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Abstract

We prove that in grids of any size there ex-
ists a minimal cycle-cutset that its complement
induces a single connected tree. More gener-
ally, any cycle-cutset in a grid can be trans-
formed to a tree-inducing cycle-cutset, no big-
ger than the original one. We use this result to
improve the known lower bounds on the size of
a minimal cycle-cutset in some cases of grids,
thus equating the lower bound to the known
upper bound. In addition, we present a cycle-
cutset driven stochastic local search algorithm
in order to approximate the minimal energy
of a sum of unary and binary potentials. We
show that this method is on-par and even sur-
passes the state-of-the-art on some grid prob-
lems, when both are initialized by elementary
means.

1 Introduction

A cycle-cutset in a graph G =(V, E) is a subset C
of the vertices of G, such that the graph induced on
V' =V\C is acyclic, i.e. a forest. The minimal cycle-
cutset problem is finding a cycle-cutset of minimal car-
dinality. The problem is of interest to a wide variety of
applications, including distributed computing and ar-
tificial intelligence in the context of Bayesian inference
and constraint satisfaction. For example, the run-time

of the method of conditioning for inference in Bayesian
networks depends exponentially on the size of the cut-
set on which it is applies. Due to the importance of
the problem, it has been extensively studied, although
the problem was proven to be NP-complete for gen-
eral graphs. Some of the findings include polynomial
algorithms solving the problem for some specific graph
classes and lower and upper-bounds on the size of the
minimal cycle-cutset. In particular, Luccio [1] has pre-
viously presented lower and upper bounds on the size
of the minimal cycle-cutset of grids. It was shown that
the minimal cycle-cutset of the grid M,, , is of size at
least
(m-—1)(n-1)+1
3

and at most

mn m-+mn
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+o(m,n)

Luccio’s upper bound was later significantly improved
by Madelaine and Stewart [2], who have shown an up-
per bound matching Luccio’s lower bound in many
cases and differing from Luccio’s lower bound by at
most 2, in other cases apart from when m = 5 and
n > 5.

The rest of the paper is constructed as follows. In Sec-
tion 2, we present the main definitions used through-
out the paper. In Section 3, we show that the forest



induced by a minimal cycle-cutset in grids can always
be made into a single connected component, i.e a sin-
gle tree. We then use this result in Section 4 in order
to improve Luccio’s lower bound in some cases. Thus
matching the lower bound with upper bound of Made-
laine and Stewart in those cases.

2 Preliminaries

Definition 1 (Cycle cutset, Partition to trees). Let
G = (V, E) be an undirected graph. A subset C C V
is a cycle-cutset in G iff the graph F induced by
V' = V\C on G is a forest. We define the partition
T of F to trees as

T ={t= (V4 E) : tis a connected component of F}

ie. T is a set of (connected) trees, and V' can be

written as V' = ¢ V.
teT

Definition 2 (Tree-degree ). Let ¢ € C be a vertex
in cycle-cutset C of G and t € T a tree induced by C,
and denote by N (c) the neighbors of ¢ in the graph
induced by V' U {c} on G, we define the tree-degree of
¢ in t over C to be d, if [N (¢) N V;| = d and for every
other tree t # ¢/ € T it holds that [N (¢) N V| < 1. In
general, we say that the tree-degree of ¢ is d if the con-
dition above holds for some t, and that the tree-degree
is undefined otherwise. If d > 2 we call N (¢) N'V; the
in-tree neighbors of c.

Given a cutset C inducing a forest with more than one
connected component, we would like to replace some of
the vertices of C' with other vertices, or remove some
vertices altogether, so to receive a new cutset C’ that
induces a single tree.

It is easy to see that every cutset vertex of tree-degree
equal or less than 1, can be removed from the cutset
while maintaining its validity.

let ¢ € C be a cutset vertex of tree-degree 2 in t € T,
and let u,v € N (¢) NV, be its two in-tree neighbors,
then it easy to see that there exists a (unique) path
from u to v in t, and that by removing ¢ from the
cutset, a single cycle is formed in the cutset-induced
graph. Thus, it is obvious that adding any vertex

in that cycle to the cutset thereafter will produce a
valid cutset again. In conclusion, any cutset vertex of
tree-degree 2 can be replaced by any vertex along the
(unique) path between its two in-tree neighbors while
maintaining the cutset’s validity.

Let ¢ € C be a cutset vertex of tree-degree 3 int € T,
and let u,v,w € N (¢) N'V; be its three in-tree neigh-
bors, then there exists a (unique) path in t between
each pair of in-tree neighbors of ¢. The intersection of
all three paths corresponding to possible pairings is a
single vertex ¢’ € T, and therefore it is the only vertex
(in F) that c can be replaced with while maintaining
the cutset’s validity.

We note that for cutset vertices of tree-degree greater
than 3, the intersection of all paths between the in-tree
neighbors may be empty, and therefore these cutset
vertices would be irreplaceable. Additionally, cutset
vertices of undefined tree-degree are necessarily irre-
placeable.

Definition 3 (Equivalent cutset vertices). Let ¢ € C
be a cutset vertex and let ¢ € V be a vertex of the
graph G. We say that ¢’ is equivalent to ¢ (under C),
if C'\ {c} is not a cutset, while (C\ {c})U{c'} is a cut-
set.

Let ¢ be a cutset vertex of tree-degree d, and let ¢/
be an equivalent vertex, i.e. ¢ can be replaced by ¢
while maintaining the cutset’s validity. It should be
noted that the tree-degree of ¢’ is d as well (in the for-
est induced by V' U{c, ¢}). Moreover, if the degree of
c in the graph H induced by V' U {c} is p (note that
p > d), then the number of connected components in H
is smaller by p — d from the number of connected com-
ponents in the forest F induced by V’. Consequently,
it can be shown that a forest F is connected iff for each
vertex c in the inducing cutset C the tree-degree of c is
defined and is equal to its degree in the graph induced
by V' U {c}. As a result, given a minimal cutset C,
if there exists a sequence of replacement moves, such
that at each step a cutset vertex is replaced with an
equivalent vertex, whose induced-degree is equal to its
tree-degree, a valid cutset may be produced, which is
minimal as well as induces a connected tree.

Definition 4 (Induced degree). Let ¢ € C be a cutset
vertex. The induced degree of ¢ under C is the degree
of ¢ in the graph induced by V' U {c}.



We summarize our previous observations in the follow-
ing lemma

Lemma 1. (a) If c is cutset vertex of tree-degree 2,
then every vertex along the path its two in-tree neigh-
bors are of equivalent to c.

(b) If c is a cutset vertex of tree-degree 3, then there
exists a unique vertex ¢’ which is equivalent to c.

(c) A cutset induces a single tree iff the tree-degree of
every cutset vertez is equal to its induced degree.

Definition 5 (Boundary of a tree). Let ¢t € T be a
tree, we define the boundary of t to be all cutset ver-

tices touching t and some other tree, and denote it
B(t), i.e

B(t)={ceC :N(c)NV, #0,...
L ItAE Y T, st.N(e)NV, # 0}

Note that for any tree t and vertex ¢ € B (t) the tree-
degree of c is either undefined or strictly smaller than
its induced-degree.

Definition 6 (The n x m grid graph). Let m,n >
2. The n x m grid graph M, , is an undi-
rected graph whose vertex set is V (Mp.,) =
{vi; 1 0<i<n,0<j<m} and the edge set
E (M, ) is defined by

E(Mnym) = {(’Ui,j,vi+1’j) 0<i<n—-1,0<75< m}
U{(vi,j,vi7j):0§i<n, 0§]<m—1}

3 Connectivity of the Induced
Graphs for Grids

Theorem 1. Let G be a grid graph and let C be a
cutset such that the induced forest F is disconnected,
i.e. |T| > 2, then there exists a a series of replacement
moves, such that the resulting cutset C' has no more
elements than C, and the forest induced by C' contains
a single tree, i.e. |C'| < |C| and the graph induced by
VA\C' is connected.

Corollary 1. In particular, it follows from Theorem
1 that there exists a minimal cutset that induces a con-
nected tree.

In the following we will prove this proposition using
two lemmas.

Lemma 2. Let G be a grid graph and let C be a cut-
set of G, that the induces a disconnected forest F, i.e.
|T| > 2. Lett € T be a connected component of F.
If there exists a vertex ¢ € B (t) in the boundary of t
with an tree-degree of 2, then ¢ can be replaced with a
vertex ¢, that has a degree of 2 in the graph induced
by V' U{c, '}, thus reducing the number of connected
components in the induced forest.

Proof of Lemma 2. As observed before, ¢ can be re-
placed with any of the vertices along the path from its
two in-tree neighbors. If there exists such a vertex ¢
with induced-degree 2, then replacing ¢ with ¢/ would
reduce the number of connected components in the in-
duced graph. To be exact, if the induced-degree of ¢
is p, then the number of connected components would
decrease by p — 2.

We will show that there exists such a vertex ¢’ equiv-
alent to ¢ of induced degree 2. Let u, v be the two
in-tree neighbors of ¢, and assume to contrary that the
degrees of all vertices along the path from « to v in the
graph induced by V' U{c} are equal or greater than 3.

Figure 1: Neighborhood of a vertex w of degree 4.
Unbroken lines represent vertices and edges in the for-
est, dotted lines represent vertices and edges in the
cutset, and dashed lines represent vertices and edges
of unknown status

Assume that there exists a vertex w along the path of
degree 4. (refer to Figure 1, showing only the neighbor-
hood of w, not necessarily including neither u nor v).
One promptly notes that it follows that the following
vertex along the path, denoted by x (or the previous



one, in case w = v) must be of degree 2, in contra-
diction to the negated assumption. Otherwise, x is of
degree at least 3 and either n; or ny must be in V.
Assume w.l.0.g. that n; € V', then the graph induced
by V' contains the cycle w, x, n1, m1, in contradiction
to the assumption that C is a cutset.

Therefore, assume that all vertices along the path have
a degree of 3 in the graph induced by V' U {c}. One
notes that the path must not bend, i.e. all the path’s
vertices must lie on a straight line (in contradiction to
the assumption that they form a path from u to v).
Assume to contrary that the path bends at vertex y,
namely assume w.l.o.g. that the previous vertex x lies
below y and that the following vertex z lies to right of
y (see Figure 2). It follows that x’s additional neighbor
r (not on the path) must lie to its left (or it will form
a cycle r,x,y, z), and similarly 2’s additional neighbor
s must lie above it. therefore, the introduction of y’s
additional neighbor at each of the possible positions p;
and po would result in a cycle either with x and r, or
with z and s - a contradiction.

Figure 2: Neighborhood of a bend in a path

It follows that if the boundary of t contains a vertex
c of tree-degree of 2, then c can be replaced with an
equivalent vertex while reducing the number of con-
nected components in the induced graph. |

Lemma 3. Let G be a grid graph and let C be a cut-
set of G, that induces a disconnected forest F, i.e.
|T| > 2. if there does not exist a tree t € T and a
verter ¢ € B (t), having tree-degree (defined and) is
equal or less than 2, then:

a. for every tree t € T, there exist at least 2 vertices
in the boundary of t of tree-degree 3.

b. There exists a series of replacement moves, such
that the forest induced by the final cutset C' is com-
posed of less connected components than the original
forest.

Note that the conditions of this lemma are the comple-
mentary of the conditions of lemma 1 (ignoring cutset
vertices of tree-degree less than 2, which can be triv-
ially removed).

To prove this lemma we will first show that a vertex in
a grid can be equivalent to at most 2 cutset vertices,
in which case the topology in the neighborhood of the
vertex must be of a specific form. To do so, we first
set to prove the following general claim.

Lemma 4. Let G = (V, E) is a planner graph, v € V'
a vertex equivalent to cutset vertices ci,...,c, € C,
which are of tree-degree 3, and let d be the degree of v
in the graph induced by V' U {ci}le, then d > k + 2.

Proof of Lemma 4 . Let ¢ € C be a cutset vertex of
tree-degree 3 and let v € V' be its (unique) equiva-
lent vertex. Consider Figure 3 and note that the three
paths p1, po, p3 from ¢ to v in the graph induced by
V' U {c} partition the plane to three parts, denoted as
A, B and C in Figure 3:

Figure 3: A vertex equivalent to a cutset vertex of
tree-degree 3 in a planner graph. A solid line marks a
single edge, and a squiggly line marks a path of arbi-
trary length

Assume that there exists another cutset vertex ¢’ € C
of tree-degree 3, such that its equivalent vertex is v as
well, and assume w.l.o.g that ¢’ lies in section A. In
addition, assume to the contrary of the lemma’s claim
that d < 4. Then, z, y and z are the only neighbors



of v in the graph induced by V' U {¢,¢'}. Since v is
equivalent to ¢/, there must be three paths from ¢’ to
v in the graph H induced by V' U {c'}. We note that
intersection of either two of these three paths is only
¢ and v, as otherwise, there is a path between two in-
tree neighbors of ¢’ which does not pass through v, in
contradiction to the assumption that v is equivalent to
c. As z, y and z are the only neighbors of v it follows
that there must be a path from ¢ to v in H passing
through z, but since G is a planner graph, every path
from ¢ to z in H not passing through v first must in-
tersect with either ps or p3. Assume w.l.o.g that the
path from ¢’ to v through z intersects with py at vertex
t, then there exist two paths from ¢ to v - one passing
through z and the other passing through y, thus form-
ing a cycle in the graph induced by V”, in contradiction
to the assumption that it is a forest. Therefore, there
is no path from ¢’ to z in H not passing through v.
As there must be three paths from ¢’ to v, it follows
that v must have (at least) one other neighbor in H,
through which a third path from ¢’ to v must pass.

The general claim follows by induction. ]

In the context of grids, one may use the fact that the
maximal degree of a vertex in a grid is 4 along with the
previous lemma, and conclude that every vertex v € V'
is equivalent to at most 2 cutset vertices of tree-degree
3. A closer inspection of the previous proof shows that
in case a vertex v € V' is indeed equivalent to 2 cut-
set vertices ¢ and ¢’ of tree-degree 3, then the induced
graph must be of the following general cycle topology
(focused on the relevant vertices):

Figure 4: Topology of a vertex equivalent of 2 vertices
of tree-degree of 3

Equipped with the previous observations we are now
ready to prove lemma 3.

Proof of Lemma 3. a. Let t € T be a tree and
let ¢ € B(t) be a cutset vertex on the boundary of
t, such that there does not exist a vertex ¢’ € B (t),
which is higher than ¢ (i.e. with a higher y-coordinate
value). Since c¢ is on the boundary of ¢ it touches at
least 2 trees, and from the assumption on the tree-
degree of the cutset vertices in the graph, it follows
that it touches exactly 2 trees, as otherwise it would
have tree-degree equal or less than 2. Let s € T be the
second tree touching c. In addition, it should be noted
that ¢ does not lie on the edges of the grid, as vertices
there have a degree equal or less than 3, and therefore
must have an tree-degree of 2 or less if they are bound-
ary vertices. Denote by N (c) the neighbors of ¢ in G,
then for a similar reason it holds that C N N (¢) = 0,
i.e. no neighbor of ¢ is a cutset node. (refer to diagram
5).

-1 -

O -\,
T T
I

| |
A\ /‘\
(w,=- -4y,

Figure 5: Neighborhood of a an extremal cutset ver-
tex. Unbroken lines represent vertices and edges in the
forest, dotted lines represent vertices and edges in the
cutset, and dashed lines represent vertices and edges
of unknown status.

Assume that vertex f to the left of ¢ belongs to ¢, then
e must belong to ¢ too, since if u is not a forest vertex
then e is connected to f. Otherwise, u is a cutset
vertex, and if e € s then u is a cutset vertex in the
boundary of ¢, which is higher than ¢, in contradiction
to the assumption. It can be shown similarly that if
e € t then g € t, and that if ¢ € ¢t then f € ¢t. All
in all we get that if either one of e, f or g belongs



to t than all three belong to t. This shows as well
that if h € ¢ then e, f, g ¢ t, since as shown before, if
either on of e, f or g belongs to ¢ all of them belong
to ¢t and along with the assumption that h € t we get
that e, f,g,h € t, in contradiction to the assumption
that ¢ is a boundary vertex. It follows that either
IN(c)NVi| = 1 and |N (¢)NV,| = 3, or the other
way around. In both cases, it follows that ¢ has an
tree-degree of 3 (either in s in the former case or in
t in the latter). Similarly, it can be shown that any
vertex ca € B (t), such that there does not exist a
boundary vertex ¢’ € B (t), which is lower than ¢g, has
an tree-degree of 3.

b. Let ¢ € B(t) be a vertex touching trees ¢ and
s (t,s € T) with tree-degree 3 in s, then it can be
replaced by an equivalent node v € V’. if v is of de-
gree 3 in the graph induced by V' U {c}, then this
replacement reduces (by 1) the number of connected
components of F'. Otherwise, the number of connected
components after the replacement remains the same
as before. Denote by T the partition of the forest in-
duced by (V' U {c})\ {v} to trees. If there exist a tree
t' € T" and a vertex ¢’ € B (t') of tree-degree equal or
less than 2, then we return to the previous situation.
Otherwise, denote by N (v) the neighbors of v in the
graph induced by V' U {¢,v}, and let ¢ € T’ be the
tree such that |N (v) NVy| = 1, then from the pre-
ceding claims it follows that there must exist another
cutset vertex v # u € B (t') with tree-degree 3 in the
graph induced by (V' U{c})\{v}. As before, u can
be replaced with a unique vertex w € (V' U {c}) \ {v},
and this process continues as long as there does not
exist a boundary vertex of tree-degree less than 3. As
the graph is finite and each vertex of tree-degree 3
can be replaced by a unique vertex, this process ought
to stop or a vertex x that was previously removed
from the cutset will be added to it again. Since at
each step the vertex removed is different from the one
added in the previous step, the latter condition can
only occur if z is equivalent to 2 cutset vertices ¢ and
p, and x was added to the cutset instead of ¢, while
on a previous step, p was added instead of z. Let C
be the cutset before x was added instead of ¢, then
as can be seen from Figure 4, two of ¢, p and x must
be cutset vertices, and in two of these configurations

one of the cutset vertices is of tree-degree 2, we will
denote this vertex by y. (In Figure 4, in each of the
configurations where v is a cutset vertex, the other
cutset vertex has an tree-degree of 2). As seen before,
since y has an tree-degree of 2, it is guaranteed that it
can be replaced with a vertex with induced degree of
2, thus reducing number of connected components in
the induced forest. |

Proof of Theorem 1. Using lemmas 2 and 3 the
main theorem follows immediately: Let G be a grid
graph and let C' be a cutset such that the induced for-
est F is disconnected. Assume w..o.g. that C does
not contain vertices of tree-degree less than 2. If there
exists a tree ¢t € T and a boundary vertex ¢ € B (t) of
tree-degree 2, then lemma 2 shows that it can be re-
placed with another vertex while reducing the number
of connected components. Otherwise, there does not
exist a tree ¢t € T and a boundary vertex ¢ € B (t) of
tree-degree 2, and therefore lemma 3 shows that there
exists a finite series of replacement moves, such that
the forest induced by the resulting cutset contains less
connected components than the original forest. |

All in all, we see that for every cutset that induces a
forest with more than one connected component a se-
ries of replacement moves can be made, which reduces
the number of connected components in the induced
forest while not adding cutset nodes. As this can be
done as long as the induced forest is disconnected, we
see by induction that given a cutset C, there exists a
cutset C’, such that |C’| < |C| and the forest induced
by C’ contains only one connected component, i.e. the
induced forest is a single tree. In particular, if the ini-
tial cutset C' is minimal, then the resulting cutset C’
is minimal as well.

4 Improved Lower Bounds

We will use the results of the previous section in order
to improve the known lower bound on the size of the
minimal cutset of the grid M, ,,,. In particular, we will
show that our lower bound is equal to the upper bound
in these seleceted cases. In the following we denote by



olby, m, the old lower bound of [1], i.e.

{(m—l)(g—nﬂ

olby, ;=

)

and by nlb,, ,,, the new lower bound obtained by us.

Lemma 5. Let G := M, ,, = (V, E) be the n x m grid
graph, and C C 'V a cycle-cutset, such that the graph
T = (Vp,Er) induced by V' = V\C' is a single tree.
Denote by o the number of cutset vertices which lie
along the boundaries of the grid but not in its corners,
i.e.

a:\Cﬂ({(O,]),(nfl,])0<]<m71}
U {(4,0),(i,m—1):0<i<n—1})]

and by [ the number of cutset wvertices which
lie in the corner of the grid, i.e. s =
|C N {(0,0),(0,m—1),(n—1,0),(n—1,m—1)}.
Denote by nec the cardinality of C, and by p the num-
ber of connected components of the graph induced by
C (not V\C). Then it holds that

m—1)(m—-1)+a+28<2nc+p (1)

Proof of Lemma 5. Denote ny = |Vr|. If every ver-
tex of T is of degree 4 in G, then it can be easily shown
that the number of edges incident to T" from a vertex in
C'is 2np + 2. Since there are 2(n —2)+2(m —2) —«
vertices of T which lie along the boundaries of G, each
of which reducing the number of incident edges by 1
(as each of these vertices is only of degree 3 in GG), and
4 — [ vertices of T which lie in the corners of GG, each
of which reducing the number of incident edge by 2,
we get that the number of edges incident to 1" from C
is

ri=2n7+2-2n-2)+2(m-2)—ao]-24-7)
=2np —2n—2m+a+ 20 + 2

It can be shown similarly, that if all the connected
components of C' are trees, then the number of edges
incident to C from T is

s:=2nc+2p—a—28

and if not all the connected components of C' are trees,
then the number of edges incident to C from 7' is bound
from above by s.!

Using the facts that np + nc = n-m and that r < s
one receives

2n-m—2nc —2n—2m+a+20+2<
2nc +2p—a — 20

which after reorganizing gives us the requested inequal-
ity:
(n—1)(m—-1)+a+28<2nc+p

Where the equality hold if all the connected compo-
nents of C' are trees. |

We note that using the trivial facts that the number
p of connected components of C' is smaller than the
|C| = ne, and that o + 28 > 1, as there must be at
least one cutset vertex along the boundaries of the grid
one receives from lemma 5 that it holds that

(n—1)(m—-1)+1<3n¢

which is a restatement of Luccio’s lower bound.

Assume that n = r mod 3 and that m = s mod 3
(0<rs<2),ie. n=3¢+rand m =3p+ s, and
assume that w.l.o.g that » < s. Additionally, assume
that n¢ = olby, m,, then

ne = olbym = {(m— ) (7;— 1)+1W

B {9pq+3pr+3qs+rs—3p—s—3q—r+2_‘

3

=3pg+pr—1)+q(s—1)+ [(rl)(;l)ﬂw

referring to table 1 we see that the value of the fraction
is either % and %, unless 7 = 0 and s = 2, and therefore
we get that

ne=3pqg+p(r—1)+q(s—1)+1[r£0Vs#2] (2)

1Tt should be mentioned that using the results of the previous section, it can be shown that there always exists a cutset, whose
connected components are indeed trees (along with all the other aformentioned desired properties).
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Table 1: Significant functions of r and s

Plugging equation 2 in inequality 1 we get

p>(m—-1)(n—1)—2s+a+2p
=3pg+q(s =D +pr—-1)+r-1)(-1)
—2-1[r#0Vs#2+a+28
=nc+(r—1)(s—1)=3-1[r#A0Vs#2|+a+28

Rearranging the expression we get the following in-
equalities

0<nc-p<

3-1[r#0Vs#2—(r—1)—a—28 (3)
()

a+268<3-1[r#£0Vs#2—(r—1) (4)
()

We will use these equation in proving the improve-
ments to the lower bounds of [1].

Theorem 2. Let m,n > 4, such that n = 0 mod 3
and m = 2 mod 3, and assume that at least one of n
and m is even, then the size of the minimal cutset of
the n x m grid My, ,, (or the m x n grid My, ) is at
least of size olb,, y, + 1, i.e. nlby, p = olby, ;m + 1.

Proof of theorem 2 . As stated by Inequality 4 and Ta-
ble 1, we can see that a + 28 < 1, which implies that
a =1 and § = 0, i.e. there exists a single cutset
vertex along the boundaries of the grid, not including
the corners. Assume w.l.o.g that it is located along
the right boundary of the grid. Focusing on the 2 x 2
grids containing each of the four corners of the grid, we
note that since m,n > 4 all four grids are disjoint, and
since there exists only a single cutset vertex along the

boundaries, in at least three of the four 2 x 2 grids three
of the vertices cannot be cutset vertices, and therefore
the forth - inner - vertex must be a cutset vertex, in
order to open the cycle formed by the 2 x 2 grid (refer
to Figure 6, depicting the upper-left corner of the grid,
using the same convention as before). Assume w.l.o.g
that vi1, v1,m—2, Un—2,1 are cutset vertices, and as-
sume that w.l.o.g that n is even. Following from In-
equality 3 we see that the number of connected com-
ponents of the cutset is equal to the number of cutset
vertices, that is C' is an independent set. Since v; ; is
a cutset vertex, it follows that v3; must be a cutset
vertex too, in order to break the cycle formed by v2 g,
V2,1, v3,1 and vz . For a similar reason, vs; must be
in the cutset, and so on and so forth: for every odd
number ¢, v; ; must be a cutset vertex. Since n is even
by assumption, we get that n — 3 is odd and therefore
Up—3,1 is a cutset vertex. Remembering that v,_2 is
a cutset vertex we get a contradiction to the fact that
C'is an independent set.

Figure 6: The upper-left corner of a grid

Let m,n be two integers at least one of which is even.
Assume w.l.o.g. that m is even and that m > 6. If
n > 9 and n = 0 mod 3, then [2] have shown (in
case iii in [2]) that the upper bound on the size of the
minimal cutset is uby, p, = olb, y + 1 = nlb, pn, ie.
the upper bound is equal to our new lower bound. If
n > 11 and n = 2 mod 3, then they have shown (in
case iv) that uby, , = olbym +1 = nlb, . To con-
clude, in every case in which [2] have shown an upper



bound applicable in the conditions of Theorem 2, the
upper bound is equal to the lower bound.

Definition 7. Let v; ; be a vertex in the grid graph
M, m, we say that it is an even vertez if i + j is even,
and that it is an odd vertex if i + j is odd. Let V,
be the set of all even vertices in M, ,,, and define
E. = {(vij,ueg) €V2:li—kl=1,[j—1=1}. We
call the graph G. = (V,, E.) the even semi-grid, and
call adjacent vertices in the semi-grid semi-neighbors.
The odd semi-grid G, = (V,, E,) is defined similarly
on the set of odd vertices V.

Lemma 6. Let G = (V, E) be a grid graph, and A C'V
an independent set in GG, and let S be a connected com-
ponent of the graph induced by ANV, (ANV,) in the
even (odd) semi-grid, then:

a. if no vertex in S lies on the boundaries of G, then
there exists a cycle in the graph induced by V\A in G.

b. if there exists a cycle in S (with edges in E. (E,)),
then S separates G to (at least) two connected compo-
nents, i.e. the graph induced by V\S in G contains at
least two connected components.

c. if there exist two vertices in S on the boundaries
of G, then S separates G to (at least) two connected
components.

Proof. a. The proof of the lemma is by induction on
the number of vertices in .S.

b. The proof follows from the fact that a cycle in G,
separates the plane to two (non-empty) regions.

c. The proof follows by connecting the two vertices
on the boundaries of S by a new edge in G, (E.) and
using previous claim. O

Definition 8 (stem). Let G = (V, E) be a grid graph,
and A C V an independet set, and let S be a connected
component of the graph induced by ANV, (ANV,) in
the even (odd) semi-grid, we call the vertices of S along
the boundaries of the grid the stems of S.

Definition 9 (even/odd semi-tree). Let G = (V, E)
be a grid graph, and A C V an independent set, and
let S be a connected component of the graph induced
by ANV, (ANYV,) in the even (odd) semi-grid, that

does not contain a cycle, then we call S an even (odd)
semi-tree.

Let G be a grid, and C an independent set, such that
the graph induced by V\C on G is a tree. Then, fol-
lowing from lemma 6 is that C' can be partitioned to a
set of disjoint single-stemmed semi-trees

Theorem 3. Let m,n > 4, such that both n = 0
mod 3 and m = 0 mod 3 or both n = 2 mod 3 and
m = 2 mod 3, and assume that both n and m are
even, then the size of the minimal cutset of the n x m
grid My, ., (or the m x n grid M,, ) is at least of size
olbym + 1, i.e. nlby m = olby m + 1.

Proof of Theorm 3. We see from Inequality 4 and Ta-
ble 1 that in both these cases a + 28 < 2, which may
result in several scenarios:

1. If « = 0 and 8 = 1, then we get from Inequality
3 that the cutset is an independent set and therefore
using a claim similar to that of Theorem 2 we receive
a contradiction.

2. If « =1 and g = 0, then we get from Inequal-
ity 3 that all the connected components of the cutset
are singletons apart from one which contains two ver-
tices. Following the lines of the proof for Theorem 2,
we note that at least in three of 2 x 2 grids located
the corners of the M, ,, the inner vertex must be a
cutset vertex. Assume w.l.o.g that the cutset vertex
lies along the bottom edge of the grid, and that in all
2 x 2 grids in the corners except maybe that in the
lower-right one the inner vertex is a cutset vertex. As
before, every second vertex along the second row and
along the second column of the graph must be cutset
vertices, giving us two pairs of adjacent cutset vertices
- in the upper-right corner and in the lower-left corner,
in contradiction to the fact that only one such pair
should exist.

3. If « =2 and § = 0, then again we get that the cut-
set is an independent set. If at least one of the cutset
vertices does not lie in a 2 x 2 grid in a corner of the
graph, then there are at least three 2 x 2 grids in the
corners, in which the inner vertex is a cutset vertex.
As there are two pairs of corners along a single bound-
ary of the graph such that their inner vertex is a cutset
vertex and only a single vertex that is on a boundary



of the grid, we get that there exists a boundary such
that in both its corners the inner vertex of the 2 x 2
grid is a cutset vertex, and there is no cutset vertex
along it. Since it follows as before, that every second
vertex along the edge is a cutset vertex, we get that
there are two adjacent cutset vertices, in contradiction
to the fact the the cutset is an independent set.

Therefore, assume that both cutset along the bound-
aries of the grid, lie in the 2 x 2 grid of adjacent corners
A and B, then in the 2 x 2 grid of the two remaining
corners C' and D, the inner vertex is a cutset vertex.
Since there is no cutset vertex along the boundary be-
tween C' and D, we get that there exist two adjacent
cutset vertices, similarly to before - a contradiction.

Finally, assume that the cutset vertices along the
boundaries of the grid lie in the 2 x 2 grid of oppo-
site corners. Assume w.l.o.g that they lie in the 2 x 2
grids of the upper-left and lower-right corners (refer
to Figure 7. Note that in this case both boundary
vertices are necessarily odd, and as the only possible
stems for the cutset, all cutset vertices in the graph
are odd as well. Additionally, as before we get that
Vi1, V1,4, Vj,m—2,Un—2,; € C for every even ¢ and odd
j. Note that the frame of the grid is separated to
two parts be the cutset vertices. Since the the graph
induced by V\C' is a connected tree by assumption,
we get that there must be a path from one part to
the other though the inner part of the grid. Assume
w.lo.g that the path begins at vy ; for a (necessar-
ily) odd j (3 < j < m — 3) and goes though v ;
to vy ;. Since vaj_1,v241,v3,; ¢ C since they are
even, we get that vs j_1,v3 ;41 € C (as otherwise two
cycles would form). Since all four semi-neighbors of
vy,; are cutset vertices, we get that the path must
continue 2 steps at a time in the same direction. In
general, assume the path reaches vertex vy ; such that
k=0 mod2and!/=j mod 2=1 mod 2, then since
Vk—1,1, Vk,i—1> Uk+1,l, Vk,+1 are all even, and therefore
not cutset vertices, we get that all four semi-neighbors
of v must be cutset vertices, and the path must con-
tinue 2 steps in the same direction. As a result, we
get that the path must be connected to the other part
of the grid’s frame though a vertex of either the form
vg,1 with £ = 0 mod 2, i.e. an even k, or the form
Up—2,; With [ =1 mod 2, i.e. an odd /. However, as
seen before, all vertices of such forms are necessarily
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cutset vertices, and therefore the path could not pass
though them - a contradiction.

Figure 7: A possible frame of a 8 x 8 grid with a cutset
of size lbgg. Cutset vertices are marked with a black
circle and tree vertices are marked with white circle.
Other notation as before.

Let m,n be two even integers, and assume that m > 6.
If n > 9 and n = 0 mod 3, then again case (iii) in
[2] shows that the upper bound on the size of the
minimal cutset is ub, . = 0lbym + 1 = nlby . If
n > 11 and n = 2 mod 3, in case (iv) in [2] shows
that uby ., = olbym + 1 = nlb, . To conclude, in
every case in which [2] have shown an upper bound
applicable in the conditions of Theorem 3, the upper
bound is equal to the lower bound.

5 Activate Cutset

We would like to use the notion of cycle-cutset in order
to expand an optimal algorithm for energy minimiza-
tion in trees presented in [3], thus receiving an approx-
imate energy minimization algorithm that can handle
arbitrary unary and binary potentials over domains of
finite size.



5.1 Problem Definition

let T = x1,...,xy be a set of variables over do-
main {1,...,k}, for every i € {1,...,N} let ¢;
{1,...,k} — R be a unary potential, and for every
1<i<j<Nlet;:{l,...,k}* = R be a binary
potential, then the problem of energy minimization is
finding

¥ = argming Z wi (z;) + Z Vi (@i, x5)
i

i<j

Given an instance of the problem, a matching graph
can be builts, where every variable z; is assigned a
vertex, and two vertices x; and x; are connected iff
the matching potential v; ; is not identically zero.

5.2 Our approach

Although the problem is generally NP-hard, it is
tractable in some cases one of which is when the un-
derling graph is cycle-free, i.e a forest. The algorithm
for solving this case, presented in [3] as ACTIVATE, is
essentially a form of belief propagation: After a root
for every tree is found, every vertex v sends its parent
pa, a message of the optimal assignment to the tree
beneath v given the value of pa,. Once all the message
reach the root of the tree, the root decides on an op-
timal assignment for itself and passes massages to the
children to set their values accordingly. We will refer
to this algorithm as the TREE-ALGORITHM.

If the graph does contain cycles, the cycles can be
opened by finding a cycle-cutset C, setting the val-
ues of the variables of C' to some values, and using the
exact algorithm on the remaining (cycle-free) graph.
This method is known as “conditioning”, and by doing
so one receives the optimal assignment given the as-
signment to the cutset variables. By conditioning the
cutset variables to every possible assignment, one re-
ceives an exact algorithm for the problem with running
time exponential in the size of the cutset.

In our algorithm, named ACTIVATE-CUTSET, after a
cutset is chosen and the exact optimal solution given
the values of the cutset variables is found, a new cutset
is chosen and the process repeats with the cutset ver-
tices retaining the values obtained by the exact TREE-
ALGORITHM in previous iteration (in which they were
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not a part of the cutset). Since in every iteration an op-
timal assignment given the values of the cutset vertices
is found, the enegry of the system can only decrease
from iteration to iteration. Therefore, the resulting al-
gorithm is a local search algorithm, in which in every
update step the entire complement of the cutset is as-
signed an optimal solution given the cutset variables

5.3 Algorithm Description

Given an instance of the energy minimization problem
ACTIVATE-CUTSET operates as follows:

1. Either initializes the nodes randomly or sets their
values to undefined (see 5.4)

2. Finds the set of nodes which are a part of a tree,
i.e. node that are not a part of any (simple) cycle
using the algorithm described in [3].

3. Selects a cycle-cutset C (i.e. a subset C C V
of the nodes such that the induced graph on
T =V\C'is a cycle free).

4. Updates the values of the nodes:

e Given the values of of the cycle-cutset C, it
uses the TREE-ALGORITHM to find the opti-
mal assignment for T.

e In an optional implementation, given the
values of the tree nodes T, it uses some local
search algorithm (i.e. HOPFIELD MODEL,
GLS™|5], etc.) in order to update the val-
ues C. If this feature is implemented these
two update stages are performed alternately
until convergence (at a local maxima) or un-
til a set number of iterations has passed.

5. Repeats stages 3-4 until the specified time bound
has passed.

5.4 Initialization

As noted in Algorithm Description above there are two
variants in regard to the variable initialization - ei-
ther randomly or to a special undefined value. Cycle-
cutest nodes holding an undefined value are effectively



ignored until their value is set to valid one. The lat-
ter initialization scheme is used only when the cutset
nodes values are not updated in the update stage (stage
4 in the “Algorithm Description”). In this case the
nodes keep their undefined value until they are chosen
to take part in a tree, and update their value as part
of the update stage.

It should be mentioned that this initialization scheme
has been explored, since some experiments suggested
that the cutset nodes have a tendency to draw the al-
gorithm to high local minima. It should be noted that
as a consequence of the initialization to an undefined
value, the graph energy is not defined in the first it-
erations of the algorithm until all nodes are assigned
a valid value, and therefore the graph’s energy may
initially increases as more nodes are assigned values).

5.5 Cutset Selection

The cutset selection algorithm is based on the algo-
rithm described in [4], where the cutset is built by
randomly choosing a node who has a more than two
neighbors not already in the cutset or a tree with prob-
ability proportional to the number of (non-cutset-non-
tree) neighbors; once no node has more than 2 such
neighbors, i.e. once the induced graph on the nodes
not already a part of the cutset or a tree is a union of
disjoint simple cycle, each cycle is opened by randomly
picking a node from each with uniform probability. Af-
ter each new cutset node is chosen the tree forming al-
gorithm of [3], is run on its neighbors, in order to check
if the new cutset node’s removal allowed the forming
of new trees.

Motivated by the ideas presented in [3] the probability
a node is chosen in our implementation is governed not
only by its degree, but by the number of iterations in
which it has not changed its value and by the number of
iterations it was not a part of the cycle-cutset. several
linear combination of the aforementioned parameters
were tested, but no major difference was noted.

In addition, in order to encourage highly connected
forests, i.e. forests in which the number of trees is
(relatively) small and are composed mainly from a sin-
gle big tree, the first stage of [4] is split to 2 stages:
At first, the program tries to add to the cutset nodes

2http://www.cs.huji.ac.il/project /PASCAL /index.php
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which do not already have a node pointing to them as
a parent, and only when no such nodes remains the
program begins to add nodes which are pointed as the
parent of another node.

In order to reduce the cutset’s size, after the forest is
formed a message is passed from the roots down to the
leaves, notifying the nodes what is the root of their
tree, and essentially defining explicitly the partition of
the forest into trees. Then, each cutset node of tree-
degree less than 1 is removed from the cutset (and
added to the forest nodes). Once all the redundant
cutset nodes have been removed, the tree forming al-
gorithm is run again (only on the forest nodes) in order
to form a well directed forest.

5.6 Experiments

We have run ACTIVATE-CUTSET on the set of grid
problems from problem set of the PASCAL2 Proba-
bilistic Inference Challenge (PIC2011)2. The variables
were initialized to the undefined value, and in every
update step only trees bigger than the 10% of the
grid size were updated. In addition, in order to avoid
stagnation, if the assignment is not improved within
10 iteration, i.e. by 10 different cutsets, the algorithm
is restarted by setting the cutset vertices to the unde-
fined value. For comparison, we have run GLS™ [5],
considered to be the state-of-the-art in energy mini-
mization on the problem set. Each algorithm was run
on each problem 10 times a bounded amount of time.
Since ACTIVATE-CUTSET was not implemented to em-
ploy a sophisticated initialization algorithm (such as
the usage of mini-buckets by GLS™T), GLS™ was set to
a random initial assignment. Note that in the context
of these problems an assignment obtaining maximal
energy (sometimes refereed to “Goodness”) is required,
and therefore higher values are better. Following are
the energies obtained by each of the algorithm com-
pared to the global maxima. For each problem instance
Figure 8 depicts the average, minimal and maximal
goodness obtained by ACTIVATE, in the four left bars,
and the corresponding values obtained by GLS™ in
the right bars.
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Figure 8: Ratio of obtained goodness to maximal goodness in grid problems of PIC2011 at several time bounds. In
each set the 4 left bar correspond to ACTIVATE’s results, and the 4 right bars correspond to the results of GLS™.

It can be seen in Figure 8 that for most problems AC-
TIVATE obtains a higher goodness than that obtained
by GLST at the same time. In general, we can see that
ACTIVATE obtains higher energy faster.

6 Conclusion

In this work, we have established the basis to the no-
tion of tree-inducing cycle-cutsets and the transforma-
tion of a general cutset to such a cutset. We have
shown that in grids we can always transform a cycle-
cutset to a tree-inducing cutset with no more vertices
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than the original one. This results laid the foundation
to a more elaborate method of analyzing and bounding
the size of minimal cutset, thus allowing us to improve
its lower bound in some cases. In other cases, a gap
between the lower and the upper bounds remains, and
more meticulous research should be undertaken in or-
der to characterize better the classes in which the lower
bound can be raised.

In addition, we presented an algorithm which combines
the notion of cycle-cutset with the well known Belief
Propagation algorithm to achieve an approximate op-
timum of a sum of unary and binary potentials. This
is done by the rather novel concept of traversal from



one cutset to another and updating the induced for-
est, thus creating a local search algorithm, whose up-
date phase spans over many variables. We have pre-
sented experiments indicating that this algorithm is
on-par with the state-of-the-art in this domain (if not
surpasses it) on some restricted problems of grids and
when both algorithms use a elementary method of ini-
tialization. In this regard the algorithm should be fur-
ther investigated in order to understand more fully the
parameters governing its behavior. Additionally, the
algorithm should be extended to handle potentials of
higher arity than 2.
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