
On the Impact of Subproblem Orderings on Anytime
AND/OR Best-First Search for Lower Bounds

William Lam and Kalev Kask and Rina Dechter 1 and Javier Larrosa 2

Abstract. Best-first search can be regarded as anytime scheme
for producing lower bounds on the optimal solution, a characteris-
tic that is mostly overlooked. We explore this topic in the context of
AND/OR best-first search, guided by the MBE heuristic, when solv-
ing graphical models. In that context, the impact of the secondary
heuristic for subproblem ordering may be significant, especially in
the anytime context. Indeed, our paper illustrates this, showing that
the new concept of bucket errors can advise in providing effective
subproblem orderings in AND/OR search.

1 INTRODUCTION
AND/OR best-first search (AOBF) is guided by two heuristic evalua-
tion functions. The first, f1, evaluates the potential cost of the best so-
lution extending a current partial solution graph. The second heuris-
tic, f2, prioritizes the tip nodes of a current partial solution which will
be expanded next. Quoting Pearl (page 54): ”These two functions,
serving in two different roles, provide two different types of esti-
mates: f1 estimates some properties of the set of solution graphs that
may emanate from a given candidate base, whereas f2 estimates the
amount of information that a given node expansion may provide re-
garding the alleged priority of its hosting graph. Most work in search
theory focus on the computation of f1, whereas f2 is usually chosen
in an ad-hoc manner.” [6]
Contributions. We explore the impact of the secondary heuristic
in context of AOBF [4] for generating lower bounds in an anytime
manner for min-sum problems over a graphical model (e.g., MAP in
Markov networks [7] and weighted CSPs). Our proposed secondary
heuristic for subproblem ordering is based on bucket errors [2]. We
show empirically on three benchmarks that bucket errors provide rel-
evant information on improving the lower bound when expanding a
particular node. In particular, it can improve the anytime lower bound
often, when compared to a baseline ordering. As far as we know, this
is the first investigation of subproblem ordering in AOBF and of any-
time best-first search.

2 BACKGROUND
Graphical Models A graphical model is a tupleM = (X,D,F),
where X = {Xi : i ∈ V } is a set of variables indexed by a set V ,
D = {Di : i ∈ V } is a set of finite domains of values for each
Xi, and F is a set of discrete functions over subsets of X. We focus

1 University of California, Irvine, USA, {willmlam, kkask,
dechter}@ics.uci.edu. Supported in part by NSF grants IIS-1526842,
and IIS-1254071, the US Air Force under Contract No. FA8750-14-C-
0011 under the DARPA PPAML program.

2 UPC Barcelona Tech, Spain, larrosa@lsi.upc.edu. Supported in part by
MINECO/FEDER under project TIN2015-69175-C4-3-R.

on the min-sum problem, C∗ = minx

∑
f∈F f(x), which covers a

wide range of reasoning problems such as MAP in graphical models
or cost minimization in weighted constraint satisfaction problems.
Primal graph, pseudo-tree. The primal graph G of a graphical
modelM is a graph where each variable Xi is represented by a node
and edges connect variables which appear in the same scope of any
f ∈ F. A pseudo-tree T = (V,E′) of the primal graph G = (V,E)
is a rooted tree over the same nodes V such that every edge in E−E′
connects a node to an ancestor in T .
AND/OR Search. The search space of a graphical model can be
guided by the decomposition displayed in the pseudo tree, yielding
an AND/OR search space. A (partial) solution of the problem is a
subtree of the space known as a (partial) solution tree.
AND/OR best-first (AOBF) is a state-of-the-art algorithm, a vari-
ant of the AO* algorithm [5], specialized for the AND/OR search
spaces over graphical models [4]. Keeping track of the explicated
search space in memory, the algorithm maintains the current best
partial solution tree at every step, together with an updated current
best cost-estimate at each of the nodes, whose value at the root is the
current best lower-bound estimate. When expanding the current par-
tial solution tree, the algorithm orders its multiple AND leaf nodes,
which corresponds to prioritizing between different subproblems and
is where the f2 heuristic comes into play. In most earlier work, the
primary heuristic f1 is used for subproblem orderings. Also, while
the algorithm was considered only as a purely exact algorithm, the
sequence of lower bounds generated at every step at the root node,
can be seen as providing an anytime lower bound on the solution.
Mini-Bucket Elimination (MBE) [1]. The MBE scheme is an ap-
proximation which is obtained by applying the exact bucket elimina-
tion algorithm [1] to a relaxation of the problem. The MBE algorithm
bounds the buckets’ scopes by a parameter i, called i-bound, via par-
titioning the buckets into mini-buckets, which can be viewed as du-
plicating the bucket’s variable. This yields lower bounds which are
used as heuristics to guide AND/OR search algorithms. By design,
MBE’s time and space complexity is exponential in the i-bound.
Bucket Error [2]. The notion of bucket error was introduced re-
cently as a function that captures the local error introduced by the
mini-buckets. It is defined as the difference between the function-
message that would have been computed in an individual bucket
without partitioning and the message computed by MBE.

3 BUCKET ERRORS FOR ORDERING

Consider an encountered partial solution tree t that has the cur-
rently lowest f1 but cannot be extended to an optimal solution. If
f1(t) < C∗, where C∗ is the value of the optimal solution, the selec-
tion of which of its subproblems to expand next (the f2 function) can



Figure 1: Average rankings over the normalized time relative to the baseline. Lower is better.

influence significantly the number of nodes extending it which will
be explored eventually. It is therefore desirable to explore subprob-
lems that yield the largest increase in its heuristic evaluation function
first, to discover asap that its least cost extension is actually larger
than C∗, thus avoiding the expansion of alternative branches (Best-
first search will never expand a partial solution having f1 > C∗.)
Overall, we wish to prune partial solution graphs t that lead to sub-
optimal solutions in as few node expansions as possible. Therefore,
f2 should prefer a subproblem leading to the largest increase in f1.

With this observation, the bucket error is a natural choice for sub-
problem ordering, as it can be shown that it approximates the in-
crease in f1 [2]. We extend this to the notion of subtree error, where
the bucket error of children are propagated to their ancestors to more
accurately capture the mini-bucket error in an entire subproblem. As
done before, the bucket-error associated with a variable can be ap-
proximated by taking absolute/relative average errors across a sam-
ple of the instantiations to the relevant bucket-error function, yield-
ing a single constant value representing the error magnitude for each
variable [2]. To generalize, we also use error functions for each vari-
able. Since some error functions may not fit in memory, we bound
the scopes of the error functions by removing variables and comput-
ing the average/relative error for each instantiation of the remaining
variables. This yields 4 variants of our subproblem ordering heuristic
(absolute/relative error and constant/scope-bounded error functions).

4 RESULTS AND CONCLUSION
We compare the 4 variants of our approach against the baseline sub-
problem ordering based on the heuristic evaluation function, f1. We
used mini-bucket elimination with moment-matching (MBE-MM)
[3] for all experiments while varying the i-bound to show how differ-
ing amounts of error impact the performance. The pseudo-tree was
fixed for all settings.

In Figure 1, we aggregated the results over each benchmark. We
normalized the time scale for each instance to that of the baseline,
ranked the bounds yielded by each variant across time, and aggre-
gated across the instances by averaging. The number of instances

varies with the different i-bounds since some instances run out of
memory when computing the MBE heuristic with higher i-bounds.

We observe that the baseline was better for the pedigree instances,
especially at the higher i-bounds. This is due to how the errors in the
heuristic here are relatively low, and are therefore less informative.
For the more difficult promedas and type4 benchmarks, there is more
error in the heuristic, and our proposed subproblem ordering heuris-
tics indeed improve over the baseline ordering. In particular, at the
lowest i-bounds, nearly all of our methods improve over the baseline.
At higher i-bounds, we see that the Relative-ScopeBounded variant
outperforms the baseline the most and is the best performing of our
4 variants. We also improve as we move forward in time since the
impact of the initial overhead of computing these heuristics becomes
less relevant. Overall, our results show that the choice of the sub-
problem ordering heuristic impacts the performance of AOBF. Our
method should be applied to any type of AND/OR best-first search,
and future work includes extending to the various memory-efficient
A* variants such as IDA*. For more details on the algorithms and
experiments, a longer version of this paper is available here.3

REFERENCES
[1] Rina Dechter, Reasoning with Probabilistic and Deterministic Graphical

Models: Exact Algorithms, Synthesis Lectures on Artificial Intelligence
and Machine Learning, Morgan & Claypool Publishers, 2013.

[2] Rina Dechter, Kalev Kask, William Lam, and Javier Larrosa, ‘Look-
ahead with mini-bucket heuristics for mpe’, in AAAI, (2016).

[3] Alexander Ihler, Natalia Flerova, Rina Dechter, and Lars Otten, ‘Join-
graph based cost-shifting schemes’, in Uncertainty in Artificial Intelli-
gence (UAI), 397–406, AUAI Press, Corvallis, Oregon, (August 2012).

[4] Radu Marinescu and Rina Dechter, ‘Memory intensive and/or search for
combinatorial optimization in graphical models’, Artif. Intell., 173(16-
17), 1492–1524, (2009).

[5] N. J. Nilsson, Principles of Artificial Intelligence, Tioga, Palo Alto, CA,
1980.

[6] J. Pearl, Heuristics: Intelligent Search Strategies, Addison-Wesley, 1984.
[7] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kauf-

mann, 1988.

3 http://www.ics.uci.edu/˜dechter/publications.html

http://www.ics.uci.edu/~dechter/publications.html

	INTRODUCTION
	BACKGROUND
	BUCKET ERRORS FOR ORDERING
	RESULTS AND CONCLUSION

