th variable to j-th variable in O. Then,
ZipXi`1:|O|q is defined recursively by a partial powered-
sum up to X1:i by ZipXi`1:|O|q “

řwi
Xi
Zi´1pXi:|O|q, and

ΛipZ0pXqq “
ś

k“1..nr
Zk´1

Zk
s

1
wk .

In principle, any non-linear optimization routine could be
used to minimize the bound. From experimental evaluation,
we observed that the computation of gradient and objective
function becomes numerically unstable when weights wC

i are
small or expected utility values are close to zero. In addi-
tion, the number of parameters in the cost shifting functions
δUij increases exponentially in i-bound, which challenges
sophisticated second-order optimization routines. Therefore,
we modified gradient descent to perturb the analytic gradient
with a random noise vector with varying step sizes as de-
scribed in Algorithm 2. The modification from the standard
gradient descent is in line 4, adding a random noise U to the
gradient ∇L1. Note that, Algorithm 2 evaluates the gradient
only once in each iteration and skips testing the step size
of usual gradient descent, thus it willing to accept inferior
solutions. The step size of the randomized gradient η is deter-
mined by a step interpolation function fpiter, η0, ηM q which
decreases η by 1{iter. In the experiment, we set tuning pa-
rameters of f as η0 “ 0.1, ηM “ 1e´4, and Miter “ 20,
and sampled noise from Up´1, 1q.

Updating Weights For updating the weights associated
with a chance variable Xi, we used exponentiated gradi-
ent descent algorithm (Ping, Liu, and Ihler 2015). The
exponentiated gradient descent algorithm transfroms opti-
mization with a set of constraints,

ř

wji “ 1 and 0 ď wji ,
to unconstrained by the following parameterization wC

i “

exppvCi q{
ř

αPNC ,XiPχpαq exppvαi q.
The gradient of Lp∆, ωq with respect to a single weight

wC
i at cluster C can be evaluated by

ρCHEUC pXi|Xi`1:|O|q̀
ÿ

jPNC ,j‰i
ρjHPC pXi|Xi`1:|O|q. (15)

The equation (15) involves the entropy terms of pseudo
marginals of expected utility and probability components

Ns, A, No T, Nv , Nf , w T, Nv , Nf , w

POMDP1 3,3,2 5,23,28,12 10,43,53,23
POMDP2 4,4,1 5,29,34,13 10,54,64,22
POMDP3 5,7,3 5,50,60,24 10,95,115,42

MDP1 6,8,- 10,76,106,10 20,146,206,10
MDP2 10,6,- 10,120,150,14 20,230,290,15
MDP3 16,8,- 10,186,256,25 20,356,496,26

Table 1: Random MDP/POMDP Problem Statistics.

ř

X1:i´1
ΛCpΨEUC q and

ř

X1:i´1
ΛCpΨPC q. Following the

standard exponentiated gradient descent, all the weights are
updated by

wC
i Ð wC

i exppηr
BL

BwC
i

´
ÿ

jPNC ,XiPχpjq

wji
BL

BwC
j

sq (16)

and normalized to ensure
ř

jPNC ,XiPχpjq w
j
i “ 1. In the

experiments, the step size η in equation (16) was found by
the line search with Armijo rule (Nocedal and Wright 2006).

Experimental Evaluation
We evaluated the proposed gradient based local search GDD-
ID(i) on influence diagrams generated from random factored
MDP/POMDP problems with a finite step size T. For refer-
ence, we also solved the same problem instances with SAR-
SOP (Kurniawati, Hsu, and Lee 2008) with discounting factor
0.999 and compared the expected utility by simulating the
infinite horizon policy for the length T, providing a lower
bound of the optimal finite horizon MEU.

The experiment was designed to explore the quality of
upper bounds by varying the i-bounds and the number of
iterations on the random problem instances with controlled
complexity. Table 1 summarizes the problem statistics of
structure of factored MDP/POMDPs from which we gener-
ated 6 random instances. The first column characterizes the
structure of MDP/POMDPs The Ns is the number of binary
state variables, A is number of actions, and No is the number
of binary observation variables. Influence diagrams were
generated by unrolling MDP/POMDP for T time steps, Nv is
the total number of variables Nf is the total number of func-
tions, and w is the average constrained induced width. The
problem statistics were chosen to reflect common benchmark
instances. For the POMDP models, we matched pNs, A,Noq
to produce models to reflect the sizes of common POMDP
benchmark instances. The finite time steps were also chosen
from common ranges shown in the probabilistic planning
literature. The prototype of GDD-ID(i) is implemented in
Python script language, we allowed 1 hour time limit, 1000
iteration limit, and provided i-bounds from 1, 5, 10, and 15.

Quality of GDD Bound for MEU
Table 2 reports the quality of the upper bound Lgdd for each
problem instance. When problem instances can be solved
exactly by variable elimination, the quality was measured by
the ratio of the upper bound divided by the exact MEU,Q˚ “
Lgdd{L

˚. If a problem instance cannot be solved exactly, we
used the sample average of the expected utility by simulating

T short (MDPs 10, POMDPs 5) long (MDPs 20, POMDPs 10)

Instance 0 1 2 0 1 2

Quality Q˚ Qmbe Q˚ Qmbe Q˚ Qmbe Q˚ Qmbe Q˚ Qmbe Q˚ Qmbe

MDP
1 1.26 -42.71 1.31 -41.98 1.38 -37.8 1.3 -99.51 1.33 -83.55 1.45 -80.72
2 1.47 -33.58 1.43 -22.51 1.62 -43.18 1.49 -68.22 1.44 -53 1.63 -91
3 - -103.37 - -111.01 - -106.15 - -226.75 - -210.8 - -239.23

POMDP
1 2.23 -4.05 1.79 -1.50 2.19 -3.36 4.06 -4.16 1.45 -1.71 1.88 -0.76
2 2.54 -1.84 2.17 -4.08 1.36 -1.08 4.91 -3.27 1.42 -4.50 1352.56 -4.30
3 3.28 -2.29 21.06 -1.80 17.28 -1.99 620.36 -14.37 1352.56 -4.58 5168.76 -7.39

Table 2: Quality of GDD bound. Q˚ is the ratio between the Lgdd and MEU (or lower bound of MEU simulated by SARSOP algorithm when
exact solution is unknown.) Qmbe is the improvement of the bound in log scale. Time steps are 10 and 20 for MDP instances, and 5 and 10 for
POMDP instances.

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

6

7

8

9

10

11

12

E
x
p
e
ct

e
d
 U

ti
lit

y
 (

Lo
g
)

GDD(i=5), 3425.62
MBE bound(i=5)
Exact Solution(w=15), 1538.70

(a) POMDP-1-0-5 T=5, w=15

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

7

8

9

10

11

E
x
p
e
ct

e
d
 U

ti
lit

y
 (

Lo
g
)

GDD(i=10), 5329.73
GDD(i=15), 4514.35
MBE bound(i=10)
MBE bound(i=15)
Exact Solution(w=20), 3123.048

(b) POMDP-1-1 T=10, w=20

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

6

8

10

12

14

16

E
x
p
e
ct

e
d
 U

ti
lit

y
 (

Lo
g
)

GDD(i=5), 34844.08
GDD(i=10), 3149.91
MBE bound(i=5)
MBE bound(i=10)
Exact Solution (w=13), 1454.72

(c) POMDP-2-1 T=5, w=13

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

8

10

12

14

16

18

E
x
p
e
ct

e
d
 U

ti
lit

y
 (

Lo
g
)

GDD(i=10), 26813.59
GDD(i=15), 11599.30
MBE bound(i=10)
MBE bound(i=15)
SARSOP (w=21), 3316.66

(d) POMDP-2-2 T=10, w=21

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

8

10

12

14

16

18

E
x
p
e
ct

e
d
 U

ti
lit

y
 (

Lo
g
)

GDD(i=10), 76355.03
GDD(i=15), 49526.08
MBE bound(i=10)
MBE bound(i=15)
SARSOP (w=26), 2351.94

(e) POMDP-2-2 T=10, w=26

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

20

40

60

80

100

E
x
p
e
ct

e
d
 U

ti
lit

y
 (

Lo
g
)

GDD(i=5), 15752.09
MBE bound(i=5)
Exact Solution (w=11), 12145.67

(f) MDP-1-0 T=20, w=11

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

20

40

60

80

100

E
x
p
e
ct

e
d
 U

ti
lit

y
 (

Lo
g
)

GDD(i=5), 8674.46
GDD(i=10), 9338.29
MBE bound(i=5)
MBE bound(i=10)
Exact Solution (w=14), 6373.80

(g) MDP-2-0 T=10, w=14

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

50

100

150

200

E
x
p
e
ct

e
d
 U

ti
lit

y
 (

Lo
g
)

GDD(i=5), 16085.20
GDD(i=10), 17487.49
MBE bound(i=5)
MBE bound(i=10)
Exact Solution (w=14), 12102.17

(h) MDP-2-1 T=20, w=14

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

0

50

100

150

200

250

300

E
x
p
e
ct

e
d
 U

ti
lit

y
 (

Lo
g
)

GDD(i=10), 21002.66
GDD(i=15), 22000.60
MBE bound(i=10)
MBE bound(i=15)

(i) MDP-3-1 T=10, w=15

Figure 1: Anytime convergence behavior of GDD-ID(i). Each subplot shows the trace of the GDD-ID(i) from the two largest
i-bounds applicable to the problem instance. The upper horizontal lines are mini-bucket bounds found at the initialization step
and the lower horizontal lines are the exact MEU or the lower bound for MEU simulated by SARSOP.

an infinite horizon policy by SARSOP (Kurniawati, Hsu, and
Lee 2008) for 100 times. In the table, we show results from
the maximum applicable i-bound tried. We also propagated
mini-bucket elimination messages and uniform random costs
at the initialization step. Qmbe “ lnpLgdd{Lmbeq shows the
improvement from the mini-bucket bound Lmbe to Lgdd in
log scale. Compared with Lmbe, Lgdd presents significant
improvements on all problem instances, and Lgdd is within a
small constant factor from the optimal bound. The quality of
the bound gets looser as the gap between the i-bound and the
induced width increases. In the case of instances generated
from MDP-3 structure, GDD generated upper-bounds for
the problems with |S| “ 216 while variable elimination and
SARSOP failed.

Convergence of GDD Bound for MEU
Figure 1 shows the anytime convergence behavior of Lgdd
on several problem instances. We can observe that the
higher i-bound produces tighter upper bounds on all in-
stances. However, the higher i-bound generates larger scope
sized functions and slows down the local updating routines.
In the case of the instance in 1(b), GDD(i=15) iterated 51
times but GDD(i=10) iterated 381 times with 81 restarts.
In all instances except 1(a) and 1(c), the gradient based
local search almost converged to the local optimum after
the first outerloop iteration. In 1(d), GDD(i=15) achieved
Lgdd “ 11, 674.47 after the first iteration (took 996 sec-
onds) while the Lgdd at the termination was only 11, 599.30.
The spikes in 1(a), 1(b), and 1(c) show the restarting of
the inner loop optimization. For the problem instance 1(c),
GDD-ID(i=10) immediately improved after the first restart-
ing at 2118 seconds. The bound before restarting was getting
stuck at a local optima of around 3608 for almost 2000 sec-
onds. However, restarting immediately produced a better
Lgdd “ 3184 only in two iterations. This instance illustrates
the benefit of random restarting. Nevertheless, the rest of the
6 instances in Figure 1 spent the 1 hour time budget only for
the first cycle due to the overhead of dealing with large scale
gradient updates.

Conclusion and Future Work
In this paper, we proposed a new bounding scheme for the
maximum expected utility of influence diagrams. First, we
derived the bounding inequality that interchanges the combi-
nation and elimination operator for the valuation algebra for
influence diagrams in Theorem 1. Then, we applied the gen-
eralized dual decomposition bound to the join-graph decom-
position of influence diagram that decomposes a sequential
decision problem into a collection of independent subprob-
lems. The proposed scheme bounds the maximum expected
utility by combining local expected utilities and tightens the
bound by reparameterizing the normalized utility functions.
We also demonstrated a gradient based local search algorithm
by evaluating random MDP/POMDP instances.

From the experimental evaluation, we observed positive
aspects of GDD-ID(i): (1) it converged to a local optimum in
a small number of iterations with the noisy gradient update
that does not require any function evaluations, (2) random

restarting helped GDD-ID(i) to escape local optima, and (3)
GDD-ID(i) can generate optimistic heuristics for problems
with a large state space. However, there are several issues that
need to be addressed in future. The tested GDD-ID(i) code
implemented in Python language was not efficient enough
to perform larger scale experiments that could empirically
verify the positive sides of the algorithm.

The proposed scheme can be used as a new class of heuris-
tic generators for the search based probabilistic planners.
Since sequential decisions are localized to a set of indepen-
dent clusters, it is interesting future work to extend the current
GDD-ID(i) to guide online probabilistic planning in the form
of dynamic heuristic. GDD-ID(i) produces not only the upper
bound for the maximum expected utility but also generates
a cost-optimized collection of sub-decision problems that
can be immediately served as a sub-optimal strategy. This
is an important aspect in probabilistic planning since the
optimal strategy is exponential in the length of the history.
GDD-ID(i) can generate a compressed strategy in a princi-
pled manner and the space complexity can be easily adjusted
by the i-bound.

Acknowledgments
This work was supported in part by NSF grants IIS-1526842
and IIS-1254071, and by the US Air Force under Contract
No. FA8750-14-C-0011 and FA9453-16-C-0508.

References
Babaki, B.; Guns, T.; and De Raedt, L. 2017. Stochastic
constraint programming with and-or branch-and-bound. In
Proceeding of the 26th International Joint Conference on
Artificial Intelligence.
Cheng, Q.; Liu, Q.; Chen, F.; and Ihler, A. T. 2013. Varia-
tional planning for graph-based mdps. In Advances in Neural
Information Processing Systems 26, 2976–2984.
Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for bounded inference. Journal of the ACM (JACM)
50(2):107–153.
Dechter, R.; Kask, K.; and Mateescu, R. 2002. Iterative join-
graph propagation. In Proceedings of the 18th Conference
on Uncertainty in Artificial Intelligence, 128–136.
Dechter, R. 1999. Bucket elimination: A unifying framework
for reasoning. Artificial Intelligence 113(1):41–85.
Dechter, R. 2000a. An anytime approximation for optimiz-
ing policies under uncertainty. In AIPS-2000 Workshop on
Decision Theoretic Planning.
Dechter, R. 2000b. A new perspective on algorithms for
optimizing policies under uncertainty. In Proceedings of
the 5th Conference on Artificial Intelligence and Planning
Systems, 72–81.
Garcia-Sanchez, D., and Druzdzel, M. J. 2004. An efficient
sampling algorithm for influence diagrams. In Proceedings of
the Second European Workshop on Probabilistic Graphical
Models (PGM–04), 97–104.
Hansen, E. A.; Shi, J.; and Khaled, A. 2016. A pomdp ap-
proach to influence diagram evaluation. In Proceeding of the
25th International Joint Conference on Artificial Intelligence.

Howard, R. A., and Matheson, J. E. 2005. Influence diagrams.
Decision Analysis 2(3):127–143.
Jensen, F.; Jensen, F. V.; and Dittmer, S. L. 1994. From
influence diagrams to junction trees. In Proceedings of the
10th international conference on Uncertainty in artificial
intelligence, 367–373.
Khaled, A.; Hansen, E. A.; and Yuan, C. 2013. Solving
limited-memory influence diagrams using branch-and-bound
search. In Proceedings of The 29th Conference on Uncer-
tainty in Artificial Intelligence, 222–231.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. Sarsop:
Efficient point-based pomdp planning by approximating op-
timally reachable belief spaces. In Robotics: Science and
systems, volume 2008. Zurich, Switzerland.
Lauritzen, S. L., and Nilsson, D. 2001. Representing and
solving decision problems with limited information. Man-
agement Science 47(9):1235–1251.
Liu, Q., and Ihler, A. 2011. Bounding the partition func-
tion using hölder’s inequality. In Proceedings of the 28th
International Conference on Machine Learning, ICML ’11,
849–856.
Liu, Q., and Ihler, A. 2012. Belief propagation for structured
decision making. In Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence, 523–532.
Liu, Q. 2014. Reasoning and Decisions in Probabilistic
Graphical Models–A Unified Framework. University of Cali-
fornia, Irvine.
Marinescu, R. 2010. A New Approach to Influence Diagrams
Evaluation. Springer London. 107–120.
Mauá, D. D., and Cozman, F. G. 2016. Fast local search
methods for solving limited memory influence diagrams. Int.
J. Approx. Reasoning 68(C):230–245.
Mauá, D. D.; de Campos, C. P.; and Zaffalon, M. 2012.
Solving limited memory influence diagrams. Journal of
Artificial Intelligence Research 44:97–140.
Mauá, D. D. 2016. Equivalences between maximum a poste-
riori inference in bayesian networks and maximum expected
utility computation in influence diagrams. Int. J. Approx.
Reasoning 68(C):211–229.
Melibari, M. A.; Poupart, P.; and Doshi, P. 2016. Sum-
product-max networks for tractable decision making. In Pro-
ceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, 1846–1852.
Nocedal, J., and Wright, S. J. 2006. Numerical Optimization,
Second Edition. Springer New York.
Ortiz, L. E., and Kaelbling, L. P. 2000. Sampling methods
for action selection in influence diagrams. In Proceedings of
The 16th Conference on Uncertainty in Artificial Intelligence,
378–385.
Ping, W.; Liu, Q.; and Ihler, A. T. 2015. Decomposition
bounds for marginal map. In Proceedings of Advances in
Neural Information Processing Systems 28, 3267–3275.
Pralet, C.; Schiex, T.; and Verfaillie, G. 2006. From influence
diagrams to multi-operator cluster dags. In Proceedings of

the 22nd Conference on Uncertainty in Artificial Intelligence,
393–400.
Shachter, R. D. 1986. Evaluating influence diagrams. Oper-
ations research 34(6):871–882.
Shenoy, P. P., and Shafer, G. 1990. Axioms for probability
and belief-function propagations. In Proceedings of The 4th
Conference on Uncertainty in Artificial Intelligence, 169–
198.
Sontag, D.; Globerson, A.; and Jaakkola, T. 2011. Introduc-
tion to dual decomposition for inference. Optimization for
Machine Learning 1(219-254):1.
Tatman, J. A., and Shachter, R. D. 1990. Dynamic program-
ming and influence diagrams. IEEE transactions on systems,
man, and cybernetics 20(2):365–379.
Yuan, C.; Wu, X.; and Hansen, E. A. 2010. Solving mul-
tistage influence diagrams using branch-and-bound search.
In Proceedings of the 26th Conference on Uncertainty in
Artificial Intelligence, 691–700.

