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Abstract

We prove that in grids of any size there exists a minimal cycle-cutset that its com-
plement induces a single connected tree. More generally, any cycle-cutset in a
grid can be transformed to a tree-inducing cycle-cutset, no bigger than the origi-
nal one. We use this result to improve the known lower bounds on the size of a
minimal cycle-cutset in some cases of grids, thus equating the lower bound to the
known upper bound. In addition, we present a cycle-cutset driven stochastic local
search algorithm in order to approximate the minimal energy of a sum of unary
and binary potentials. We show that this method is on-par and even surpasses the
state-of-the-art on some grid problems, when both are initialized by elementary
means.

1 Introduction

A cycle-cutset in a graph G =(V,E) is a subset C of the vertices of G, such that the graph induced
on V ′ = V \C is acyclic, i.e. a forest. The minimal cycle-cutset problem is finding a cycle-cutset
of minimal cardinality. The problem is of interest to a wide variety of applications, including dis-
tributed computing and artificial intelligence in the context of Bayesian inference and constraint
satisfaction. Due to the importance of the problem, it has been extensively studied, although the
problem was proven to be NP-complete for general graphs. Some of the findings include polyno-
mial algorithms solving the problem for some specific graph classes and lower and upper-bounds
on the size of the minimal cycle-cutset. In particular, [1] has previously presented lower and upper
bounds on the size of the minimal cycle-cutset of grids. It was shown that the minimal cycle-cutset
of the n×m grid Mn,m is of size at least

(m− 1) (n− 1) + 1

3

and at most
mn

3
+
m+ n

6
+ o (m,n)

The upper bound of [1] was later significantly improved by [2], who have shown an upper bound
matching the lower bound of [1] in many cases and differing from the lower bound by at most 2, in
other cases apart from when m = 5 and n ≥ 5.

The rest of the paper is structured as follows. In Section 2, we present the main definitions used
throughout the paper. In Section 3, we show that the forest induced by a minimal cycle-cutset in
grids can always be transformed into a single connected component, i.e a single tree. We then use
this result in Section 4 in order to improve the lower bound of [1] in some cases. Thus matching the
lower bound with upper bound of [2] in these cases.
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2 Preliminaries

Definition 1 (Cycle cutset, Partition to trees). Let G = (V,E) be an undirected graph. A subset
C ⊆ V is a cycle-cutset in G iff the graph F induced by V ′ = V \C on G is a forest. We define the
partition T of F to trees as

T = {t = (Vt, Et) : t is a connected component of F}
i.e. T is a set of (connected) trees, and V ′ can be written as V ′ =

⊎
t∈T

Vt.

Definition 2 (Tree-degree ). Let c ∈ C be a vertex in cycle-cutset C of G and t ∈ T a tree induced
by C, and denote by N (c) the neighbors of c in the graph induced by V ′ ∪ {c} on G, we define the
tree-degree of c in t over C to be d, if |N (c) ∩ Vt| = d and for every other tree t 6= t′ ∈ T it holds
that |N (c) ∩ Vt′ | ≤ 1. In general, we say that the tree-degree of c is d if the condition above holds
for some t, and that the tree-degree is undefined otherwise. If d ≥ 2 we call N (c) ∩ Vt the in-tree
neighbors of c.
Definition 3 (Equivalent cutset vertices). Let c ∈ C be a cutset vertex and let c′ ∈ V be a vertex of
the graph G. We say that c′ is equivalent to c (under C), if C\ {c} is not a cutset, while (C\ {c}) ∪
{c′} is a cutset.
Definition 4 (Induced degree). Let c ∈ C be a cutset vertex. The induced degree of c under C is
the degree of c in the graph induced by V ′ ∪ {c}.

It can be shown that the following observations hold:
Lemma 1. a. If c is cutset vertex of tree-degree 2, then every vertex along the path between its two
in-tree neighbors is of equivalent to c.

b. If c is a cutset vertex of tree-degree 3, then there exists a unique vertex c′ which is equivalent to c.

c. A cutset induces a single tree iff the tree-degree of every cutset vertex is equal to its induced
degree.
Definition 5 (Boundary of a tree). Let t ∈ T be a tree, we define the boundary of t to be all cutset
vertices touching t and some other tree, and denote it B(t), i.e

B(t) = {c∈C : N(c) ∩ Vt 6= ∅, ∃t 6= t′ ∈ T, s.t.N(c) ∩ Vt′ 6= ∅}

3 Connectivity of the induced graphs in grids

Theorem 1. Let G be a grid graph and let C be a cutset such that the induced forest F is discon-
nected, i.e. |T | ≥ 2, then there exists a a series of replacement moves, such that the resulting cutset
C ′ has no more elements than C, and the forest induced by C ′ contains a single tree, i.e. |C ′| ≤ |C|
and the graph induced by V \C ′ is connected.
Corollary 1. In particular, it follow from Theorem 1 that there exists a minimal cutset that induces
a connected tree.

Proof of Theorem 1. The proof follows immediately from the following Lemmas 2 and 3, and due
to the space constraints we would not elaborate on the subject.

Lemma 2. Let G be a grid graph and let C be a cutset of G, that the induces a disconnected forest
F , i.e. |T | ≥ 2. Let t ∈ T be a connected component of F . If there exists a vertex c ∈ B (t) in the
boundary of t with an tree-degree of 2, then c can be replaced with a vertex c′, that has a degree of
2 in the graph induced by V ′ ∪ {c, c′}, thus reducing the number of connected components in the
induced forest.

Proof of Lemma 2. Omitted due to space constraints

Lemma 3. Let G be a grid graph and let C be a cutset of G, that induces a disconnected forest F ,
i.e. |T | ≥ 2. if there does not exist a tree t ∈ T and a vertex c ∈ B (t), having tree-degree (defined
and) is equal or less than 2, then:

a. for every tree t ∈ T , there exist at least 2 vertices in the boundary of t of tree-degree 3.
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b. There exists a series of replacement moves, such that the forest induced by the final cutset C ′ is
composed of less connected components than the original forest.

Note that the conditions of Lemma 3 are the complementary of the conditions of Lemma 2 (ignoring
cutset vertices of tree-degree less than 2, which can be trivially removed).

Proof of Lemma 3. The proof, which was omitted due to space constraints, makes use of the fact
that a vertex in a grid can be equivalent to at most 2 cutset vertices of tree-degree 3, which follows
from the following general claim.

Lemma 4. Let G = (V,E) is a planner graph, v ∈ V ′ a vertex equivalent to cutset vertices
c1, . . . , ck ∈ C, which are of tree-degree 3, and let d be the degree of v in the graph induced by
V ′ ∪ {ci}ki=1, then d ≥ k + 2.

Proof of Lemma 4. Omitted due to space constraints.

4 Improved lower bounds

We will use the results of the previous section in order to improve the known lower bound on the
size of the minimal cutset of Mn,m. In particular, we will show that our lower bound is equal to the
upper bound in these seleceted cases. In the following we denote by olbn,m the old lower bound of
[1], i.e.

olbn,m =

⌈
(m− 1) (n− 1) + 1

3

⌉
and by nlbn,m the new lower bound obtained by us.

Lemma 5. Let G := Mn,m = (V,E) be the n ×m grid graph, and C ⊆ V a cycle-cutset, such
that the graph T = (VT , ET ) induced by V ′ = V \C is a single tree. Denote by α the number of
cutset vertices which lie along the perimeter of the grid but not in its corners, i.e.

α = |C ∩ ({(1, j) , (n, j) : 1 < j < m− 1} ∪ {(i, 1) , (i,m) : 1 < i < n− 1})|

and by β the number of cutset vertices which lie in the corner of the grid, i.e. β =
|C ∩ {(1, 1) , (1,m) , (n, 1) , (n,m)}|. Denote by nC the cardinality of C, and by p the number
of connected components of the graph induced by C (not V \C). Then it holds that

(n− 1) (m− 1) + α+ 2β ≤ 2nC + p (1)

Proof of Lemma 5. Omitted due to space constraints.

We note that using the trivial facts that the number p of connected components of C is smaller than
|C| = nC , and that α + 2β ≥ 1, as there must be at least one cutset vertex along the perimeter of
the grid, one receives from Lemma 5 that it holds that

(n− 1) (m− 1) + 1 ≤ 3nC

which is a restatement of the lower bound of [1].

Assume that n ≡ r mod 3 and thatm ≡ s mod 3 (0 ≤ r, s ≤ 2), i.e. n = 3q+r andm = 3p+s,
and assume that w.l.o.g that r ≤ s. Additionally, assume that nC = olbn,m, then it can be shown
that

nC = 3pq + p (r − 1) + q (s− 1) + 1 [r 6= 0 ∨ s 6= 2] (2)

Plugging equation 2 in inequality 1 and rearranging, we get the following inequalities:

0 ≤ nC − p ≤ 3 · 1 [r 6= 0 ∨ s 6= 2]− (r − 1)− α− 2β (3)

α2 + β ≤ 3 · 1 [r 6= 0 ∨ s 6= 2]− (r − 1) (4)

These inequalities are at the core of proving the improvements to the lower bounds of [1].
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Theorem 2. Let m,n ≥ 4, such that n ≡ 0 mod 3 and m = 2 mod 3, and assume that at least
one of n and m is even, then the size of the minimal cutset of the n ×m grid Mn,m (or the m × n
grid Mm.n) is at least olbn,m + 1, i.e. nlbn,m = olbn,m + 1.

Proof of Theorem 2 . Omitted due to space constraints.

Let m,n be two integers at least one of which is even. Assume w.l.o.g. that m is even and that
m ≥ 6. Using the upper bounds ubn,m of [2], we get that nlbn,m = ubn,m, if n ≥ 9 and n ≡ 0
mod 3 or if n ≥ 11 and n ≡ 2 mod 3, i.e. in every case in which [2] have shown an upper bound
applicable in the conditions of Theorem 2, the upper bound is equal to the lower bound.

Theorem 3. Letm,n ≥ 4, such that both n ≡ 0 mod 3 andm = 0 mod 3 or both n ≡ 2 mod 3
and m = 2 mod 3, and assume that both n and m are even, then the size of the minimal cutset of
the n×m gridMn,m (or them×n gridMm.n) is at least of size olbn,m+1, i.e. nlbn,m = olbn,m+1.

Proof of Theorem 3. Omitted due to space constraints.

Let m,n be two even integers, and assume that m ≥ 6. Using the upper bounds ubn,m of [2], we
get that nlbn,m = ubn,m, if n ≥ 9 and n ≡ 0 mod 3 or if n ≥ 11 and n ≡ 2 mod 3, i.e. in
every case in which [2] have shown an upper bound applicable under the conditions of Theorem 3,
the upper bound is equal to the lower bound.

5 Activate Cutset

We would like to use the notion of cycle-cutset in order to expand an optimal algorithm for energy
minimization in trees presented in [3], thus receiving an approximate energy minimization algorithm
that can handle arbitrary unary and binary potential over domains of finite size.

5.1 Problem definition

let x̄ = x1, . . . , xN be a set of variables over domain {1, . . . , k}, for every i ∈ {1, . . . , N} let
ϕi : {1, . . . , k} → R be an unary potential, and for every 1 ≤ i < j ≤ N let ψi,j : {1, . . . , k}2 → R
be a binary potential, then the problem of energy minimization is finding

x̄∗ = argminx̄
∑
i

ϕi (xi) +
∑
i<j

ψi,j (xi, xj)

Given an instance of the problem, it’s “primal graph” is built by assigning a vertex to every variable
xi is a vertex, and connecting two vertices xi and xi iff the matching potential ψi,j is not identically
zero.

5.2 Our approach

Although the problem is generally NP-hard, it is tractable in some cases, one of which is when the
underling graph is cycle-free, i.e a forest. The algorithm for solving this case, presented in [3] as
ACTIVATE, is essentially a form of belief propagation: After a root for every tree is selected, every
vertex v sends its parent pav a message of the optimal assignment to the tree beneath v given the
value of pav . Once all the messages reach the root of the tree, the root selects an optimal assignment
for itself and passes massages to its children to set their values accordingly. We will refer to this
algorithm as the TREE-ALGORITHM.

If the graph does contain cycles, the cycles can be opened by finding a cycle-cutset C, setting the
values of the variables ofC to some values, and using the exact TREE-ALGORITHM on the remaining
(cycle-free) graph to solve the problem conditioned by the assignment to the cutset vertices. In our
algorithm, named ACTIVATE-CUTSET, after the conditioned optimal solution is found, a new cutset
is chosen and the process repeats. Cutset vertices either retain their values obtained by the exact
TREE-ALGORITHM during a previous iteration (in which they were not a part of the cutset) or apply
a local search algorithm in an attempt to improve the networks energy even further. The resulting
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algorithm is a local search algorithm, in which in every update step the entire complement of the
cutset is updated optimally.

5.3 Cutset selection

The cutset selection algorithm used is based on the algorithm described in [4], where the cutset is
built by randomly adding to it a vertex with probability based on its degree. Motivated by the ideas
presented in [3] the probability a vertex is chosen in our implementation is governed not only by its
degree, but by the number of iterations in which it has not changed its value and by the number of
iterations it was not a part of the cycle-cutset as well.

In addition, in order to encourage the formation of forests in which the number of trees is (relatively)
small and are composed mainly from a single big tree, the first stage of [4] is split to 2 stages: At
first, the program tries to add to the cutset nodes which do not already have a node pointing to
them as a parent, and only when no such nodes remains the program begins to add nodes which are
pointed as the parent of another node, thus partitioning the forest created.

In order to reduce the cutset’s size, after the forest is formed the partition of the forest into trees is
explicitly found, and each cutset vertex of tree-degree less than 1 is removed from the cutset (and
added to the forest nodes). Once all the redundant cutset nodes have been removed, the tree forming
algorithm of [3] is run again (only on the forest nodes) in order to form a well directed forest.

5.4 Experiments

We have run ACTIVATE-CUTSET on the set of grid problems from problem set of the PASCAL2
Probabilistic Inference Challenge (PIC2011)1. The variables were initialized to the undefined value,
thus effectively ignoring them until they attain a valid value, and in every update step only trees
bigger than the 10% of the grid size were updated. This was done since some experiments suggested
that initializing the variables randomly or updates small trees may have a tendency to draw the
algorithm to high local minima. In addition, in order to avoid stagnation, if the assignment is not
improved within 10 iterations, i.e. by 10 different cutsets, the algorithm is restarted by setting the
cutset vertices to the undefined value. As a comparison, we have runGLS+ [5], considered to be the
state-of-the-art in energy minimization on the problem set. Each algorithm was run on each problem
10 times a bound amount of time. Since ACTIVATE-CUTSET was not implemented to employ a
sophisticated initialization algorithm (such as the usage of mini-buckets by GLS+), GLS+ was set
to a random initial assignment. Note that in the context of these problems an assignment obtaining
maximal energy (sometimes referred to “Goodness”) is required, and therefore higher values are
better. Following are the energies obtained by each of the algorithm compared to the global maxima.
For each problem instance Figure 1 depicts the average, minimal and maximal goodness obtained
by ACTIVATE, in the four left bars, and the corresponding values obtained by GLS+ in the right
bars.

It can be seen in Figure 1 that for most problems ACTIVATE obtains a higher goodness than that
obtained by GLS+ at the same time. In general, we can see that ACTIVATE obtains higher energy
faster.

6 Conclusion

In this work, we have established the basis to the notion of tree-inducing cycle-cutsets and the
transformation of a general cutset to such a cutset. We have shown that in grids we can always
transform a cycle-cutset to a tree-inducing cutset with no more vertices than the original one. These
results lay the foundation to a more elaborate method of analyzing and bounding the size of minimal
cutsets, thus allowing us to improve its lower bound in some cases. In other cases, a gap between the
lower and the upper bounds remains, and more meticulous research should be undertaken in order
to characterize better the classes in which the lower bound can be raised.

1http://www.cs.huji.ac.il/project/PASCAL/index.php
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Figure 1: Average, minimal, and maximal ratio of obtained goodness to maximal goodness in grid
problems of PIC2011 at several time bounds. In each set the 4 left bars correspond to ACTIVATE’s
results, and the 4 right bars correspond to the results of GLS+.

In addition, we presented an algorithm which combines the notion of cycle-cutset with the well
known Belief Propagation algorithm to obtain an approximate optimum of a sum of unary and
binary potentials. This is done by the rather novel concept of traversal from one cutset to another
and updating the induced forest, thus creating a local search algorithm, whose update phase spans
over many variables. We have presented experiments indicating that this algorithm is on-par with
the state-of-the-art in this domain (if not surpasses it) on some restricted problems of grids and
when both algorithms use a elementary method of initialization. In this regard the algorithm should
be further investigated in order to understand more fully the parameters governing its behavior.
Additionally, the algorithm should be extended to handle potentials of higher arity than 2.
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