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Abstract

In this position paper, we present our current progress in
applying marginal MAP algorithms for solving the con-
formant planning problems. Conformant planning prob-
lem is formulated as probabilistic inference in graphi-
cal models compiled from relational PPDDL domains.
The translation from PPDDL into Dynamic Bayesian
Network is developed by mapping the SAT encoding
of the ground PPDDL into factored representation. We
experimented with recently developed AND/OR branch
and bound search algorithms for marginal MAP over in-
stances from the international planning competition do-
mains, and we show that several domains were solved
efficiently.

Introduction
We present our current progress in applying a general pur-
pose Marignal MAP search algorithms (Marinescu, Dechter,
and Ihler 2014) for solving conformant planning problems
by encoding their relational formulae into DBN (Dynamic
Bayesian Network) up to fixed time horizon, into a factored
representation.

The probabilistic planning problem P = 〈S, I,G,A〉 we
address is based on the probabilistic extension to sequential
STRIPS with negation and conditional effects, where the S
is the set of states grounded from function free first order
predicates, the I is the probabilistic distribution over initial
states, the G is the goal that must be satisfied, and the A is a
set of actions which are instances of action schemata.

Probabilistic conformant planning is the task of generat-
ing a sequence of actions achieving the goal without sensing.
In other words, a planner should find a sequence of actions
in the belief state space that is resulting from the uncertainty
of initial states and action effects. The query to the planner
can be formulated in two different ways: 〈P, θ〉, which ask
for a plan achieving the goal with probability that exceeds a
threshold θ, or 〈P, T 〉, which fixes the time horizon T and
ask for a plan with maximum probability.

We define an optimal probabilistic conformant planner as
a planner which always finds the shortest length plan that
exceeds a threshold. Note that a planner which returns a
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plan from the query 〈P, T 〉 can be transformed into an op-
timal planner by increasing the time horizon incrementally.
For example, COMPLAN (Huang 2006) and CPPlan (Hyafil
and Bacchus 2004) answer to the query 〈P, T 〉. On the other
hand, Probabilistic Fast Forward (Domshlak and Hoffmann
2007) returns some sequence of actions that exceeds the
threshold.

We address probabilistic planning problems expressed
in Probabilistic Planning Domain Definition Language
(Younes and Littman 2004) with minor extensions to express
probability distribution over the initial states. Such problem
domains consist of function free first order predicates to en-
code state variables, and parameterized action schemata with
a precondition and an effect, expressed in the first order syn-
tax. The precondition of an action was treated like a condi-
tion of conditional effect such that executing an inapplica-
ble action in a state that violates the precondition results in
no-op. For simplicity, we don’t deal with quantifiers and dis-
junctions in the condition, and we assumed that there is only
single goal state in the goal.

In this paper we consider the optimal probabilistic con-
formant plan that maximizes the probability of achieving
the goal given a fixed time horizon. We show that the op-
timal plan can be found by marginal MAP inference over
the DBN that compiles a planning problem properly. Such
a translation of PPDDL into DBN was developed based on
the SAT encoding of planning problems (Kautz, McAllester,
and Selman 1996), where the translation is applied after
grounding the lifted expressions by grounding each pred-
icate and action schema into state and action variables.
Benchmark problems were selected from the international
planning competitions to assess the applicability of marig-
nal MAP inference for planning.

Conformant Planning as Marignal MAP
Our task is to solve the conformant planning problem P =
〈s0..sT,a0..aT−1, T 〉. Namely to find a length T sequence
of action assignments a0..aT−1 that maximizes the condi-
tional probability of reaching the goal sT given the initial
state s0 and the action assignments as follows:

arg max
a0..aT−1

∑
s1..sT−1

P (s1..T−1|s0, sT,a0..T−1) (1)



Figure 1: 2TDBN for the slippery gripper domain

where the ai is the vector of action variables at the i-th stage,
and the si is the vecor of state variables at the i-th stage. If
multiple goal states were allowed in the goal, we would add
addtional layer rT+1 qualifying the final state sT , and the
summation would subsume the final state sT .

Encoding PPDDL into DBN
We developed translation from PPDDL domain into 2 stage
DBN (2TDBN) encoding state transitions in a single time
step. Our 2TDBN encoding extends the translation given in
(Younes and Littman 2004) by introducing additional vari-
ables and functional relations to incorporate action variables
and bound the maximum number of parents of a node.

The semantics of 2TDBN is based on the linear encoding
of SATPLAN with additional multivalued effect variables to
address probabilistic outcomes of a probabilistic effect. The
j-th boolean state variables sji of the state si, and the k-th
boolean action variables aki of the action ai are obtained by
grounding the lifted predicates and action schemata, where
the i is the time step.

A ground action consists of a precondition φ, where the φ
is a conjunction of equality predicates on ground objects and
literals of state variables, and an effect which can be either
a simple effect, a conditional effect, a probabilistic effect
or a conjunction of other effects. We assumed that a plan-
ner would execute a no-op action if the precondition didn’t
meet. Thus, an action is implicitly converted to a conditional
effect, which is the so called weak precondition. From now
on, we do not distinguish between a precondition of an ac-
tion and a condition in the conditional effect.

A simple effect is a conjunction of state variables where
positive literals corresponds to add list and negative literals
corresponds to delete list of STRIPS formalism. A condi-

tional effect is a pair (φ, e), where the φ is a condition de-
fined eariler, and the e is an effect. A probabilistic effect is a
list of pairs (pi, ei), where the pi is the probability value for
the i-th effect ei. Thus, a PPDDL effect can be nested in ar-
bitrary depth forming a tree of which simple effects placed
at the leaf. For each effect we introduce an effect variable
capturing the outcomes of the effect. Specifically, a proba-
bilistic effect having n outcomes maps to an effect variable
with n+ 1 values where the additional value is reserved for
the no-op. Finally, addtional variables +ski+1 and -ski+1 are
defined to indicate whether the state variable ski+1 will be
added or deleted.

A 2TDBN G = 〈V, F 〉 with a set of variables V and a set
of conditional probability table F for each variable can be
obtained by converting following clauses:

• aji ∧ φ
j
i → (eji 6= no-op), ¬(aji ∧ φ

j
i ) → (eji = no-op),

where φji is the precondition of aji
• ∨k∈K (eji = v) ≡ +/-si+1,

where K = {k| sji+1 ∈ ∪v add/del(eki = v) }

• ∀k1 6=k2
(ek1

i = v1) ∧ (ek2
i = v2)→¬+/-si+1,

ifsi+1 ∈add/del(ek1
i = v1) and si+1 ∈add/del(ek2

i = v2)

• ∀j ∨ aji , ∀j 6=k a
j
i → ¬aki

• ¬ +sji+1 ∧ ¬ -sji+1 → (sji ∧ s
j
i+1) ∨ (¬sji ∧ ¬s

j
i+1)

Note that above clauses encode a planning doamin where
each action has a single probabilistic effect without nesting.
So, an outcome v of the j-th effect variable at the i-th time
stage (eji = v) corresponds to a simple effect. For the nested
effects, we consult in normal forms in (Rintanen 2003). The
first clauses correspond to the CPT for an effect variable,
where each outcome occurs only if the action triggering the



effect was executed and the precondition was satisfied. The
second and the third clauses encode the CPT for an indica-
tor variable to indicate the result of executing some action
as well as to depricate inconsistent combination of effects.
The last two clauses encode the mutual exclusivity on ac-
tion variables and the frame axioms. Concurrent actions can
be easily adopted by modifying the previous propositional
encoding.

Consider slippery gripper domain (Kushmerick, Hanks,
and Weld 1995) which consists of four state variables,
gripper-dry (gd), holding-block (hb), block-painted (bp),
and gripper-clean (gc), and three actions, “pick up”, “dry”,
and “paint”. Initially, the gc is true, the gd is true with prob-
ability 0.7, and other two state variables are false. The goal
is a conjunction of lieterals, gd ∧ hb ∧ bp. If gripper-dry
were true, the “pick up” action would add hold-block with
probability 0.95. Otherwise hold-block would be added with
probability 0.5. The “dry” action would add gripper-dry with
probability 0.8. Lastly, If holding-block were true, gripper-
clean will be deleted by “paint” action, and if it were false,
gripper-clean would be deleted with probability 0.1. The
“paint” action also adds block-painted.

Fig. 1 shows the 2TDBN for the slippery gripper domain.
Each value of the CPT for “pick up” is normalized to 1.0 be-
cause the joint conditional distribution is conditioned on the
action variable. The effect variable e1 takes three values, the
no-op for the case where the “pick up” action was not ex-
ecuted, the +hbi+1 for adding the state variable hbi+1, and
the null effect derived from the semantics of probabilistic ef-
fect, i.e., when

∑
i pi < 1, the probabilistic effect takes an

additional null effect with probability 1 −
∑

i pi. The prob-
ability of each outcome is mapped to the corresponding row
of the CPT. Note that the effect CPTs from probabilistic ef-
fects are only probabilistic. The rest of the two tables in Fig.
1 are simply rewritten in tabular form of the propositional
encoding. Finally, the CPT for the node C in Fig. 1 is also
in tabular form of the mutual exclusivity clauses.

The DBN with time horizon T will be obtained by repli-
cating the 2TDBN over T times. The probability distribution
over the initial state variables and the single goal state can
be assigned to the state variables s0, and sT.

In practice, in-degree of the nodes for the constraint on
action variables, and the indicator variables ±sji+1 grows
prohibitively for storing the tabular form of the CPT, so ad-
ditional hidden variables were introduced to bound the max-
imum in-degrees.

The complexity of the resulting 2TDBN is similar to that
of SATPLAN, and it can be summarized as follows. Let the
number of action schemata in the planning domain be |as|,
the number of predicates be |pre|, the maximum arity of the
action schemata be p, the maximum arity of the predicates
be q, and the number of ground objects in the instance be
k. The total number of the action variables is O(|as|kp),
and the total number of the state variables is O(|pre|kq).
Assuming that we have only flat effects, the number of ef-
fect variables are the same as the number of action vari-
ables. Thus, the total number of variables in a 2TDBN is
O(2|as|kp + 3|pre|kq). In case of introducing hidden vari-
ables to bound the maxmum in-degree, we would introduce

|as|kp−1 hidden variables to bound the maximum in-degree
of the constraint variable to be 2. Similarly, if the maximum
number of parents for the indicator variables was |E|, we
would introduce |E| − 1 hidden variables. In such a case,
the maximum arity of the CPTs is max(3, s + 1), where
the s is the maximum number of state variables shown in
a precondition which contributes to the arity of the CPT
for an effect variable. The maximum domain size is n + 1,
where the n is the maximum number of outcomes of a
probabilistic effect. Finally, the total number of variables is
O(3|as|kp + (1 + 2|E|)|pre|kq).

Marginal MAP Algorithms
We are using recently proposed AND/OR Branch and Bound
(AOBB) search algorithms for marginal MAP (Marinescu,
Dechter, and Ihler 2014), where heuristics were created by
Weighted Mini Bucket elimination (WMB) from the con-
strained variable ordering. AOBB search heuristics are:

• Pure MB (Dechter and Rish 2003)

• MB with moment matching (Ihler et al. 2012)

• WMB with join graph cost shifting (Ihler et al. 2012)

Constraint propagation also employed on the conditioned
subproblems by CNF encoding of zero probability tuples
and applying unit resolution or full satisfiability (Marinescu
and Dechter 2009). In addition, we tested our other algo-
rithm BBBT, which is an OR branch and bound search
guided by MCTE (Mini Cluster Tree Elimination) heuristic
as well as Yuan’s algorithm (Yuan and Hansen 2009).

Experiment Result
The benchmark instances were selected from the planing
domains provided by past international planning competi-
tions: “slippery gripper”, “comm”, and “blocks world”. For
the blocks world domain the instances are from probabilis-
tic track of IPC 2006, and we removed three “tower actions”
that can move more than two blocks at once. The prob-
lem instances for the blocks world domain were recreated
such that there exists shorter length plan. The slippery grip-
per instances and “comm” domain were not modified from
the original release. Note that the “comm” domain has only
uncertain inital state. In contrast, blocks world domain has
only probabilistic transitions, and the slippery gripper do-
main contains uncertain initial state and probabilistic state
transitions.

Table 1 summarizes our benchmark results from three
marginal MAP algorithms: 1. AOBB search with the WMB-
JG heuristic ran for 10 iterations and full constraint propa-
gation for deterministic tuples in the CPTs (AOBB-WMB-
JG), 2. BBBT search with the incremental MCTE heuristic
(BBBTi), and 3. Yuan’s algorithm. The tuple (n, k, s, |S|,
|A|) is problem statistics showing the total number of vari-
ables in the 2TDBN, the maximum domain size, the max-
imum scope size, and the number of the states and action
variables per time step.

The number of variables n is much higher than sum of
grounded state/action variables since we introduced hidden



Table 1: Experiment results from marignal MAP search algorithms. Time/Memory limit 6 Hr/4GB.
Solution AOBB-JG BBBTi YUAN Solution AOBB-JG BBBTi YUAN Solution AOBB-JG BBBTi YUAN

Domain Name max prob time time time max prob time time time max prob time time time
(n, k, s, |S|, |A|) (L, w, h) (i, c) (i, c) - (L, w, h) (i, c) (i, c) - (L, w, h) (i, c) (i, c) -

slippery gripper 0.7335 0.01 0.01 0.01 0.9 210 54 12 0.9 oot 8906 3734
(23, 3, 3, 4, 3) (2, 6, 3) (6, 6) (6, 6) - (14, 44, 58) (22, 22) (30, 30) - (21, 65, 82) (24, 24) (26, 26) -

0.8985 8.33 0.08 0.03 0.9 8840 2329 881 0.9 oot oot 7334
(6, 20, 29) (20, 20) (20, 20) - (19, 59, 74) (26, 26) (30, 30) - (22, 68, 88) (24, 24) (26, 26) -

0.8999 5.49 1.99 0.65 0.9 19262 7481 2121 0.9 oot oot 19607
(10, 32, 44) (20, 20) (30, 30) - (20, 62, 78) (26, 26) (30, 30) - (23, 71, 86) (24, 24) (26, 26) -

comm 0.25 11 oom oom 0.25 74 oom oom 0.25 54 oom oom
(349, 2, 2, 45, 46) (5, 269, 324) (8,8) (2,2) - (7, 363, 436) (2, 2) - (9, 467, 540) (2, 2) (2, 2) -

bw-24 0.1406 0.57 0.35 7 0.7031 5 8.93 92 0.8701 879 9513 18809
(73, 3, 5, 9, 8) (3, 32, 55) (10,10) (12, 1) - (5, 51, 80) (10, 10) (10, 10) - (7, 69, 101) (16, 16) (14,14) -

0.5625 1 1.95 10 0.8085 67 242 1029 0.9162 9930 oot oot
(4, 40, 66) (10, 10) (12, 12) - (6, 57, 90) (12, 12) (12, 12) - (8, 72, 115) (18, 18) (22, 22) -

bw-34 0.0351 1.71 2.19 oom 0.1406 225 217 oom 0.5273 1572 7681 oom
(170, 3, 5, 16, 18) (4, 101, 142) (4,4) (8,8) - (6, 135, 191) (8, 8) (8, 8) - (7, 156, 221) (8, 8) (8, 8) -

variables for high in-degree CPTs due to the action con-
straints and the frame axioms. The solution is reported for
the maximum probability with length L, the induced width
w, and the pseudo tree height h for the topological variable
ordering. AOBB-WMB-JG and BBBTi shares the same al-
gorithmic parameters, the i bound for the WMB and the c
bound for the caching, which are shown below the running
time for each algorithms.
slippery gripper The optimal plan for the slippery grip-
per domain should satisfy two partial order relations: the
“paint” action precedes the “pick up” action, and the “dry”
action precedes the “pick up” action. One such valid plan
is (paint, dryi, pick-upj), where the i ≥ 0 and the j ≥ 1
denotes the number of “dry” and “pick up” actions exe-
cuted in the plan, and T = 1 + i + j. The probability
of success for the plans satisfying above partial order re-
lations is 0.9(dipj + (1 − di)qj), where d0 = 0.7, di =
di−1+0.8(1−di−1), p1 = 0.95, pj = pj−1+0.95(1−pj−1),
q1 = 0.5, and qj = qj−1 + 0.5(1 − qj−1). For example,
the optimal length 3 plan is (paint, pick up, pick up) with
the probability 0.830925. Thus, we can assure that the plans
found by marginal MAP search algorithms were truely opti-
mal by checking above equations on various i and j values.

Yuan’s algorithm performed best among three algorithms,
and it was able to find conformant plans up to 23 time hori-
zon in 6 hour time limit. On the other hand, BBBT search
with incremental MCTE heuristics was able to find up to 21
time horizon.
comm For the “p01” problem from the IPC 2006 competi-
tion, AOBB-WMB-JG solved problems up to 9 time hori-
zon. We suspect that the full constraint propagation incor-
porated in AOBB-WMB-JG played a significant role for
solving the problems. Compared to other domains, induced
width of the constrained ordering was prohibitively huge, for
example the induced width was 467 for the 9 time horizon
instance.
simple blocks world Two blocks world domain were re-
ported. Each of them has 2 and 3 blocks with 4 action
schemata. AOBB-WMB-JG was able to find plans for up
to 8 time horizon for bw-24 and 7 time horizon for bw-34.
Since the number of state/action variables is exponentially
increasing, the algorithms couldn’t find a solution for the
problems having more than 3 blocks.

Comparison with Other Planners
In this section, we compare the marginal MAP search algo-
rithms with COMPLAN and Probabilistic-FF. The perfor-
mance of Probabilistic-FF was evaluated in the same bench-
mark envrionment.

To the best of our knowledge, COMPLAN is the most re-
cent probabilistic conformant planning algorithm that max-
imizes the probability of success for a plan with a fixed
time horizon. COMPLAN extends linear encoding of SAT-
PLAN with chance variables that encode the uncertainity of
a planning problem, and compiles CNFs into deterministic
decomposable negation normal form (Darwiche 2004), and
then apply the marginal MAP query. The conformant plan
is found by depth first branch and bound search guided by
heuristics generated by a relaxed marginal MAP query on
the d-DNNF compilation. Note that the induced width of
constrained variable orderings for a planning problem is usu-
ally prohibited as shown in the Table 1. AOBB-WMB-JG re-
laxes the problem based on the weighted mini-buckets with
cost shifting, whereas COMPLAN allows an unconstrained
variable ordering to yield lower induced width.

Probabilistic-FF finds a conformant plan that achieves
the goal higher than a desired threshold by heuristic for-
ward search in a belief state space. The belief states bā
is a probability distribution over states reachable from ini-
tial belief state bI by applying a sequence of actions ā.
Probabilistic-FF also represents belief states by DBN Nbā
(Boutilier, Dean, and Hanks 1999), and the DBN is fur-
ther compiled into weighted CNFs, to retrieve probabilitic
queries via weigthed model counting (Sang, Beame, and
Kautz 2005).

In our representation, all the action variables were nodes
of the DBN such that the probabilistic inference directly
query over the action variables after marginalizing the rest
of the variables. On the other hand, each DBN for the be-
lief states bā of the Probabilistic-FF unrolls only portion of
the entire DBN that can be instantiated by applying a spe-
cific sequence of actions ā, and the weighted model count-
ing computes only posterior probability so that the heuristic
function evaluates the probability of achieving the goal.

Table 2 compares Probabilistic-FF and AOBB-WMB-JG
on the planning problems: “slippery gripper”, and “simple
blocks world”. We set threshold values of the Probabilistic-



Table 2: Comparison between Probabilistic-FF and AOBB-WMB-JG. Time/Memory limit 6 Hr/4GB.
s-gripper θ 0.7335 0.830925 0.884385 0.895077 0.898539 0.899618 0.899859 0.899967 0.899989 0.899999 0.9

pff time 0.04 0.03 0.04 0.05 0.04 0.05 0.04 0.04 0.07 0.11 oot
(h1,w0) length 3 4 5 6 8 10 11 13 15 18 -

pff time 0.03 0.19 0.42 1.22 1.27 3.05 6.29 13.89 31.56 156.86 oot
(h2, w1) length 2 4 5 6 6 7 8 9 10 12 -
AOBB pre, tot 0.01, 0.01 0.02, 0.02 0.13, 0.13 0.98, 0.98 8.33, 8.33 66.23, 66.23 3.37, 4.13 4.27, 5.19 46.94, 49.29 9.07 ,37.23 90.59, 126.41

WMB-JG L, w, i 2, 6, 6 3, 10, 10 4, 14, 14 5, 17, 17 6, 20, 20 7, 23, 10 8, 27, 22 9, 29, 22 10, 32, 28 12,38,24 13, 41, 24

bw-24 θ 0.140625 0.5625 0.703125 0.808594 0.870117 bw-34 θ 0.140625 0.2 0.4 0.527344
pff time 0.04 0.05 oom oom oom pff time 0.09 0.09 0.1 error

(h1, w0) length 4 4 - - - (h2, w0) length 6 6 6 -
AOBB pre, tot 0.56, 0.57 0.9, 1.06 1.28, 5 3.62, 67 55.6, 879 AOBB pre, tot 5, 225 - - 7.4, 1572

WMB-JG L, w, i 3, 32, 10 4, 40, 10 5, 48, 10 6, 57, 12 7, 67, 16 WMB-JG L, w, i 6, 135, 8 - - 7, 156, 8

FF from optimal conformant planning solutions for compar-
ison. For the Probabilistic-FF we present the best result from
2 heuristic functions and 3 weight propagation schemes.
For the detail about Probabilistic-FF planner, we refer to
the Probabilistic-FF codes available at the author’s website.
For the AOBB-WMB-JG, we present preprocessing time
for compiling WMB-JG static heuristics with 10 iterations
for the join graph cost shifting, the total time that covers
both preprocessing time and AOBB search time, and triplet
(L,w, i) for the shortest plan length, the induced width of a
constrained variable ordering, and the i-bound parameter for
WMB.
slippery gripper Probabilistic-FF solved all the instances
around 0.1 seconds except the one with threshold 0.9. The
length of the plan is typically longer than the optimal, but
plans that are closer to the optimal could be found with in-
creased time. For the slippery gripper problem, the threshold
0.9 is the maximum probability of success achievable.

Considering the length of the plan, the performance of
AOBB-WMB-JG is comparable to Probabilistic-FF in many
problem instances. The WMB relaxation was exact, i.e., the
i-bound was same as the induced width when the time hori-
zon was less than 7. Thus, AOBB-WMB-JG was solved by
inference.
simple blocks world In two problem domains, bw-24 and
bw-34, Probabilistic-FF was not able to find a plan longer
than 4 and 6 due to the 4GB memory limit. In our experi-
ments, Probabilistic-FF showed cut-off thresholds for both
domains, 0.6 and 0.5 for each. As we discussed in previous
sections, AOBB-WMB-JG ran out of the time when the time
horizon grows higher than 8 and 7 for each domain.

Discussion and Future Work
We applied state of the art marginal MAP solver to prob-
abilistic conformant planning problems by converting SAT
encoding of a planning instance into DBN. We were able to
solve instances from three domains that are orginated from
the past planning competitions. When the size of the fac-
tored representation at the propositional level was manage-
able, our marginal MAP solver could find the optimal plan
given a fixed time horizon. On the other hand, the heuristics
based on the approximate probabilistic inference becomes
inaccurate as we extend the time horizon since the induced
width of constrained variable ordering increases linearly.
Benchmark on harder problems The three planning do-
mains we addressed in this paper are easy domains; “slip-
pery gripper” domain was already defined at the proposi-

tional level and it contains 4 state variables and 3 action
variables. “Blocks world” domains were simpified by re-
moving three action schemata in the orginal release to bound
the number of ground variables at each time stage. The prob-
lem instances solved by marginal MAP algorithms were lim-
ited to contain at most three blocks and 7 time horizon.
Therefore, our goal is to translate the planning domains in
more compact way, and improve the probabilistic inference
to exploit symmetry and determinism present in the planning
problem.
Compact translation More compact translation at the
propositional level is desired to push the marginal MAP
search algorithms to solve planning instances leaving a
larger number of constant objects and longer time horizon
at the ground level. The SAS+ based SAT encoding for
the classical planning is known to produce more compact
translation compared to the linear encoding of SATPLAN
(Huang, Chen, and Zhang 2010). Thus, the straightforward
extension of our current work is to convert a STRIPS like
PPDDL domain into FDR (finite domain representation)
(Helmert 2009), and translate the new SAT encoding into
the graphical model with proper extension addressing the
uncertainty.
Need for lifting Planning problems have two source of lift-
ing: the time horizon which implies replicated structure over
the time axis, and the state/action representation parameter-
ized by obejct variables. It was shown that MDP/POMDP
planning can be reformulated as a mixture model of un-
bounded number finite length DBNs (Toussaint 2009) with
flat state variables. Still, lifted inference for the parameter-
ized random variables declared in both STRIPS like PPDDL
and SAS+ based FDR has not gained much attention in the
literature. We leave improving current algorithms in con-
junction with lifted inference on parfactor graphs possibly
translated from lifted planning probelm representations as
future work.
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