
Weighted Best-First Search for W-Optimal Solutions over Graphical Models

Natalia Flerova
University of California

Irvine, USA

Radu Marinescu
IBM Research
Dublin, Ireland

Pratyaksh Sharma
Indian Institute of Technology

Bombay, India

Rina Dechter
University of California

Irvine, USA

Abstract
The paper explores the potential of weighted best-first
search schemes as anytime optimization algorithms for
solving graphical models tasks such as MPE (Most
Probable Explanation) or MAP (Maximum a Posteri-
ori) and WCSP (Weighted Constraint Satisfaction Prob-
lem). While such schemes were widely investigated for
path-finding tasks, their application for graphical mod-
els was largely ignored, possibly due to their memory
requirements. Compared to the depth-first branch and
bound, which has long been the algorithm of choice for
optimization in graphical models, a valuable virtue of
weighted best-first search is that they are w-optimal, i.e.
when terminated, they return a solution cost C and a
weight w, such that C ≤ w · C∗, where C∗ is the op-
timal cost. We report on a significant empirical evalua-
tion, demonstrating the usefulness of weighted best-first
search as approximation anytime schemes (that have
suboptimality bounds) and compare against one of the
best depth-first branch and bound solver to date. We
also investigate the impact of different heuristic func-
tions on the behaviour of the algorithms.

Introduction
The most common search scheme for combinatorial opti-
mization tasks over graphical models, such as MAP/MPE
or Weighted CSP, is depth-first branch and bound, exten-
sively studied in recent years (Kask and Dechter 2001;
Marinescu and Dechter 2009b; Otten and Dechter 2011;
de Givry, Schiex, and Verfaillie 2006). Meanwhile, best-first
search algorithms, though known to bound the search space
more effectively (Dechter and Pearl 1985), are seldom con-
sidered for this domain due to their inability to provide any
solution before termination and inherently large memory re-
quirements. Furthermore, one of best-first’s most attrac-
tive features, avoiding the exploration of unbounded paths,
seems irrelevant since solutions are of equal depth (i.e., the
number of variables).

In contrast, in path-finding domains, where solution
length varies (e.g., planning), best-first search and espe-
cially its popular variant A* (Hart, Nilsson, and Raphael
1968) is clearly favoured. However, A*’s exponential mem-
ory needs, coupled with lack of anytime behaviour, lead to

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

extension into more flexible anytime schemes based on the
Weighted A* (WA*) (Pohl 1970). The main idea lies in in-
flating the heuristic function guiding the search by a factor
of w > 1, which makes the heuristic inadmissible and typi-
cally yields faster search, while still guaranteeing a solution
cost within a factor w from the optimal. If the (non-optimal)
solution is found before reaching the time limit, the search
for a better solution may resume. In the context of path-
finding in the past decade several anytime weighted best-
first search schemes were proposed (Likhachev, Gordon, and
Thrun 2003; Hansen and Zhou 2007; Richter, Thayer, and
Ruml 2010; van den Berg et al. 2011). These algorithms
are able to output a suboptimal solution fairly quickly and,
given additional time, improve the accuracy of the solution,
ultimately finding the optimal one.

Our contribution is in extending the above methods to
graphical models and in investigating their potential em-
pirically. As a basis we used AND/OR best-first search
(AOBF) (Marinescu and Dechter 2009b), a best-first algo-
rithm developed for AND/OR search spaces over graphi-
cal models. AOBF explores the context minimal AND/OR
graph in a best-first manner, guided by admissible and con-
sistent heuristic (Dechter and Mateescu 2007). We consid-
ered heuristics obtained by three algorithms: Mini-Bucket
Elimination (Kask and Dechter 2001), Mini-Bucket Elimi-
nation with Moment-Matching and Joint Graph Linear Pro-
gramming (Ihler et al. 2012).

After exploring a variety of approaches and following ex-
tensive empirical analysis, including two non-parametric al-
gorithms that interleave depth- and best-first exploration, the
two schemes that emerged as most promising were wAOBF
and wR-AOBF. Both are running Weighted A* iteratively
while decreasing w. Algorithm wAOBF starts from scratch
at each iteration, while wR-AOBF reuses search efforts from
previous iterations, extending ideas of Anytime Repairing
A* (ARA*) (Likhachev, Gordon, and Thrun 2003).

We report on a comprehensive empirical evaluation of the
two candidate algorithms on around 100 instances from 4
different benchmarks, evaluating their performance both as
approximation and anytime schemes with multiple heuristic
strengths. We compared against Breadth-Rotating AND/OR
Branch-and-Bound (BRAOBB) (Otten and Dechter 2011), a
state-of-the-art anytime depth-first branch and bound which

won the 2011 Probabilistic Inference Challenge1 in all opti-
mization categories.

Our empirical analysis revealed that weighted best-first
search algorithms outperform BRAOBB on many instances
from 2 of our benchmarks and are comparable on the major-
ity of problems from another one. Most importantly, they
provide suboptimality guarantees and, overall, should be
considered as candidate algorithms for solving optimization
over graphical models alongside BRAOBB, in example, in a
portfolio scheme (Huberman, Lukose, and Hogg 1997).

Background
Weighted search exploits the idea of making an admissi-
ble evaluation function (i.e. one that never overestimates
a cost to the goal, assuming minimization) inadmissible,
by multiplying it by some weight w > 1. In particular,
the most well-known variant of weighted best-first search,
WA*, uses evaluation function f(n) = g(n) + w · h(n),
where w > 1, g(n) is the current minimal cost from
the root to n, and h(n) is the heuristic function that es-
timates the optimal cost to go. Higher values of w typ-
ically yield greedier behaviour, finding a solution earlier
during search and with less memory. WA* is guaranteed
to be w-optimal, namely to terminate with a solution cost
C such that C ≤ w · C∗, where C∗ is the optimal solu-
tion’s cost (Pohl 1970). In the past decade, several anytime
weighted best-first search schemes were proposed in the
context of path-finding problems (Hansen and Zhou 2007;
Likhachev, Gordon, and Thrun 2003; van den Berg et al.
2011; Richter, Thayer, and Ruml 2010).
A Graphical model is a tupleM = 〈X,D,F〉, where X =
{Xi : i ∈ V } is a set of variables indexed by set V and D =
{Di : i ∈ V } is the set of their finite domains of values. F =
{fS1

, . . . , fSr
} is a set of non-negative real-valued functions

defined on subsets of variables xSi
⊆ X, called scopes (i.e.,

∀i fi : xSi
→ R+) The set of function scopes imply a primal

graph (e.g., Figure 1a), whose vertices are the variables and
which includes an edge connecting any two variables that
appear in the scope of the same function. Given an ordering
of the variables, the set of function scopes yields an induced
graph, where each node’s earlier neighbours are connected
from last to first, (e.g., Figure 1b) with a certain induced
width w∗. For detail see, e.g. (Kask et al. 2005).

The common optimization task is to find maxX
∏

i ψi

called MAP (Maximum a Posteriori) or MPE (Most Proba-
ble Explanation) and minX

∑
i ψi, called WCSP (Weighted

Constraint Satisfaction Problem). These two tasks are equiv-
alent and are easily transformed into one another. In our
discussion of algorithms we assume the min-sum task, as is
traditional in heuristic search literature.
The AND/OR search space is defined using a pseudotree
of the primal graph G = (X,E) (e.g., Figure 1c), which
captures problem decomposition. A pseudo-tree of an undi-
rected graph G is a directed rooted tree T = (X,E′) , such
that every arc of G not included in E′ is a back-arc in T ,
namely it connects a node in T to its ancestor. The arcs in

1http://www.cs.huji.ac.il/project/PASCAL/realBoard.php

(a) Primal
graph.

(b)
Indu-
ced
graph.

(c) Pseu-
dotree.

(d) Context-minimal AND/OR search graph
with AOBB pruning example.

Figure 1: Example problem with six variables, induced
graph along orderingA,B,C,D,E, F , corresponding pseu-
dotree, and resulting AND/OR search graph with AOBB
pruning example.

E′ might not necessarily all be included in the set of original
edges E of graph G.
AND/OR search tree associated with a graphical model
M = 〈X,D,F〉 with a primal graph G and pseudo tree T
of G, consists of alternating levels of OR and AND nodes,
guided by the pseudotree structure. OR nodes correspond
to the variables, AND nodes correspond to the values of the
OR parent’s variable, rooting conditionally independent sub-
problems. The edges of the AND/OR tree are annotated by
values derived from the input functions F.
Graph-based merging of identical subproblems yields the
context minimal AND/OR search graph CT (e.g. Figure 1d)
which has size O(N · kw∗

), where w∗ is the induced width
of G along a depth first order traversal of T , N is the num-
ber of variables and k bounds the domain sizes (Dechter and
Mateescu 2007).

A solution tree T ∗ of CT is a subtree that: (1) contains
the root of CT ; (2) if an internal OR node n ∈ CT is in
T ∗, then n is labelled by a variable and exactly one of its
children is in T ∗; (3) if an internal AND node n ∈ CT is in
T ∗, then all its OR children labelled by variables are in T ∗.
AND/OR Best First Search (AOBF) (Marinescu and Dechter
2009a) is a state-of-the-art version of A* for the AND/OR
search space for graphical models. AOBF is a variant of
AO* (Nillson 1980) that explores the AND/OR context-
minimal search graph. Unlike the usual A*, AOBF does
not have explicit OPEN and CLOSED lists, instead main-
taining a graph denoted G, which is the explicated part of
the context minimal AND/OR search graph ST , and keep-
ing track of the current best partial solution tree T ∗. AOBF

Algorithm 1: wAOBF(w0, i)
Input: A graphical modelM = 〈X,D,F〉; pseudo tree T

rooted at X1; heuristic h obtained with i-bound i;
initial weight w0

Output: Set of suboptimal solutions C
1 Initialize w = w0, weight update schedule S and let C ← ∅;
2 while w >= 1 do
3 〈Cw, T

∗
w〉 ← AOBF(w · h), where T ∗

w - full solution tree;
4 C ← C ∪ {〈w,Cw, T

∗
w〉};

5 Decrease weight w according to schedule S;

6 return C;

interleaves a top-down step of expanding the nodes in the
best-first manner with bottom-up update of nodes’ values
and recalculation of T ∗.

AND/OR Branch and Bound (AOBB) (Marinescu and
Dechter 2009a): AOBB traverses the context-minimal
AND/OR graph in a depth-first manner while keeping track
of the current upper bound on the minimal solution cost.
A node n is pruned if this upper bound exceeds a heuristic
lower bound on the solution to the subproblem below n.

Breadth-Rotating AND/OR Branch and Bound (BRAOBB):
(Otten and Dechter 2011) was developed to remedy poor
anytime performance of AOBB due to AND/OR decompo-
sition. At each AND node all but one independent child sub-
problems have to be solved completely, before the last one
is even considered by AOBB. BRAOBB remedies this defi-
ciency, rotating through different subproblems in a breadth-
first manner. It empirically proved to be a far more efficient
anytime algorithm than plain AOBB.

Typically all the AND/OR search algorithms utilize the
mini-bucket heuristic, which is admissible and consistent
(Kask and Dechter 1999). Mini-Bucket Elimination (MBE)
(Dechter and Rish 2003) is an approximation version of
an exact variable elimination algorithm called bucket elim-
ination (Dechter 1999). MBE outputs an upper bound
on the optimal MPE value (lower bound on the optimal
WCSP value). The complexity of the algorithm, which is
parametrized by the i-bound i, is time and space exponential
in i. Larger i-bound typically yields tighter bound, and thus
allows to flexibly trade complexity and accuracy.

Weighted Best-First Search for Graphical
Models

Iterative Weighted AOBF (wAOBF): AND/OR Best-First
search using the heuristic multiplied by the weight w > 1,
yields Weighted AOBF. Clearly, the cost of the solution
found by this scheme is guaranteed to bew-optimal (see also
(Chakrabarti, Ghose, and De Sarkar 1987)). A natural ex-
tension of the algorithm to an anytime scheme (wAOBF in
Algorithm 1), executes Weighted AOBF iteratively, decreas-
ing the weight at each iteration. This approach, similar to
the Restarting Weighted A* by (Richter, Thayer, and Ruml
2010), results in a series of solutions, each with a smaller
suboptimality factor of the weight w.

Algorithm 2: wR-AOBF(w0, i)
Input: A graphical modelM = 〈X,D,F〉; pseudo tree T

rooted at X1; heuristic h obtained with i-bound i;
initial weight w0

Output: A set of suboptimal solutions C
1 Initialize w = w0, weight update schedule S and let C ← ∅;
2 Create root OR node s labelled by X1 and let G = {s}

(currently explored part of the search space);
3 Initialize value v(s) = w · h(s) and current best partial

solution tree T ∗ to G;
4 while w ≥ 1 and time ≤ time bound do
5 while T ∗ has more tip nodes do
6 Expand and update nodes in G using AOBF search

with heuristic function (w · h);

7 C ← C ∪ {〈w, v(s), T ∗〉};
8 Decrease weight w according to schedule S;
9 For all leaf nodes in n ∈ G, update v(n) = w · h(n).

Update the values of all nodes in G using the values of
their successors. Mark best successor of each OR node.;

10 Recalculate T ∗ following the marked arcs;

11 return C;

Anytime Repairing AOBF (wR-AOBF): Running each
search iteration from scratch, as wAOBF does, is waste-
ful. Anytime Repairing AOBF (wR-AOBF in Algorithm 2)
records and re-uses information between iterations. It adapts
Anytime Repairing A* (ARA*) algorithm (Likhachev, Gor-
don, and Thrun 2003) to AND/OR search spaces over graph-
ical models. The original ARA* algorithm utilizes the re-
sults of previous steps by recomputing the evaluation func-
tions of the nodes with each weight change, re-using inher-
ited OPEN and CLOSED lists and by keeping track of al-
ready expanded nodes, whose evaluation function changed
between iterations and re-inserting them back to OPEN list
before starting a new iteration.

Since AOBF does not maintain explicit OPEN and
CLOSED lists, wR-AOBF keeps track of G, the partially ex-
plored AND/OR search graph. At each iteration, until a new
complete solution is found (line 5) the algorithm expands
the graph G in the usual best-first manner (line 6): the tip
node of the current best solution tree T ∗ having the smallest
value of the evaluation function f is expanded and its chil-
dren are added to G. Once a solution is found, it is reported
along with the corresponding weight (line 7) and the weight
is decreased (line 8). After each weight update wR-AOBF
performs a bottom-up update of all the node values starting
from the leaf nodes (whose h-values are multiplied by the
new weight) and continuing towards the root node (line 9).
During this phase, the algorithm also marks the best AND
successor of each OR node in the search graph. These mark-
ings are used to recompute the best partial solution tree T ∗
(line 10). Then, the search resumes in the usual manner by
expanding a tip node of T ∗.

Like ARA*, wR-AOBF is guaranteed to terminate with
a solution cost C such that C ≤ w · C∗, where C∗ is the
optimal solutions cost.

Benchmark # inst N k w∗ hT

Pedigrees 11 581-1006 3-7 16-39 52-102
Grids 32 144-2500 2-2 15-90 48-283
Type4 10 3907-8186 5-5 21-32 319-625
WCSP 56 25-1057 2-100 5-287 11-337

Table 1: Benchmark parameters: # inst - number of in-
stances, N - number of variables, k - domain size, w∗ -
induced width, hT - pseudo-tree height.

Instance
BRAOBB

Weighted AOBF weights

2.00 1.20 1.10 1.00
time

log-cost
time

log-cost
time

log-cost
time

log-cost
time

log-cost

Grids I-bound=18

75-26-5
(676, 2, 36, 129)

23.55
-50.404

0.19
-53.707

0.23
-53.485

1.0
-50.654

10.04
-50.404

90-34-5
(1156, 2, 51, 175)

79.39
-30.598

1.0
-33.375

1.54
-30.636

9.74
-30.636

—
—

Pedigrees I-bound=14
pedigree19

(693, 5, 21, 107)
3841.07
-223.56

0.04
-235.061

0.05
-225.397

0.39
-223.59

—
—

pedigree7
(867, 4, 28, 140)

3289.57
-262.238

0.07
-275.693

0.14
-266.909

0.24
-264.712

—
—

WCSP I-bound=10
404.wcsp

(100, 4, 19, 59)
6.78

-6.402
0.01

-6.627
0.03

-6.402
0.18

-6.402
1.92

-6.402
myciel5g 3.wcsp

(47, 3, 19, 24)
15.76

-147.365
33.85

-156.576
—
—

—
—

—
—

Type4 I-bound=16
type4b 100 19

(3938, 5, 29, 354)
OOT

-2598.003
0.95

-2638.441
0.65

-2587.936
0.85

-2587.936
—
—

type4b 120 17
(4072, 5, 24, 319)

OOT
-3061.944

0.41
-3100.952

0.46
-3067.778

0.45
-3062.157

—
—

Table 2: Runtime (sec) and log-cost obtained by weighted
AOBF(w, i) for selected w, and by BRAOBB, both with
MBE-MM heuristic. OOT for BRAOBB indicates terminat-
ing without proving solution optimality. Instance parame-
ters (N ,k,w∗,hT): N - number of variables, k - max domain
size, w∗ - induced width, hT - pseudo tree height. 4 GB
memory, 1 hour time limit.

Experiments
We evaluate the performances of wAOBF, wR-AOBF and
compare with BRAOBB exploring the same context mini-
mal AND/OR graph. The search space is determined by a
common variable ordering that determines the pseudo-tree.
The algorithms output solutions at different times until ei-
ther the optimal solution is found or the time limit of 1 hour
is reached, or the scheme runs out of memory (4 GB).

The experimental results reported were a final phase of
an extensive evaluation that we carried out in the past 2
years. These include hundreds of instances from 8 bench-
marks from UAI 20082 and Pascal 20113 competitions, cur-

2http://graphmod.ics.uci.edu/group/Repository
3http://www.cs.huji.ac.il/project/PASCAL/archive/mpe.tgz

rently the main source of benchmarks in the community.
We chose to present results on 4 benchmarks due to space

considerations and because the results were more meaning-
ful and illustrative. These instances include probabilistic
graphical models and weighted CSPs. Most instances that
we do not report were either trivially easy (solved exactly
under 5 seconds by all schemes) or too hard (no solutions or
only a single suboptimal solution by any scheme within the
time bound).

In random grid networks the nodes are arranged in an N
by N square and each conditional probability table is gen-
erated uniformly randomly. The pedigree and type4 in-
stances come from the domain of genetic linkage analysis,
more specifically haplotyping. The Weighted CSP networks
benchmark comprises of graph colouring problems, SPOT5
networks and other domains. Table 1 shows the following
benchmark parameters: # inst - number of instances, N -
number of variables, k - domain size, w∗ - induced width,
hT - pseudotree height. The pseudo trees that guide the
AND/OR search algorithms were obtained using the depth-
first traversal along the variable ordering generated using
MinFill heuristic (Kjaerulff 1990).

For uniformity we assume that the optimization task is
maximization throughout. After considering 5 different
weight policies with various parameters, we settled for both
wAOBF and wR-AOBF on the the following: wi = k ·√
wi−1, where wi is the weight at iteration i and k is a con-

stant factor empirically chosen to be equal to 4. The starting
weight w0 was selected to be 64: a) to explore the schemes’
behaviour on a large range of weights; b) to make the search
greedy enough initially to solve harder instances known to
be infeasible for regular AOBF within the memory limit.

All algorithms used admissible and consistent heuristic
functions obtained by three schemes: Mini-Bucket Elim-
ination (MBE) (Kask and Dechter 1999) and its two ad-
vanced versions: MBE with Moment-Matching (MBE-MM)
and Joint Graph Linear Programming (JGLP) (Ihler et al.
2012). MBE and MBE-MM are single-pass algorithms,
while JGLP is an iterative scheme that we chose to run for 60
seconds, based on preliminary experiments. The accuracy
of all heuristics is controlled by a parameter i-bound (higher
i-bounds typically yield more accurate heuristics and take
more time and space (exp(i)) to compute). We solved each
problem with 8 values of i-bound, ranging from 6 to 20.

In our empirical evaluation we address:

1. The effectiveness of weighted best-first schemes as ap-
proximations

2. The quality of schemes’ anytime behaviour

3. The interaction between heuristic strength and the multi-
plicative weight

Effectiveness of Weighted AOBF as Approximation
We first illustrate the impact of the weighted heuristic on
the performance of best-first search. We focus on the results
obtained using MBE-MM heuristic, since it is the most ver-
satile of the three and proved to provide reasonably accurate
bounds while keeping pre-processing time short.

In Table 2 we report runtime (sec) and logarithm of so-
lution cost for Weighted AOBF, for 2 instances from each
benchmark. We also report the run time and the log-cost by
BRAOBB at time of termination. Log-cost closer to 0 is bet-
ter. OOT signifies that BRAOBB terminated due to timeout
without proving solution optimality. We defer discussing
BRAOBB as an anytime scheme till the next section. In-
teresting results are framed. We report results for relatively
high i-bounds.
Time saving for w-bounded suboptimality. It is interest-
ing to compare first the results by BRAOBB (column 2) and
by Weighted AOBF (column 6, when w = 1) against any of
the other columns. Each weighted column represents a par-
ticular level of guaranteed suboptimality, corresponding to
the values of the weights that we used when running a single
iteration of Weighted AOBF. For example, consider the col-
umn of weight w = 1.10. These results are guaranteed to be
just a factor of 1.1 away from optimal, yet the time savings
compared with BRAOBB are significant (e.g., pedigree19:
0.39 vs 3841.07 sec or type4b 100 19: Weighted AOBF ter-
minated in 0.85 sec, while BRAOBB finished without prov-
ing solution optimality and giving any guarantees within the
time limit). The solution cost found by Weighted BF is often
close to or (for Type4) better than one by BRAOBB.

Effectiveness of Weighted AND/OR Best-First
Algorithms as Anytime Schemes
Figure 2 displays the anytime behaviour of the schemes
for typical instances, chosen to best illustrate predominant
trends for each benchmark. For each instance we show the
ratio between the cost available at a particular time point (at
5, 10, 60 and 600 sec) and the optimal (if known) or best cost
found. The closer the ratio is to 1, the better. For clarity, we
display the interval between 0.7 and 1.1 only. Each row cor-
responds to a particular benchmark, for a medium strength
i-bound. The four leftmost bars (for 4 different time points)
correspond to wAOBF, the central ones - to wR-AOBF and
the four rightmost - to BRAOBB.

We display the weight at the time bound above the respec-
tive bar for wAOBF and wR-AOBF. For BRAOBB ’***’ in-
dicates that solution optimality has been proven. MBE-MM
heuristic was used.

Figure 2 demonstrates that weighted best-first schemes
are often superior on Grid instances. They often find so-
lutions of high accuracy faster than BRAOBB, as, for ex-
ample, in case of instance 90-24-5, where both wAOBF and
wR-AOBF report solutions with accuracy greater than 0.9
within 5 seconds, while BRAOBB provides none until 600
seconds.

On certain Pedigree problems weighted best-first schemes
also perform well, e.g. pedigree7, where both wAOBF and
wR-AOBF, unlike BRAOBB, manage to find a solution of
accuracy higher than 0.7 within 5 seconds. However, on
most Pedigrees BRAOBB is superior, e.g. pedigree30.

On WCSPs BRAOBB clearly dominates, since on many
problems (e.g. 1403.wcsp and 1504.wcsp) neither wAOBF
nor wR-AOBF report within the time limit any solutions
with accuracy greater than our threshold of 0.7. They are

I-bound Heuristic Algorithm
Time bounds

120 3600
X%(Y%) / W / # X%(Y%) / W / #

Grids (# inst=15, N=144-2500, k=2, w∗=15-90, hT =48-283)

i=6

MBE
wAOBF 50.0 (25.0) / 4.0 / 12 25.0 (50.0) / 1.0 / 12

wR-AOBF 58.3 (16.7) / 1.19 / 12 0.0 (41.7) / 1.19 / 12

MBE-MM
wAOBF 33.3 (58.3) / 1.0 / 12 0.0 (66.7) / 1.0 / 12

wR-AOBF 33.3 (58.3) / 1.07 / 12 8.3 (66.7) / 1.06 / 12

JGLP
wAOBF 7.1 (85.7) / 3.0 / 14 0.0 (92.9) / 1.0 / 14

wR-AOBF 0.0 (85.7) / 1.01 / 14 0.0 (92.9) / 1.01 / 14

i=16

MBE
wAOBF 0.0 (81.8) / 2.0 / 11 0.0 (75.0) / 1.0 / 12

wR-AOBF 0.0 (81.8) / 1.05 / 11 0.0 (75.0) / 1.05 / 12

MBE-MM
wAOBF 11.1 (88.9) / 3.0 / 9 11.1 (88.9) / 1.0 / 9

wR-AOBF 0.0 (88.9) / 1.03 / 9 0.0 (88.9) / 1.03 / 9

JGLP
wAOBF 0.0 (77.8) / 2.0 / 9 0.0 (88.9) / 1.0 / 9

wR-AOBF 0.0 (88.9) / 1.01 / 9 0.0 (88.9) / 1.01 / 9
Pedigrees (# inst=16, N=581-1006, k=3-7, w∗=16-39, hT =52-104)

i=6

MBE
wAOBF 33.3 (46.7) / 3.0 / 15 18.8 (43.8) / 1.0 / 16

wR-AOBF 20.0 (33.3) / 1.11 / 15 6.3 (31.3) / 1.11 / 16

MBE-MM
wAOBF 31.3 (31.3) / 5.0 / 16 31.3 (43.8) / 1.0 / 16

wR-AOBF 25.0 (37.5) / 1.07 / 16 18.8 (43.8) / 1.07 / 16

JGLP
wAOBF 6.3 (50.0) / 1.0 / 16 0.0 (56.3) / 1.0 / 16

wR-AOBF 6.3 (43.8) / 1.06 / 16 0.0 (50.0) / 1.06 / 16

i=14

MBE
wAOBF 28.6 (42.9) / 1.0 / 14 7.1 (50.0) / 1.0 / 14

wR-AOBF 21.4 (42.9) / 1.0 / 14 0.0 (50.0) / 1.0 / 14

MBE-MM
wAOBF 14.3 (64.3) / 1.0 / 14 0.0 (64.3) / 1.0 / 14

wR-AOBF 0.0 (64.3) / 1.04 / 14 0.0 (57.1) / 1.04 / 14

JGLP
wAOBF 7.1 (57.1) / 1.0 / 14 0.0 (57.1) / 1.0 / 14

wR-AOBF 0.0 (57.1) / 1.04 / 14 0.0 (57.1) / 1.04 / 14

Table 3: X% - percentage of instances for which each algo-
rithm is the better than BRAOBB at a specific time bound,
Y% - percentage of instances for which algorithm ties with
BRAOBB, W - average weight, # - number of instances for
which at least one of algorithms found a solution. # inst
- total number of instances in benchmark, N - number of
variables, k - maximum domain size, w∗ - induced width,
hT - pseudo-tree height. 4 GB memory, 1 hour time limit.
.

only competitive on some easier instances, such as 404.wcsp
or 505.wcsp.

On Type4 benchmark weighted best-first algorithms typ-
ically find reasonably accurate solutions much faster than
BRAOBB. For example, on type4b 30 21 wR-AOBF and
wAOBF report solutions with accuracy greater than 0.9
within 60 seconds and BRAOBB does not, up until 600 sec-
onds.

Significantly, for most benchmarks the weighted BF
schemes often provide tight w-optimality bounds. It is espe-
cially valuable whenever BRAOBB does not prove solution
optimality within the time limit, as is the case for all Type4
instances shown. Then the accuracy of the BRAOBB costs
remains unknown, unless we obtain the ground truth, i.e.
exact solution, by other means. At the same time, weighted
BF schemes provide w-optimality guarantees. For example,
on the four Type4 instances presented wR-AOBF guarantees
that the costs reported by 600 seconds are just within factor
of 1.1 from the optimal.

Tables 3 and 4 present a summary of the results. For 2

wAOBF wR-AOBF BRAOBB
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

C
/C

*,
G

ri
d

s,
 i

=
1

0

4
.3

1
.11
.1

1
.11
.0

1
.0

1
.0

1
.0

**
*

75-23-5 (529,2,31,122)

wAOBF wR-AOBF BRAOBB

1
6

.0

1
.2

1
1

.7

1
.2

1
.1

1
.1

1
.1

1
.1

75-24-5 (576,2,32,116)

wAOBF wR-AOBF BRAOBB

1
6

.0
4

1
.3

1
6

.0

1
.2

5
.8 1

.0

1
.0

1
.0

**
*

90-24-5 (576,2,33,110)

wAOBF wR-AOBF BRAOBB

1
.1 1
.11
.0

1
.0

1
.0

1
.0

**
*

1
.0

1
.0

**
*

75-20-5 (400,2,27,99)

5 sec
10 sec
60 sec
600 sec

wAOBF wR-AOBF BRAOBB
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

C
/C

*,
P

e
d

ig
re

e
s,

 i
=

1
0

1
6

.0

1
.1

1
0

.0

1
.1

1
.1 1
.1

1
.1 1
.1

pedigree7 (867,4,28,140)

wAOBF wR-AOBF BRAOBB

1
4

.5

1
.1

5
.5

1
.1

1
.0

1
.0

**
*

1
.0

1
.0

**
*

pedigree30 (1015,5,20,105)

wAOBF wR-AOBF BRAOBB

1
6

.3
5

1
.1

1
6

.0

1
.1

1
1

.1

1
.11

.1

1
.1

pedigree31 (1006,5,29,115)

wAOBF wR-AOBF BRAOBB

7
.9

1
.11

.1

1
.1

1
.0

1
.0

**
*

1
.0

1
.0

**
*

pedigree39 (953,5,20,77)

wAOBF wR-AOBF BRAOBB
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

C
/C

*,
W

C
S

P
s,

 i
=

8

1403.wcsp (665,4,89,282)

wAOBF wR-AOBF BRAOBB

1504.wcsp (605,4,19,80)

wAOBF wR-AOBF BRAOBB

1
.1

1
.0

1
.0

1
.0

1
.0

1
.0

**
*

1
.0

1
.0

**
*

404.wcsp (100,4,19,59)

wAOBF wR-AOBF BRAOBB

3
.5

3
.1

3
.2

3
.1

2
.9

2
.7

2
.7

2
.6

505.wcsp (240,4,21,75)

wAOBF wR-AOBF BRAOBB
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

C
/C

*,
Ty

p
e

4
,

i=
1

0

1
6

.1
7 1
.1

1
1

.4

1
.11

.1

1
.1

t ype4b_100_19 (3938,5,29,354)

wAOBF wR-AOBF BRAOBB

1
6

.1
7 1
.1

1
1

.6 1
.1

t ype4b_130_21 (4874,5,29,416)

wAOBF wR-AOBF BRAOBB

2
2

.6
3

1
.1

1
5

.0 1
.11

.1

1
.1

t ype4b_140_19 (5348,5,30,366)

wAOBF wR-AOBF BRAOBB

6
4

.0

2
.2

1
6

.0 1
.1

t ype4b_190_20 (8186,5,29,625)

Figure 2: Ratio of the cost obtained by some time point (5, 10, 60, 600 sec) and max cost. Max. cost = optimal, if known,
otherwise = best cost found for the problem. Corresponding weight - above the bars. ’***’ - BRAOBB proved solution
optimality. Instance parameters are in format (N, k,w∗, hT), where N - number of variables, k - max. domain size, w∗ -
induced width, hT - pseudo-tree height. MBE-MM. Memory limit 4 GB, time limit 1 hour.

time bounds we show the percentage of instances for which
wAOBF and wR-AOBF find better solutions than BRAOBB
(X%), the percentage for which they are tied with BRAOBB
(Y%), the weight averaged over the instances for which the
weighted scheme has found any (possibly suboptimal) solu-
tion (W), and the number of instances, for which at least one
of the algorithms found a solution (#). We average over the
final weights w reported by an algorithm for each instance
by the time bound shown. This is done in order to assess
how tight, on average, is the w-optimality bound. We show
the results for a relatively small and large i-bounds for all
three heuristic algorithms considered: MBE, MBE-MM and
JGLP.

From the results presented in Tables 3 and 4 we observe:

1. Anytime weighted best-first schemes are superior to
BRAOBB in quite a few cases. However, their perfor-
mance varies a lot across benchmarks. wAOBF and wR-
AOBF yield better solutions than BRAOBB on a large
percentage of instances on Grids (e.g. 58.3% at 120 sec
for wR-AOBF with MBE, i=6) and Type4 (e.g. 80.0% for
wAOBF for both MBE and MBE-MM, 3600 sec). They
are less effective on Pedigrees (only better than BRAOBB
on about 20% to 30% instances). On WCSP weighted BF
schemes are mostly inferior. One outlier is i=6 for JGLP,

where wAOBF and wR-AOBF are better than BRAOBB
in up to 50% cases. However, these results pertain to just
the 4 easiest instances of the benchmark and thus are not
very conclusive.

2. Weighted best-first algorithms tend to be superior when
the i-bound is small (e.g. i=6). When it is large (i.e. strong
heuristics) their dominance is usually less pronounced.
This ability to produce good solutions when there is a
large gap between the i-bound and the problems induced
width should be especially beneficial when solving hard
problems, for which calculation of accurate heuristics is
infeasible.

3. Same trends are seen when comparing different heuristics
schemes. Both Weighted BF algorithms are more success-
ful than BRAOBB when heuristic is relatively weaker, as
in case of using MBE algorithm, as opposed to stronger
heuristic yielded by JGLP.

4. Though all our heuristic algorithms are exponential in i,
JGLP is known to have higher time and space require-
ments (Ihler et al. 2012), because unlike MBE and MBE-
MM, which are single-pass, JGLP can have many iter-
ations which improve the bound over time. That ex-
plains why on some benchmarks, e.g. WCSPs and Type4,
JGLP can be infeasible for higher i-bounds and yields less

I-bound Heuristic Algorithm
Time bounds

120 3600
X%(Y%) / W / # X%(Y%) / W / #

WCSP (# inst=56, N=25-1057, k=2-100, w∗=5-287, hT =11-337)

i=6

MBE
wAOBF 0.0 (20.0) / 2.0 / 5 0.0 (33.3) / 1.0 / 6

wR-AOBF 0.0 (20.0) / 1.45 / 5 0.0 (33.3) / 1.3 / 6

MBE-MM
wAOBF 20.0 (20.0) / 3.0 / 5 0.0 (20.0) / 2.0 / 5

wR-AOBF 20.0 (20.0) / 2.45 / 5 0.0 (20.0) / 2.35 / 5

JGLP
wAOBF 25.0 (25.0) / 2.0 / 4 50.0 (50.0) / 2.0 / 4

wR-AOBF 50.0 (25.0) / 1.7 / 4 25.0 (25.0) / 1.6 / 4

i=10

MBE
wAOBF 0.0 (50.0) / 1.0 / 2 0.0 (33.3) / 1.0 / 3

wR-AOBF 0.0 (50.0) / 1.3 / 2 0.0 (33.3) / 1.3 / 3

MBE-MM
wAOBF 0.0 (50.0) / 2.0 / 2 0.0 (33.3) / 2.0 / 3

wR-AOBF 0.0 (50.0) / 1.55 / 2 0.0 (33.3) / 1.5 / 3

JGLP
wAOBF 0.0 (100.0) / 1.0 / 1 0.0 (100.0) / 1.0 / 1

wR-AOBF 0.0 (100.0) / 1.0 / 1 0.0 (100.0) / 1.0 / 1
Type4 (# inst=10, N=3907-8186, k=5, w∗=21-32, hT =319-625)

i=6

MBE
wAOBF 88.9 (0.0) / 44.0 / 9 80.0 (0.0) / 11.0 / 10

wR-AOBF 11.1 (0.0) / 9.15 / 9 30.0 (0.0) / 1.31 / 10

MBE-MM
wAOBF 75.0 (0.0) / 34.0 / 4 80.0 (0.0) / 11.0 / 5

wR-AOBF 0.0 (0.0) / 4.9 / 4 0.0 (0.0) / 1.18 / 5

JGLP
wAOBF 66.7 (0.0) / 32.0 / 3 83.3 (0.0) / 9.0 / 6

wR-AOBF 33.3 (0.0) / 5.93 / 3 50.0 (0.0) / 1.12 / 6

i=18

MBE
wAOBF 0.0 (0.0) / 13.0 / 5 77.8 (11.1) / 1.0 / 9

wR-AOBF 20.0 (0.0) / 1.08 / 5 0.0 (11.1) / 1.09 / 9

MBE-MM
wAOBF 0.0 (7.7) / 20.0 / 13 30.8 (23.1) / 4.0 / 13

wR-AOBF 0.0 (23.1) / 1.08 / 13 0.0 (23.1) / 1.08 / 13

JGLP
wAOBF 0 (0) / 0.0 / 0 0.0 (100.0) / 1.0 / 1

wR-AOBF 0 (0) / 0.0 / 0 0.0 (100.0) / 1.0 / 1

Table 4: X% - percentage of instances for which each algo-
rithm is the better than BRAOBB at a specific time bound,
Y% - percentage of instances for which algorithm ties with
BRAOBB, W - average weight, # - number of instances for
which at least one of algorithms found a solution. # inst
- total number of instances in benchmark, N - number of
variables, k - maximum domain size, w∗ - induced width,
hT - pseudo-tree height. 4 GB memory, 1 hour time limit.
.

solved instances, even though given time it generally pro-
vides more accurate heuristics.

5. wAOBF and wR-AOBF often have better performance for
short time limits. For example, for Grids, i=6, MBE-MM,
wR-AOBF is superior to BRAOBB on 33.3% of problems
for 120 seconds, but only on 8.3% for 3600 seconds.

6. Even on benchmarks where weighted BF schemes are in-
ferior to BRAOBB, e.g. WCSPs, they often provide tight
w-optimality bounds, as indicated by the average weights
being close to 1.0. For example, the average weight for
wR-AOBF on Type4, i=18, 120 sec is just 1.08. Such
bounds are especially valuable for instances where op-
timal solution can not be obtained within the time and
memory limit, as is the case for majority of Type4 prob-
lems.

7. wAOBF seems somewhat superior to wR-AOBF in terms
of accuracy, dominating BRAOBB more often. wR-
AOBF typically provides tighter w-optimality bounds.

Conclusion
In this paper we present the study of weighted best-first
search for graphical models. We extended an advanced
best-first search algorithm into several weighted schemes
and evaluated their performance, comparing with one of the
most competitive branch and bound schemes.

Our results show that on some domains the weighted algo-
rithms are effective as anytime schemes. Crucially, they pro-
vide valuable suboptimality guarantees. Therefore weighted
schemes should definitely be included as candidate solvers
for optimization tasks over graphical models.

As we saw, no scheme always dominates, and so the ques-
tion of algorithm selection requires further investigation. We
aim to identify problem features that could be used to predict
which scheme is best suited for solving a particular instance.
We also plan to automate the algorithm parameter selection
based on benchmarks or problems.

Alternatively, weighted best-first search together with
depth-first branch and bound can be included within a port-
folio framework, which was shown to be successful for com-
binatorial problems and planning, yielding such solvers as,
e.g., SATzilla (Xu et al. 2008) and PBP (Gerevini, Saetti, and
Vallati 2009). The issue of portfolio building and scheduling
remains for future work.

Acknowledgements
This work was sponsored in part by NSF grants IIS-1065618
and IIS-1254071, and by the United States Air Force un-
der Contract No. FA8750-14-C-0011 under the DARPA
PPAML program.

References
Chakrabarti, P.; Ghose, S.; and De Sarkar, S. 1987. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34(1):97–113.
de Givry, S.; Schiex, T.; and Verfaillie, G. 2006. Exploiting
tree decomposition and soft local consistency in weighted
csp. In AAAI, 22–27.
Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial Intelligence 171(2-3):73–
106.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the ACM
32:506–536.
Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme for bounded inference. Journal of the ACM
50(2):107–153.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence 113(1):41–85.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: Pbp. In ICAPS.
Hansen, E., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28(1):267–297.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Trans on Systems Science and Cybernetics 4(2):100–107.

Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard computational problems. Sci-
ence 275(5296):51–54.
Ihler, A. T.; Flerova, N.; Dechter, R.; and Otten, L. 2012.
Join-graph based cost-shifting schemes. arXiv preprint
arXiv:1210.4878.
Kask, K., and Dechter, R. 1999. Mini-bucket heuristics for
improved search. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, 314–323. Morgan
Kaufmann Publishers Inc.
Kask, K., and Dechter, R. 2001. A general scheme for
automatic search heuristics from specification dependencies.
Artificial Intelligence 129(1–2):91–131.
Kask, K.; Dechter, R.; Larrosa, J.; and Dechter, A. 2005.
Unifying cluster-tree decompositions for automated reason-
ing. Artificial Intelligence Journal.
Kjaerulff, U. 1990. Triangulation of graph-based algorithms
giving small total space. Technical Report, University of
Aalborg, Denmark.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. NIPS
16.
Marinescu, R., and Dechter, R. 2009a. AND/OR Branch-
and-Bound search for combinatorial optimization in graphi-
cal models. Artificial Intelligence 173(16-17):1457–1491.
Marinescu, R., and Dechter, R. 2009b. Memory intensive
AND/OR search for combinatorial optimization in graphical
models. Artificial Intelligence 173(16-17):1492–1524.
Nillson, N. J. 1980. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA.
Otten, L., and Dechter, R. 2011. Anytime AND/OR depth
first search for combinatorial optimization. In SOCS.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artif. Intell. 1(3-4):193–204.
Richter, S.; Thayer, J.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In ICAPS,
137–144.
van den Berg, J.; Shah, R.; Huang, A.; and Goldberg, K.
2011. Anytime nonparametric A*. In AAAI.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
Satzilla: Portfolio-based algorithm selection for SAT. J. Ar-
tif. Intell. Res.(JAIR) 32:565–606.

