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Abstract
Marginal MAP is known to be a difficult task for
graphical models, particularly because the evalu-
ation of each MAP assignment involves a condi-
tional likelihood computation. In order to minimize
the number of likelihood evaluations, we focus in
this paper on best-first search strategies for explor-
ing the space of partial MAP assignments. We an-
alyze the potential relative benefits of several best-
first search algorithms and demonstrate their effec-
tiveness against recent branch and bound schemes
through extensive empirical evaluations. Our re-
sults show that best-first search improves signifi-
cantly over existing depth-first approaches, in many
cases by several orders of magnitude, especially
when guided by relatively weak heuristics.

1 Introduction
Graphical models provide a powerful framework for reason-
ing with probabilistic and deterministic information. These
models use graphs to capture conditional independencies
among variables, allowing a concise representation of knowl-
edge as well as efficient graph-based query processing algo-
rithms. Combinatorial maximization, or maximum a posteri-
ori (MAP) tasks arise in many applications and often can be
efficiently solved by search schemes.

The marginal MAP problem distinguishes between max-
imization variables (called MAP variables) and summation
variables (the others). Marginal MAP is NPPP-complete
[Park, 2002]; it is difficult not only because the search space
is exponential in the number of MAP variables, but also be-
cause evaluating the probability of any full instantiation of
the MAP variables is PP-complete [Roth, 1996]. Algorithmi-
cally, its difficulty arises in part from the fact that the variable
elimination operations (max and sum) must be applied in a
constrained, often far more costly order.

Up to now, search-based marginal MAP solvers have been
based on depth-first branch and bound (DFBnB). Searching in
a best-first manner is known to be superior, but requires more
memory than depth-first search and is therefore less popu-
lar for graphical models. Yet, memory effective best-first
search algorithms such as recursive best-first search [Korf,
1993] have appeared in the context of pure optimization tasks

(MAP/MPE) in graphical models [Marinescu and Dechter,
2009b; Kishimoto and Marinescu, 2014]. Their potential for
the marginal MAP task is explored here for the first time to
the best of our knowledge.

Contributions: Our paper presents and explores the
power of several best-first search schemes for solving
marginal MAP queries. We discuss the potential benefit of
best-first search and demonstrate the effectiveness of several
variants against state of the art methods, particularly a recent
depth-first branch and bound approach. Through extensive
empirical evaluations we show not only orders-of-magnitude
improvements over the state of the art, but also the ability to
solve problem instances well beyond the reach of previous
approaches.

In Section 2 we provide background and review earlier
work. Section 3 describes and analyzes the algorithms, Sec-
tion 4 provides empirical evaluation and Section 5 concludes.

2 Background
A graphical model is a tuple M = 〈X,D,F〉, where X =
{Xi : i ∈ V } is a set of variables indexed by set V and
D = {Di : i ∈ V } is the set of their finite domains of
values. F = {ψα : α ∈ F} is a set of discrete positive real-
valued local functions defined on subsets of variables, where
we use α ⊆ V and Xα ⊆ X to indicate the scope of function
ψα, i.e., Xα = var(ψα) = {Xi : i ∈ α}. The function
scopes yield a primal graph whose vertices are the variables
and whose edges connect any two variables that appear in the
scope of the same function. The graphical modelM defines
a factorized probability distribution on X, namely:

P (X) =
1

Z

∏
α∈F

ψα

where the partition function, Z, normalizes the probability.
Let XM = {X1, ..., Xm} be a subset of X called “MAP

variables” and XS = X \ XM be the complement of XM ,
called “sum variables”. The Marginal MAP (MMAP) prob-
lem seeks an assignment x∗M to variables XM having maxi-
mum probability. This requires access to the marginal distri-
bution over XM , which is obtained by summing out variables
XS ; this yields the expression:

x∗M = argmax
XM

∑
XS

∏
α∈F

ψα (1)



(a) Primal graph (b) Pseudo tree

Figure 1: A simple graphical model.

If XS = ∅ then the problem is the maximum a posteriori
(MAP) inference (also known as MPE). The marginal MAP
problem is significantly more difficult as noted earlier. Prac-
tically speaking, the main difficulty arises because the max
and sum operators in Eq. (1) do not commute, which restricts
the elimination orders to those in which all variables XS are
eliminated (by summation) before any variable in XM can be
eliminated (by maximization).

2.1 AND/OR Search Spaces
Significant recent improvements in search for marginal MAP
inference have been achieved by using AND/OR search
spaces, which often capture problem structure far better
than standard OR search methods [Marinescu et al., 2014;
Dechter and Mateescu, 2007]. The AND/OR search space is
defined relative to a pseudo tree of the primal graph, which
captures problem decomposition.

DEFINITION 1 (pseudo tree, valid) A pseudo tree of an
undirected graph G = (V,E) is a directed rooted tree T =
(V,E′) such that every arc of G not included in E′ is a back-
arc in T connecting a node in T to one of its ancestors. The
arcs inE′ may not all be included inE. A pseudo tree T ofG
is valid for MAP variables XM if T restricted to XM forms
a connected start pseudo tree having the same root as T .

Example 1 Figure 1(a) shows the primal graph of a sim-
ple graphical model with 8 bi-valued variables and 10 bi-
nary functions. The MAP and SUM variables are XM =
{A,B,C,D} and XS = {E,F,G,H}, respectively. Figure
1(b) displays a valid pseudo tree whose MAP variables form
a start pseudo tree.

Given a graphical model M = 〈X,D,F〉 with primal
graph G and pseudo tree T of G, the AND/OR search tree
ST based on T has alternating levels of OR nodes corre-
sponding to the variables, and AND nodes corresponding to
the values of the OR parent’s variable, with edges weights ex-
tracted from the original functions F (for details see Dechter
and Mateescu [2007]). Identical sub-problems, identified by
their context (the partial instantiation that separates the sub-
problem from the rest of the problem graph), can be merged,
yielding an AND/OR search graph. Merging all context-
mergeable nodes yields the context minimal AND/OR search
graph, denoted CT . The size of CT is exponential in the in-

Figure 2: AND/OR search graph.

duced width of G along a depth-first traversal of T (i.e., the
constrained induced width).

DEFINITION 2 (MMAP solution tree) A solution subtree
x̂M of CT relative to the MAP variables XM is a subtree
of CT restricted to XM that: (1) contains the root of CT ; (2)
if an internal OR node n ∈ CT is in x̂M , then n is labeled
with a MAP variable and exactly one of its children is in x̂M ;
(3) if an internal AND node n∈CT is in x̂M then all its OR
children which denote MAP variables are also in x̂M .

Each node n in CT can be associated with a value v(n);
for MAP variables v(n) captures the optimal marginal MAP
value of the conditioned sub-problem rooted at n, while for a
sum variable it is the likelihood of the partial assignment de-
noted by n. Clearly, v(n) can be computed recursively based
on the values of n’s successors: OR nodes by maximization
or summation (for MAP or sum variables, respectively), and
AND nodes by multiplication.

Example 2 Figure 2 displays the context minimal AND/OR
search graph based on the valid pseudo tree from Figure 1(b)
(the contexts are shown next to the pseudo tree nodes). A
MMAP solution subtree corresponding to the MAP assign-
ment (A = 0, B = 1, C = 1, D = 0) is shown in red.

2.2 Earlier Work: Depth-First AOBB for MMAP
Earlier work on MMAP used a heuristic based on an exact
solution to an unconstrained ordering, introduced by Park
and Darwiche [2003] and then refined by Yuan and Hansen
[2009]. These techniques appear to work quite well when
the unconstrained ordering results in a small induced width.
However, in many situations this is a serious limitation.

More recently, depth-first AND/OR Branch and Bound
(AOBB) search algorithms that explore the context minimal
AND/OR search graph were shown to be highly effective
for marginal MAP [Marinescu et al., 2014], often far su-
perior to the earlier schemes. AOBB for marginal MAP,
(sometimes explicitly denoted as AOBB-MMAP) traverses
the context-minimal AND/OR search graph in a depth-first
manner guided by an upper-bound heuristic function. It inter-
leaves forward expansion of the current partial solution tree
x̄ with a backward cost revision step that updates node val-
ues, until search terminates. When expanding an OR node
labeled by a MAP variable, AOBB-MMAP attempts to prune
unpromising domain values as part of a branch and bound



scheme. Specifically, it compares the upper bound heuristic
function f(x̄) of the current partial solution subtree x̄ with
the current best lower bound L obtained from the best so-
lution seen so far. It prunes the node associated with x̄ if
f(x̄) ≤ L. The optimal marginal MAP value (and the corre-
sponding assignment to the MAP variables) is obtained after
the root node is fully evaluated.

The effectiveness of AOBB greatly depends on the quality
of the upper bound heuristic function that guides the search.
In the case of MMAP, the algorithm uses a recently developed
weighted mini-bucket (WMB) based heuristic [Dechter and
Rish, 2003; Liu and Ihler, 2011] which can be pre-compiled
along the reverse order of the pseudo tree. The heuristic is
also enhanced by a cost-shifting scheme that can either be
applied in a single pass, or iteratively, by passing messages on
the corresponding join-graph [Liu and Ihler, 2011; Marinescu
et al., 2014]. This yields two schemes denoted by WMB-
MM(i) and WMB-JG(i), where parameter i is called the i-
bound and controls the accuracy. The corresponding AOBB
variants using these bounds, denoted by AOBB-MM(i) and
AOBB-JG(i), were evaluated extensively in Marinescu et al.
[2014], illustrating superiority against earlier state-of-the-art
schemes [Park and Darwiche, 2003; Yuan and Hansen, 2009]
on a majority of benchmark instances. However, there are
many effective search strategies beyond depth-first methods;
here we explore best-first methods. For marginal MAP, best-
first search has significant potential to improve performance,
for reasons we discuss next.

3 Best-First Search for MMAP
In this section we introduce several best-first search algo-
rithms for marginal MAP inference. We start with some anal-
ysis focusing on pure A*.

3.1 A* for MMAP
Best-first search schemes are known to be superior to other
search schemes that traverse the same search space, assuming
all algorithms have access to the same heuristic information.
Algorithm A* expands only nodes satisfying f(n) ≥ C∗ (for
maximization) where C∗ is the cost of the optimal solution
and where f(n) = g(n) + h(n) (for sum cost paths), and
h(n) is an upper bound of the best cost extension to a solution
(or best cost to go) [Dechter and Pearl, 1985]. Any complete
search algorithm, and in particular, DFBnB, must explore all
the nodes expanded by A*, assuming the same tie breaking
rule, and, in addition it may also explore nodes for which
f(n) < C∗. Therefore, the expected benefit of A* over any
other search algorithm, B, depends on the number of extra
nodes explored by B having f(n) < C∗.

To understand A*’s performance for MMAP inference, we
define an OR search space whose nodes are partial assign-
ments to a subset of the MAP variables along a fixed order
X1, ..., Xm. To capture the summation operation applied over
XS , we introduce a final solution/goal node denoted s, which
extends any full MAP assignment. A solution path in this
search space can be denoted by (x1, ..., xm, s). Formally,

DEFINITION 3 (OR MMAP search space) Let XM be the
MAP variables of a graphical models M = 〈X,D,F〉 and

XS = X \ XM . The search space for MMAP has nodes
which are partial assignments over XM , denoted x̄1..j =
(x1, . . . , xj). All full MAP assignments have the same child
node, s. All the arc-weights of internal nodes are extracted in
the usual manner from the functions F. The arc-weight con-
necting a full MAP assignment xM node to s is defined by
(denoting by (n → m) the arc from n to its child node m in
the directed search graph):

w(xM → s) =
∑
XS

∏
α∈F

ψα(xα|xM ).

It is easy to show that,

PROPOSITION 1 Given a graphical modelM = 〈X,D,F〉
and MAP variables XM , any search algorithm finding an op-
timal solution path over its MMAP search space, finds an op-
timal solution to its MMAP task.

The most costly operation when traversing even a single
solution path in the MMAP search space is when the algo-
rithm expands a full MAP assignment x̄1..m, called a frontier
map node. This is because it needs to evaluate the last arc-
weight, which is the cost of this MAP assignment.

Since any expansion of a full MAP assignment is costly,
a search algorithm which minimizes such expansions would
be more effective. In fact, we argue that A*’s potential for
marginal MAP is likely to be more profound than in regular
optimization (e.g., for pure MAP) because it can save not only
on the number of regular nodes expanded, but much more
significantly on the number of expansions of MAP frontier
nodes, and therefore the number of summation sub-tasks. It
follows from the behavior of A* that,

THEOREM 1 Let A* be a search algorithm exploring the
MMAP search space and let B be any search algorithm. As-
suming all algorithms have access to the same heuristic func-
tion and use the same tie breaking rule, a) any node expanded
by A* will be expanded byB. b) In particular, any MAP fron-
tier node expanded by A* must be expanded by B. 2

We argue that a DFBnB scheme is likely to expand extra
MAP frontier nodes beyond best-first because, unlike regular
optimization where DFBnB is often supplied with a close to
optimal solution (e.g., using local search), finding an initial
good solution (and thus a good lower bound) is far harder in
the context of marginal MAP.

3.2 Best-First AND/OR Search for MMAP
The best-first search algorithms we propose traverse the con-
text minimal AND/OR search graph over all the variables,
and therefore explicitly perform the summation computation
as part of the AND/OR search. Doing so implies that we use
one of the best algorithms for the summation sub-problem,
and also allow sharing the summation sub-task computations
via caching. The DFBnB algorithm AOBB-MMAP presented
in Marinescu et al. [2014] explores this space as well.

Algorithm 1 describes the AOBF-MMAP scheme. The al-
gorithm belongs to the AO* family [Nilsson, 1980] and main-
tains the partially explored context-minimal AND/OR graph
CT and the best partial solution tree T ′ that represents an op-
timal solution of CT under the assumption that the tips n of



Algorithm 1: AOBF-MMAP
Input: Graphical modelM = 〈X,D,F〉 such that

XM = X \XS , pseudo tree T , heuristic h(·)
Output: Optimal marginal MAP value (and assignment)

1 Insert root n0 in CT , where n0 is labeled by the root of T
2 Initialize q(n0)← h(n0) and let T ′ = {n0}
3 while true do
4 Select non-terminal tip node n in the best partial tree T ′.
5 if tips(T ′) = ∅ then break

// Expand
6 foreach successor n′ of n do
7 if n′ /∈ CT then
8 Add n′ as child of n in CT

9 if n′ is OR node labeled by X ∈ XS then
10 q(n′)← eval(M|T ′)
11 else q(n′)← h(n′)

// Update
12 foreach ancestor m of n in CT do
13 if m is OR node then
14 q(m)← maxn′∈succ(m) w(m,n

′) · q(n′)
15 Mark best successor n′ of m as

n′ = argmaxn′∈succ(m) w(m,n
′) · q(n′),

maintaining marked successor if still best

16 else q(m)←
∏

n′∈succ(m) q(n
′)

17 Recompute best partial tree T ′ by following marked arcs
from the root n0

18 return q(n0)

CT are the terminal nodes with values given by the heuristic
h(n) (if labeled by a MAP variable) or by the corresponding
conditioned likelihood (if labeled by a sum variable), respec-
tively (see line 10). Initially, CT contains the root node n0
which is an OR node labeled by the root of the pseudo tree T .
Then, at each iteration, the algorithm selects a non-terminal
leaf node of the partial solution tree T ′ and expands it by gen-
erating its successors. The best partial tree is then revised by
backward node value propagation, which sets the values of
the leaves in CT to its heuristic or conditioned likelihood val-
ues. The latter are calculated using procedure eval(M|T ′)
which solves exactly the summation sub-problem rooted by
the respective sum variable (in our implementation we used
depth-first AND/OR search with full/adaptive caching [Mari-
nescu and Dechter, 2009b]. The algorithm finishes when
there are no leaf nodes in the best partial tree T ′. In this case
T ′ represents the optimal MMAP assignment and its value is
given by the revised value of the root node.

The complexity of AOBF-MMAP is time and space O(n ·
kwo), where wo is the induced width along an ordering con-
sistent with the pseudo-tree.

3.3 Recursive Best-First AND/OR Search
In practice, however, AOBF-MMAP may require an enor-
mous amount of memory, especially on difficult problem in-
stances. More recently, a limited memory best-first search
scheme called Recursive Best-First AND/OR search with
Overestimation (RBFAOO) was shown to be extremely pow-

Algorithm 2: RBFAOO-MMAP
Input: Graphical modelM = 〈X,D,F〉 such that

XM = X \XS , pseudo tree T , heuristic h(·)
Output: Optimal marginal MAP value

1 Procedure RBFAOO()
2 Insert root n0 in CT , where n0 is labeled by the root of T
3 OrNode(n0, 0)
4 return q(n0)

5 Function OrNode(n, θ)
6 while true do
7 foreach AND child c of n do
8 if c is in cache then q(c)← ReadCache(c)
9 else q(c)← h(c)

10 q(c) = w(n, c) · q(c)
11 Update q(n)← maxc∈succ(n) q(c) and mark n as

solved if the child with the highest q-value is solved
12 if q(n) < θ or n is solved then
13 break
14 Identify two children (n1, n2) with the two highest q

values s.t. q(n1) ≥ q(n2) ≥ q(others) and update
threshold as θ′ = max(θ, q(n2))/w(n, n1)

15 AndNode(n1, θ′)

16 WriteCache(n, q(n))

17 Function AndNode(n, θ)
18 while true do
19 foreach OR child c of n do
20 if c is in cache then q(c)← ReadCache(c)
21 else if c is labeled by X ∈ XS then
22 q(c)← eval(M|x̄)
23 else q(c)← h(c)

24 Update q(n)←
∏

c∈succ(n) q(c), and mark n as
solved if all its children are solved

25 if q(n) < θ or n is solved then
26 break
27 Identify an unsolved OR child n1 and update

threshold θ′ = θ · q(n1)/q(n)
28 OrNode(n1, θ′)

29 WriteCache(n, q(n))

erful for pure MAP [Kishimoto and Marinescu, 2014]. Algo-
rithm 2 presents the extension of RBFAOO to marginal MAP.

RBFAOO-MMAP uses a local threshold control mecha-
nism to explore the context minimal AND/OR search graph
in a depth first-like manner [Korf, 1993]. Let q(n), called
the q-value, be an upper bound of the solution cost at node
n, and θ(n) be the threshold at n indicating the availabil-
ity of a second best solution cost besides q(n). RBFAOO-
MMAP keeps examining the subtree rooted at n until either
q(n) < θ(n) or the subtree is solved optimally. Therefore,
it gradually grows the search space by updating the q-values
of the internal nodes and re-expanding them, unlike AOBF-
MMAP. The algorithm may operate within linear space (no
caching). However, for efficiency purposes, it may use a fixed
size cache table to store some of the nodes (based on their
contexts). At OR nodes, RBFAOO-MMAP may find a sub-
optimal solution, which is a lower bound on the conditioned
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Figure 3: Number of conditional likelihood evaluations for
the or chain 4.fg hard instance. Time limit 1 hour.

marginal MAP value. In this case, the algorithm continues to
examine other children until it finds an optimal solution at n.
Because the solution cost found so far is a lower bound on the
optimal one, RBFAOO can use it to prune branches leading
to nodes whose q-values are smaller than the solution cost.
When RBFAOO-MMAP selects the next best child to expand,
it examines it with a new threshold which is updated appropri-
ately for OR and for AND nodes (see lines 14 and 27). Notice
also that when expanding an AND node, the algorithm eval-
uates the conditional likelihood for all OR children that are
labeled by sum variables using procedure eval(·) (line 22).

If AOBF-MMAP expands O(N) nodes in the worst case,
then RBFAOO-MMAP expands O(N2) due to node re-
expansions. However, in practice, by slightly overestimat-
ing the node thresholds (by a small constant δ), RBFAOO-
MMAP avoids such a high node re-expansion overhead (see
also Kishimoto and Marinescu [2014] for more details).

4 Experiments
We evaluate empirically the proposed best-first search algo-
rithms on problem instances derived from benchmarks used
in the PASCAL2 Inference Challenge [Elidan et al., 2012].

We consider two best-first AND/OR search schemes
guided by weighted mini-bucket heuristics with moment
matching (WMB-MM(i)) and iterative join-graph based cost-
shifting (WMB-JG(i)). They are denoted by AOBF-MM
and AOBF-JG, respectively. In addition, we consider the re-
cursive best-first search counterparts, denoted by RBFAOO-
MM and RBFAOO-JG. These are all MMAP algorithms, but
we remove MMAP from the algorithm’s name for brevity.
The weighted mini-bucket heuristics were generated in a pre-
processing phase, prior to search, using uniform weights. We
also ran A* search guided by MCTE(i) heuristics which were
computed dynamically at each node in the search space. A*
explotes the OR search tree defined by the MAP variables.

We compare the best-first search algorithms against each
other and against the current state-of-the-art AND/OR branch
and bound with weighted mini-bucket heuristics, denoted by
AOBB-MM and AOBB-JG, along with the two OR branch
and bound schemes guided by MCTE(i) heuristics, denoted
by BBBTi and BBBTd [Marinescu et al., 2014]. The pseudo
trees guiding the AND/OR algorithms were obtained by a
modified min-fill heuristic that constrained the MAP vari-
ables to form a start pseudo tree. All algorithms were im-
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Figure 4: CPU time in seconds for the or chain 17.fg
hard instance. Time limit 1 hour.

plemented in C++ (64-bit) and the experiments were run on
a 2.6GHz 8-core processor with 80 GB of RAM. The RB-
FAOO algorithms used a pre-allocated cache of size 10GB.
All algorithms were allowed a 1 hour time limit.

Our problem instances were derived from five PAS-
CAL2 benchmarks: grids (n-by-n binary grid networks),
segbin (image segmentation), protein (protein side-
chain interaction), promedas (medical diagnosis expert sys-
tem), and pedigree (genetic linkage analysis). For each
network, we generated two marginal MAP problem instances
with m MAP variables, as follows: an easy instance such
that the MAP variables were selected as the first m variables
from a breadth-first traversal of a pseudo tree obtained from a
hypergraph decomposition of the primal graph (ties were bro-
ken randomly) [Marinescu and Dechter, 2009a], and a hard
instance where the MAP variables were selected uniformly
at random. The easy instances were designed such that
problem decomposition is maximized and the constrained and
unconstrained elimination orders are relatively close to each
other, thus having comparable induced widths. In contrast,
the hard instances tend to have very large constrained in-
duced widths. We selected 50% of the variables as MAP
variables. In total we evaluated 200 problem instances (20
easy and 20 hard instances per benchmark).

In all experiments we report the CPU time in seconds and
number of nodes visited during search. We also record the
problem parameters: number of variables (n), max domain
size (k), number of MAP variables (m), and the constrained
(w∗c ) and unconstrained (w∗u) induced widths. We use ’oom’
to denote out-of-memory, while ’-’ means out-of-time.

Conditional likelihood evaluations We compare best-first
versus depth-first approaches using the same heuristic, e.g.,
A* vs. BBBTd (which each use the MCTE heuristic), and
AOBF-MM or RBFAOO-MM vs. AOBB-MM (which use the
WMB heuristic) on a specific problem instance in Figure 3.
For both heuristics, the best-first search schemes evaluate far
fewer conditional sum sub-problems, especially at relatively
small i-bounds which correspond to weaker heuristics. For
example, RBFAOO-MM(12) and AOBF-MM(12) solve over
two orders of magnitude fewer summation sub-problems than
AOBB-MM(12). (Note that on this problem instance, the
MCTE heuristic works very well, but gave poor performance
and was unable to solve many of the other instances.)



instance algorithm i = 4 i = 6 i = 10 i = 14 i = 18 i = 20

(n,m, k, w∗c , w
∗
u) time nodes time nodes time nodes time nodes time nodes time nodes

easy grid instances
50-20-5 AOBB-MM - - - - 18 576852 4 236597
(400,200,2,30,23) AOBF-MM oom oom 2785 49776304 111 2880234 4 130416 3 84072

RBFAOO-MM - - 821 78576891 60 2631348 6 148816 4 109990
90-20-5 AOBB-MM - - 2510 25798937 10 154907 1 18277 1 6745
(400,200,2,30,23) AOBF-MM oom oom 17 259906 1 28744 <1 3231 1 1033

RBFAOO-MM 1330 172688969 258 37715871 5 639538 1 41912 <1 5253 1 1586
hard grid instances

50-14-5 AOBB-MM - - 111 15689122 1 184242 <1 16126 <1 4248
(196,98,2,37,16) AOBF-MM oom 2398 54812995 15 556646 <1 39841 <1 6461 <1 1697

RBFAOO-MM - 309 28456443 2 325141 <1 41500 <1 13479 <1 3464
75-16-5 AOBB-MM - - - 608 22468245 9 623549 7 528557
(256,128,2,84,21) AOBF-MM oom oom oom 7 210304 4 105811 6 148785

RBFAOO-MM - - - 4 459712 3 374779 7 735433
easy promedas instances

or chain 17.fg AOBB-MM 1345 117992988 42 4185034 3 341352 <1 26663 <1 2550 <1 1140
(531,265,2,20,18) AOBF-MM 18 719105 6 306513 1 61029 <1 6880 <1 733 <1 341

RBFAOO-MM 6 1271011 1 292536 <1 72401 <1 8210 <1 970 <1 360
or chain 22.fg AOBB-MM - - - - - -
(1044,522,2,69,59) AOBF-MM oom oom oom oom oom oom

RBFAOO-MM - - - - 570 69108302 913 110200946
hard promedas instances

or chain 4.fg AOBB-MM - - - 394 31923310 54 4768363 26 2343346
(691,345,2,72,26) AOBF-MM oom oom 488 15245069 74 2565459 15 576233 11 420072

RBFAOO-MM - 3181 328169832 88 8972169 11 1728788 4 677061 4 652188
or chain 17.fg AOBB-MM - - 22 2196873 5 567511 <1 92971 <1 31770
(531,265,2,28,17) AOBF-MM - 143 3736972 7 331471 3 137148 <1 30953 <1 11623

RBFAOO-MM 318 42057272 24 4084274 1 272656 <1 129827 <1 36854 <1 13258
hard pedigree instances

pedigree20 AOBB-MM - - - - - 15 89147
(437,195,5,58,22) AOBF-MM 2714 41959199 2940 42216253 oom 41 1096389 13 314660 6 23667

RBFAOO-MM - - 2880 131642655 25 1811067 9 567588 7 73182
pedigree39 AOBB-MM - - - 2632 239991245 1254 101313449 550 48205633
(1272,481,5,44,18) AOBF-MM oom oom oom 302 5564185 45 1229943 19 446096

RBFAOO-MM - - 2049 292224766 29 5775997 4 476697 6 442276

Table 1: CPU time (sec) and nodes for grid, promedas and pedigree instances. Time limit 1 hour.

Impact of the heuristic quality In Figure 4 we plot re-
sults for solving the promedas or chain 17.fg-hard
instance which is quite representative. When looking at the
iterative scheme WMB-JG(i), run for 10 iterations, we notice
that the corresponding heuristics are most powerful at lower
i-bounds because of reduced overhead. As the i-bound in-
creases, its accuracy ceases to offset the computational over-
head as the run time of the iterations increase. In this case,
WMB-MM(i) is a cost-effective alternative, with reduced
overhead for compiling the heuristic.

Comparison with state-of-the-art Table 1 reports the CPU
time in seconds and number of nodes expanded by each
search algorithm, either depth-first or best-first, on a selection
of easy and hard instances from the grid, promedas and
pedigree benchmarks. The columns are indexed by the i-
bound and the time limit was set to 1 hour. For space reasons,
we report results when using WMB-MM(i) heuristics only.
The OR search algorithms A*, BBBTi and BBBTd performed
poorly and thus are not included. We can see clearly that
the recursive best-first AND/OR search scheme is the overall
best performing algorithm, especially for relatively small i-
bounds which yield relatively inaccurate heuristic estimates.
This is important because on extremely difficult problem in-
stances it is likely that we only have access to relatively
weak heuristics. For example, on the or chain 17.fg
easy instance, RBFAOO-MM(4) proves optimality in 6 sec-
onds, whereas AOBB-MM(4) finishes in 1345 seconds, re-
spectively. Indeed, the search space explored by RBFAOO-
MM(4) is also significantly smaller than that traversed by
AOBB-MM(4). Algorithm AOBF-MM(i) is also competitive

on most of the instances, however it sometimes suffers from
increased computational overhead caused by maintaining its
larger search space in memory.

Summary Figure 5 plots the number of problem instances
solved from each benchmark (top) and the median CPU
time (bottom) as a function of the i-bound. For space rea-
sons, we only show the grid-easy, promedas-hard
and pedigree-hard benchmarks. For clarity we report
only on the AND/OR search algorithms guided by WMB-
MM(i) heuristics. Clearly, the best-first AND/OR search ap-
proaches, in particular RBFAOO-MM(i), solve the largest
number of instances across i-bounds. On the pedigree in-
stances, AOBF-MM(i) is superior compared with the other
schemes at smaller i-bounds which demonstrates the benefit
of best-first over depth-first search, when the search space ex-
plored actually fits in memory. When the i-bound increases,
the heuristics get stronger, reducing the difference between
depth-first and best-first search; in this setting depth-first
search may find near-optimal solutions quickly and thus, like
best-first, will not explore solutions with cost smaller than the
optimum. Yet we still see superiority for high i-bound on hard
pedigrees and on the selected instances in Table 1.

5 Conclusion
We introduced best-first search schemes for marginal MAP
that explore the compact AND/OR context minimal search
space for graphical models, guided by pre-compiled weighted
mini-bucket with cost-shifting schemes. We explained why
best-first search strategies for MMAP can be particularly ef-
fective and backed this up by empirical evidence. Specif-
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Figure 5: Number of instances solved (top) and median CPU time (bottom) as a function of i-bound for grid, promedas and
pedigree instances. The median CPU time is taken over 20 instances in each problem class. Time limit 1 hour.

ically, in an extensive empirical evaluation (some of which
was not included for lack of space) we illustrated the supe-
riority of best-first strategies over depth-first search counter-
parts (e.g., against AOBB-MMAP). In particular, the limited
memory recursive best-first AND/OR search scheme, consis-
tently solved more problems given a time-bound (Figure 5)
and in many cases was significantly faster, by orders of mag-
nitude, than all depth-first counterparts. It emerges as the su-
perior scheme overall. Our next step would be to extend all
these search schemes into anytime algorithms and to explore
bounded approximations for the summation sub-tasks.
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