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Abstract

We explore the potential of anytime best-first search sclefimrecombinatorial
optimization tasks over graphical models (e.g., MAP/MPR&g. show that recent
advances in extending best-first search into an anytimersehave a potential for
optimization for graphical models. Importantly, theseestles come with upper
bound guarantees and are sometime competitive with knofectize anytime
branch-and-bound schemes.

1 Introduction

The most common search algorithms for combinatorial o@tion tasks over graphical models
such as MAP/MPE is depth-first branch and bound. Such schesesextensively studied in re-
cent years for generating exact and approximate solutibrg][ Indeed, best-first search schemes,
while known to be more efficient [3], are rarely considereddi@phical models because they are in-
herently memory intensive and lack anytime qualities. lrenmore, one of best-first most attractive
qualites, avoiding the exploration of unbounded pathsnseerelevant to graphical models where
all solutions are at the same depth (i.e., the number of viafia

In contrast, for path-finding domains, such as planningt-fiess search, and especially its popular
variant A* [4], is most attractive and received most of theearch focus. Given an admissible
heuristic, A* is guaranteed to find the exact solution andpsnoally efficient with respect to the

number of expanded nodes [3]. In particular, it is guarahte@xplore only nodes whose evaluation
functionis bounded by the optimal solution cost and thubveVver wonder in unbounded directions.

However, A*¥'s exponential memory requirements and its sofugeneration only upon termination,
are problematic for use in the path-finding domain as welll tnerefore proposals extending A*
into a more flexible anytime scheme have recently emergeelnidst popular approaches are based
on Weighted A*(WA*) [5], which suggest to inflate the heuristic values by @nstant factor of

w > 1. This makes the heuristic inadmissible to a degree whiclomgrolled byw, but typically
yields faster search and guarantees a solution cost witfactar of w from the optimal one. If
the approximate solution is found quickly and if additiotiate is available, search for a better
solution resumes. The simplest anytime scheme is to runektitvely with decreasing values of
until a time-bound, returning the best solution found thars With the corresponding weight as the
bounding factor, or untilv = 1, returning the optimal solution.

Several anytime weighted best-first search algorithms wesposed ([6, 7, 8, 9]). The two that
are perceived to be most effective are the Anytime RepaiihgARA*) [7] and the Anytime
Nonparametric A* (ANA¥) [8]. ARA* runs WA* iteratively while decreasing but tries to reuse
search efforts from previous iterations. Algorithm ANA* jiicitly regulates the weights based on
the cost of the current best solution.

In light of the above enhancement in anytime best-first $eéoc path-finding benchmarks, we
decided to give best-first another chance and explore thegghted best-first search schemes for
graphical models. We used as a starting point the AND/OR-firsst AOBF) for graphical mod-



els which was investigated and compared with AND/OR braamti-bound schemes (AOBB) [1].

AOBF searches the AND/OR context minimal graph [10] and islgdi by admissible and consistent
mini-bucket heuristic [11]. The simplest way to extend AOBFan anytime scheme is to run AOBF
with the weighted heuristic iteratively, decreasing thiigaof the weight at each iteration. We also
extended ARA* to the AND/OR search space, while ANA* was exied to OR search spaces only.

Our empirical evaluation compares the above algorithmscantrasts them with a recent effective
anytime branch-and-bound search for graphical modeledcBreadth-Rotating AND/OR Branch-
and-Bound (BRAOBB) [2] which won the 2011 Probabilisticénénce Challenden all optimiza-

tion categories. Our preliminary results are quite prongsshowing that our quick implementation
of two of the weighted best-first schemes can sometime hauperisr anytime performance to
BRAOBB, thus providing an alternative that should be furtieveloped. In section 2 and 3 we
provide background and discuss our algorithms and in sedtiwe provide empirical evaluation.

2 Best First and Weighted Best-First Heuristic Search

Best-first search Best-first search (BFS) always chooses for expansion a nabidowest value
of f(n). Its most popular variantis A*, which us¢$n) = g(n)+ h(n), whereg(n) is minimal cost
from the rootn to n along the current path, aridn) is heuristic function that estimatés(n), the
optimal cost fromn to a goal node. For minimization, thign) is admissiblaf Vn h(n) < h*(n)
The heuristic functiork is consistent iff ¥n' successor of in G, h(n) < ¢(n,n’) + h(n’).

Weighted A* search (WA*) [5] differs from A* only in using the evaluation functiorf(n) =
g(n) + w - h(n), weightw > 1, h(n) is admissible. Higher values af typically yield greedier
behavior, where a solution is encountered earlier durirgcbe WA* is guaranteed to terminate
with a solution costU such thatC' < w - C*, whereC* is the cost of the optimal solution path.

AND/OR best-first search for graphical models A graphical modelis a tuple M =
(X,D,F,T]), F is a set of real-valued local functions over subsets of discvariablesX, called
scopes, with finite domair3. The common optimization task is to findaxx [ [, f; called MAP.
The scopes of define aprimal graphG with certaininduced widthand a pseudo treg of G that
guides an AND/OR search space [10]. AND/OR search tre€+ associated witly” has alternat-
ing levels of OR nodes corresponding to the variables and AN@es corresponding to the values
of the OR parent’s variable, with edges weighted according.t The state of the art version of
A* that explores the AND/OR search spaces is the AND/OR B&st (AOBF) algorithm [12] that
utilizes the mini-bucket heuristic which is admissible aoasistent [11].

Proposing Weighted AOBF The weighted version of the AOBF algorithm can be obtained by
inflating the heuristic function with a weight > 1 (i.e., substituting:(n) by w - h(n)). Weighted
AOBFis closely related to WAO*, an algorithm introduced prestyuby Chakrabarti et al. [13] for
searching AND/OR search spaces having a restricted steudtus easy to show that the properties
of WA* [5] and WAO* [13] are shared by Weighted AOBF as well. Sjifically:

Proposition 1. If h(n) is admissible, the cost of the solution discovered by WetyWOBF is
guaranteed to be no more than a factorefvorse than the optimal one.

3 Anytime Heuristic Search

Proposing Anytime Weighted AOBF  Since the accuracy of a solution found by Weighted AOBF
is bounded byw, it is possible to formulate a simple anytime scheme, calla@BF, that executes
Weighted AOBF iteratively, starting with an initial weigl#nd decreasing the weight at each itera-
tion by a fixed amount. Clearly, this approach, similar toRestarting Weighted A* by Richter at
al. [9], results in a series of solutions, each with a subroglity factor equal to thev.

Anytime Repairing AOBF Running each search iteration from scratchwaeSOBF does, is
wasteful, since the same search subspace might be expladgglentimes. To remedy this prob-
lem, we propose the Anytime Repairing AOBF scheme, denogad®-AOBF, which is a simple
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Figure 1: Solution cost and time vs weight (WR-OBF, wAOBRpr8ng weight=4.C* - exact cost,
w x C* - the theoretical bound on the approximate solution for Weig 7 - i-bound,n - number of
variablesk - domain sizew* - induced width/, - pseudo-tree height.

extension of theAnytime Repairing A* (ARA*algorithm [7] to AND/OR search spaces. At each
iteration,wR-AOBF keeps track of the partially explored AND/OR graph and,rafecreasingv,

it performs a bottom-up update of all node values startingifthe leaf nodes (whosevalues are
inflated with the new weight) and continuing upwards towdh#sroot node. Then, the search con-
tinues with the newly identified best partial solution trAés.well as ARA*, wR-AOBF provides the
same guarantees with respect to the quality of the subolgimhaions found. We note that a more
recent anytime scheme call&dytime Nonparametric A* (ANATB], which regulates automatically
the weight based on the cost of the current best solutioa,lels an extention to AND/OR search
spaces for graphical models, wN-AOBF. However, our prelany evaluation, omitted for space
reasons, showed that this scheme does not perform well obemehmarks and thus wN-AOBF is
excluded from further discussion.

Anytime AND/OR branch-and-bound Depth-first AND/OR branch-and-bound (AOBB) [12] is
a powerful search scheme for graphical models. The algoritiowever, lacks a proper anytime
behavior because at each AND node all but one independddtstiiproblems have to be solved
completely, before the last one is even considei@adth-Rotating AND/OR Branch and Bound
(BRAOBB) [2] remedies this deficiency of AOBB by combiningadie-first exploration of the search
space with the notion of rotating through different subpeais in a breadth-first manner. Empiri-
cally, BRAOBB outputs the first suboptimal solutions sigrafitly faster than plain AOBB [2].

4 Experiments

We compare the anytime behaviour of our schemes using convargable orderings and Mini-
Bucket heuristics [11], whose strength is controlled by eapeeteri-bound (higher i-bounds typi-
cally yield more accurate heuristics). We solve the MPE,ttekalgorithms output lower bounds on
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Figure 2: Solution cost, time vs weight (WR-OBF, wAOBF) ritay weight = 32.C* - optimal cost,
"-i” - i-bound, n - number of variableg; - domain sizew* - induced width ) - pseudo-tree height.
solutions, so higher values are preferable. We use 3 datd€epedigree networks, 17 binary grids
and 20 protein instances. Time limitis 1 hour, memory limi2iGh. Due to lack of space we chose
a subset of instances from each dataset to demonstratepibaltgerformance of the algorithms.

The influence of weight on the performance of AND/OR weightedBF schemes. Fig. 1 shows
the solution cost (left) and time to find the correspondingtsan (right) as functions of weight for
wWAOBF and wR-AOBF. The starting weight is 4, decreasing Hydl.each iteration.

Theory claims that smaller values of weight yield more aataisolutions, since the cost of the
solutionC is provably within a factor ofv from the exact on€*. Plots in the left column of Fig. 1
show(C' = w - C* for weightsw = {1.2,1.6,2}. We see that the actual solutions found by both
schemes are much better than theory suggests. Same isittbe &l the omitted instances.

Though there are no theoretical guarantees, we expectrhigtights to yield faster performances.
Experiments show that in practice this intuition is corrfectour benchmarks, illustrated by exam-
ples in the right column of Fig. 1. While the runtime of wAOBRvays noticeably increases as
weights get smaller, for some instances (e.g., pdblatypesd) the runtime of wR-AOBF remains
almost constant.

We observed that for wR-AOBF the solution cost always insesamonotonically as weight de-
creases. But for WAOBF the accuracy of the solutions, thalghys bounded by - C*, can either
improve or get worse as weight reduces (e.g., 70-19-5).

Such cost fluctuations are even more noticeable on the mexigmplot in Fig. 2. The figure displays
solution accuracy (left) and runtime (right) for a largemge ofw, starting at 32. For pedigrees we
observed these cost oscillations for 9 instances out of héevior grids and proteins they are rare
and cost most often changes monotonically with weight. A ploint it is unclear what causes this
difference in the behaviour between benchmarks.



As a rule, higher values of the i-bound yield more accurateibics and thus better solutions, but
for some instances high i-bounds correspond to worse sgguff. compare wAOBF with i=4 and
i=6 for pdblacf. Although in our experiments the startingghé¢ and the decrease interval were
chosen arbitrary, it is obvious that the solution qualityn8uenced by the relation between the
i-bound value and weight, which can potentially be utilizegick optimal weight parameters.

Anytime profiles of weighted AOBF schemes. Consider the left column of Fig. 3. It shows the
cost of the best solution found by wAOBF and wR-AOBF algarithas a function of time for teo
i-bounds, corresponding to medium and high accuracy of gueistic.

The plots use three problems to illustrate the recurringdseobserved across all instances. For a
given time wR-AOBF finds solutions of better quality than wBR For both schemes larger values
of i-bound normally yield more accurate performance (e0328-5, pedigree33), however for a few
instances the opposite is true (e.g. for pdblacf wAOBF per$avorse fori = 6 than fori = 4).
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Figure 3: Solution cost vs time (sec); right: wR-OBF & wAOBEft: wR-OBF & BRAOBB.

Anytime weighted BF vs BB We compare the more efficient one of the BF schemes, wR-AOBF,
to the state-of-the art BRAOBB. Consider the right columr@f. 3 showing the dependence of
the solution cost on time. We observed that for certain icsta (here represented by pdblacf)
BRAOBB is faster and finds solutions of better quality thanA@BF. However, for some problems
(such as 50-20-5,= 12) wR-AOBF produces better solutions for some time cut-offs.

Table 1 compares the performance of all three schemes fdyoRiids on a subset of instances,
showing the best solution found for various time cut-offAQBF is typically dominated by wR-
AOBF, with a few exceptions, such as 50-19:5; 12. BRAOBB is the fastest to find the exact
solution on the majority of instances, but fails to produeg esults for problems known to be hard,
such as protein pdbla7w= 6.

Table 2 summarizes the experiments, providing for sevienal tut-offs the number of problems, for
which within the respective time bound any solution was fiyithe optimal solution was found and



o . Optimal Time bound
Instance €. k, w”, h) Algorithms ‘ Fcf,osl I0sec | Imin [ TI0min [ Thour 10sec | Imin [ I0min [ Thour
Pedigree networks i-bound=12 i-bound=20
WR-AOBF -113.889 | -118.071 | -118.071 | -118.071 | -118.071 -119.22 -119.22 -119.22 -119.22
pedigree7 (1069, 5, 47, 204)  BRAOBB -113.889 | -124.207 | -121.344 | -118.745 | -118.745 -116.683 | -116.683 | -113.889 [ -113.889
WAOBF -113.889 | -125.438 | -117.117 | -117.813 | -117.813 -120.103 | -114.042 | -114.042 | -114.042
WR-AOBF -122.904 | -129.225 | -129.225 | -129.225 | -129.225 -128.037 | -128.037 | -128.037 | -128.037
pedigree9 (1119, 5, 25, 123)] BRAOBB -122.904 | -126.13 -124.142 | -123.858 | -123.858 -122.904 | -122.904 | -122.904 | -122.904
WAOBF -122.904 | -136.471 | -126.529 | -126.529 | -126.529 -133.254 | -124547 | -124547 | -124.547
WR-AOBF -130.461 | -136.967 | -136.967 | -136.967 | -136.967 fail fail fail fail
pedigree31 (1184, 5, 29, 131) BRAOBB -130.461 | -141.085 | -140.622 | -133.977 | -131.622 fail fail fail fail
WAOBF -130.461 | -138.969 | -135.701 | -135.08 -135.08 fail fail fail fail
WR-AOBF -120.735 | -124.872 | -124.872 | -124.872 | -124.872 -121.792 -121.792 -121.792 | -121.792
pedigree41 (1063, 5, 29, 119) BRAOBB -120.735 | -125.347 | -123.276 | -122.614 | -120.735 fail fail fail fail
WAOBF -120.735 | -133.549 | -133549 | -126.774 | -126.774 -130.7 -130.7 -120.916 | -120.916
Grid networks i-bound=12 i-bound=20
WR-AOBF -23.2894 | -24.9678 | -24.4856 | -24.4856 | -24.4856 -23.8008 | -23.2894 | -23.2894 | -23.2894
50-19-5 (361, 2, 25, 93) BRAOBB -23.2894 | -23.659 -23.3556 [ -23.3556 | -23.2894 -23.2894 | -23.2894 | -23.2894 | -23.2894
WAOBF -23.2894 | -24.3493 | -23.3495 | -23.3495 | -23.3495 -23.7389 | -23.2894 | -23.2894 | -23.2894
WR-AOBF -7.65823 | -8.23285 | -7.65823 | -7.65823 | -7.65823 -7.65823 | -7.65823 | -7.65823 | -7.65823
90-21-5 (441, 2, 28, 106) BRAOBB -7.65823 | -7.65823 | -7.65823 | -7.65823 | -7.65823 -7.65823 | -7.6583 -7.65823 | -7.65823
WAOBF -7.65823 | -8.59967 | -8.59967 | -7.65823 | -7.65823 -9.47549 | -9.47549 | -7.65823 | -7.65823
WR-AOBF -6.62929 | -9.34089 | -6.62929 | -6.62929 | -6.62929 -6.62929 -6.62929 -6.62929 | -6.62929
90-22-5 (484, 2, 30, 109) BRAOBB -6.62929 | -6.94762 | -6.62929 | -6.62929 | -6.62929 -6.62929 [ -6.62929 | -6.62929 | -6.62929
WAOBF -6.62929 | -9.34089 | -9.34089 | -6.62929 | -6.62929 -7.29493 | -7.29493 | -6.62929 | -6.62929
WR-AOBF -8.37526 | -9.64825 | -8.50184 | -8.50184 | -8.50184 -9.00014 -8.37526 -8.37526 | -8.37526
90-23-5 (529, 2, 31, 116) BRAOBB -8.37526 | -8.93201 [ -8.93201 | -8.37526 | -8.37526 -8.37526 -8.37526 -8.37526 | -8.37526
WAOBF -8.37526 | -9.64825 | -9.64825 | -8.40246 | -8.40246 -10.2926 -10.2926 -8.37526 | -8.37526
Protein networks i-bound=4 i-bound=6
WR-AOBF -48.3581 | -48.3581 | -48.3581 | -48.3581 | -48.3581 -48.3581 | -48.3581 | -48.3581 | -48.3581
pdbla62 (106, 81, 10, 31) BRAOBB -48.3581 | -48.3581 | -48.3581 | -48.358 -48.3581 fail fail fail fail
WAOBF -48.3581 | -91.7971 | -48.3581 | -48.3581 | -48.3581 -75.5978 | -48.3581 | -48.3581 | -48.3581
WR-AOBF -14.228 -15.7759 | -15.7759 | -14.228 -14.228 fail fail fail fai
pdbla7w (53, 81, 6, 25) BRAOBB -14.228 -14.228 -14.228 -14.228 -14.228 fail fail fail fai
WAOBF -14.228 -15.7759 | -15.7759 | -15.7759 | -14.228 fail fail fail fail
WR-AOBF -31.6949 | -31.6949 | -31.6949 | -31.6949 | -31.6949 -31.6949 | -31.6949 | -31.6949 | -31.6949
pdblaba (77, 81, 8, 30) BRAOBB -31.6949 | -31.6949 | -31.6949 | -31.6949 | -31.6949 fail fail fail fail
WAOBF -31.6949 | -38.9925 | -31.6949 | -31.6949 | -31.6949 -35.586 -31.6949 | -31.6949 | -31.6949
WR-AOBF -89.3655 | -107.495 | -107.495 | -106.091 | -106.091 -103.537 -103.537 -103.537 | -103.537
pdb1b0b (98, 81, 9, 29) BRAOBB -89.3655 | -90.5106 [ -89.5608 | -89.3655 [ -89.3655 fail fail fail fail
WAOBF -89.3655 | -107.495 [ -107.495 [ -107.495 [ -95.6883 -89.3655 -89.3655 -89.3655 | -89.3655
WR-AOBF -35.6712 | -41.7016 | -35.8095 | -35.8095 | -35.8095 -61.8207 -45.3506 -45.3506 | -45.3506
pdb1b0y (61, 81, 8, 18) BRAOBB -35.6712 | -35.6712 | -35.6712 | -35.6712 | -35.6712 fail fail fail fail
WAOBF -35.6712 | -51.0568 [ -51.0568 | -35.6712 | -35.6712 -61.8207 -61.8207 -35.7726 | -35.7726
Table 1: Best solution costs found within the time cut-ofiaet solutions are shown in bold.
Algorithms Time bound
10sec | 1Imin [ 10min T Thour 10sec [ Imin [ 10min [ Thour
Pedigree networks (16 total)zp = 21.1 i-bound=8 i-bound=20
WAOBF 13/1/1 13/2/2 15/715 16/9/6 10/4/4 11/4/4 12/71/6 12/12/12
WR-AOBF 117171 13/3/3 13/6/6 16/6/6 11/6/6 12/6/6 12/717 12712712
BRAOBB 13/6/4 13/6/5 14/9/8 14/11/9 3/3/3 8/6/6 10/8/8 11/9/9
Grid networks (17 total), 0 = 22.6 i-bound=8 i-bound=20
WAOBF 15/2/1 171413 17/8/6 17/10/10 17/91/9 17/12/12 17/16/16 17/16/16
WR-AOBF 10/3/3 13/5/4 16/11/11 | 17/11/11 17/13/13 | 17/16/15 | 17/16/16 | 17/16/16
BRAOBB 14/8/5 15/13/10 16/14/14 16/15/15 11/10/10 17/16/16 17/17/17 17/17117
Protein networks (20 total).0 = 9.8 i-bound=2 i-bound=6
wWAOBF 9/0/0 10/1/1 11/473 20/9720 14/6/4 14/10/8 14/12/11 ] 14711710
WR-AOBF 5/3/2 9/6/5 10/9/7 20/10/20 11/9/8 14/12/11 | 14/13/12 | 14/13/13
BRAOBB 20/10/9 20/14/12 20/14/13 20/14/14 6/5/4 14/14/11 | 20/19/17 20/20/18

Table 2: Statistics over 53 instances for each scheme foed fibound: the number of cases for
which, within the respective time bound, (1) any solutiorsi@und, (2) the optimal solution was
found, (3) optimality was provenj - average tree-width for benchmark.

optimality was proven. We see that it is hard to pinpoint aclginner among the three schemes,
also the performance is greately influenced by the i-bounds.

To summarize, we see that the reuse of the explored searck byawR-AOBF yields a more
efficient scheme than the simpler wAOBF algorithm, and, wiflew exceptions, both BF methods
perform worse than the state-of-the-art BRAOBB algorithm.

5 Conclusion

Best First search schemes are often neglected in the carfteglving combinatorial optimization
problems over graphical models due to their exponential omgmequirements. Yet, this paper
demonstrates the potential of the anytime Best-First sdfardinding approximated solutions.

We conducted an extensive empirical evaluation of severgirae best-first schemes, and showed
that they have potential for providing an alternative foytame branch-and-bound schemes for some
benchmarks especially for difficult problem instances.
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