
Preliminary Empirical Evaluation of Anytime
Weighted AND/OR Best-First Search for MAP

Natalia Flerova
University of California Irvine

Radu Marinescu
IBM Research - Ireland

Rina Dechter
University of California Irvine

Abstract

We explore the potential of anytime best-first search schemes for combinatorial
optimization tasks over graphical models (e.g., MAP/MPE).We show that recent
advances in extending best-first search into an anytime scheme have a potential for
optimization for graphical models. Importantly, these schemes come with upper
bound guarantees and are sometime competitive with known effective anytime
branch-and-bound schemes.

1 Introduction

The most common search algorithms for combinatorial optimization tasks over graphical models
such as MAP/MPE is depth-first branch and bound. Such schemeswere extensively studied in re-
cent years for generating exact and approximate solutions [1, 2]. Indeed, best-first search schemes,
while known to be more efficient [3], are rarely considered for graphical models because they are in-
herently memory intensive and lack anytime qualities. Furthermore, one of best-first most attractive
qualites, avoiding the exploration of unbounded paths, seems irrelevant to graphical models where
all solutions are at the same depth (i.e., the number of variable).

In contrast, for path-finding domains, such as planning, best-first search, and especially its popular
variant A* [4], is most attractive and received most of the research focus. Given an admissible
heuristic, A* is guaranteed to find the exact solution and is optimally efficient with respect to the
number of expanded nodes [3]. In particular, it is guaranteed to explore only nodes whose evaluation
function is bounded by the optimal solution cost and thus will never wonder in unbounded directions.

However, A*’s exponential memory requirements and its solution generation only upon termination,
are problematic for use in the path-finding domain as well, and therefore proposals extending A*
into a more flexible anytime scheme have recently emerged. The most popular approaches are based
on Weighted A*(WA*) [5], which suggest to inflate the heuristic values by a constant factor of
w ≥ 1. This makes the heuristic inadmissible to a degree which is controlled byw, but typically
yields faster search and guarantees a solution cost within afactor ofw from the optimal one. If
the approximate solution is found quickly and if additionaltime is available, search for a better
solution resumes. The simplest anytime scheme is to run A* iteratively with decreasing values ofw
until a time-bound, returning the best solution found thus far, with the corresponding weight as the
bounding factor, or untilw = 1, returning the optimal solution.

Several anytime weighted best-first search algorithms wereproposed ([6, 7, 8, 9]). The two that
are perceived to be most effective are the Anytime RepairingA* (ARA*) [7] and the Anytime
Nonparametric A* (ANA*) [8]. ARA* runs WA* iteratively while decreasingw but tries to reuse
search efforts from previous iterations. Algorithm ANA* implicitly regulates the weights based on
the cost of the current best solution.

In light of the above enhancement in anytime best-first search for path-finding benchmarks, we
decided to give best-first another chance and explore these weighted best-first search schemes for
graphical models. We used as a starting point the AND/OR best-first (AOBF) for graphical mod-

1



els which was investigated and compared with AND/OR branch-and-bound schemes (AOBB) [1].
AOBF searches the AND/OR context minimal graph [10] and is guided by admissible and consistent
mini-bucket heuristic [11]. The simplest way to extend AOBFto an anytime scheme is to run AOBF
with the weighted heuristic iteratively, decreasing the value of the weight at each iteration. We also
extended ARA* to the AND/OR search space, while ANA* was extended to OR search spaces only.

Our empirical evaluation compares the above algorithms andcontrasts them with a recent effective
anytime branch-and-bound search for graphical models, called Breadth-Rotating AND/OR Branch-
and-Bound (BRAOBB) [2] which won the 2011 Probabilistic Inference Challenge1 in all optimiza-
tion categories. Our preliminary results are quite promising, showing that our quick implementation
of two of the weighted best-first schemes can sometime have a superior anytime performance to
BRAOBB, thus providing an alternative that should be further developed. In section 2 and 3 we
provide background and discuss our algorithms and in section 4 we provide empirical evaluation.

2 Best First and Weighted Best-First Heuristic Search

Best-first search Best-first search (BFS) always chooses for expansion a node with lowest value
of f(n). Its most popular variant is A*, which usesf(n) = g(n)+h(n), whereg(n) is minimal cost
from the rootn0 ton along the current path, andh(n) is heuristic function that estimatesh∗(n), the
optimal cost fromn to a goal node. For minimization, theh(n) is admissibleif ∀n h(n) ≤ h∗(n)
The heuristic functionh is consistent iff ∀n′ successor ofn in G, h(n) ≤ c(n, n′) + h(n′).

Weighted A* search (WA*) [5] differs from A* only in using the evaluation function:f(n) =
g(n) + w · h(n), weightw > 1, h(n) is admissible. Higher values ofw typically yield greedier
behavior, where a solution is encountered earlier during search. WA* is guaranteed to terminate
with a solution costC such thatC ≤ w · C∗, whereC∗ is the cost of the optimal solution path.

AND/OR best-first search for graphical models A graphical model is a tuple M =
(X,D,F,

∏
), F is a set of real-valued local functions over subsets of discrete variablesX, called

scopes, with finite domainsD. The common optimization task is to findmaxX
∏

i
fi called MAP.

The scopes ofF define aprimal graphG with certaininduced widthand a pseudo treeT of G that
guides an AND/OR search space [10]. AnAND/OR search treeST associated withT has alternat-
ing levels of OR nodes corresponding to the variables and ANDnodes corresponding to the values
of the OR parent’s variable, with edges weighted according to F. The state of the art version of
A* that explores the AND/OR search spaces is the AND/OR Best-First (AOBF) algorithm [12] that
utilizes the mini-bucket heuristic which is admissible andconsistent [11].

Proposing Weighted AOBF The weighted version of the AOBF algorithm can be obtained by
inflating the heuristic function with a weightw ≥ 1 (i.e., substitutingh(n) by w · h(n)). Weighted
AOBF is closely related to WAO*, an algorithm introduced previously by Chakrabarti et al. [13] for
searching AND/OR search spaces having a restricted structure. It is easy to show that the properties
of WA* [5] and WAO* [13] are shared by Weighted AOBF as well. Specifically:
Proposition 1. If h(n) is admissible, the cost of the solution discovered by Weighted AOBF is
guaranteed to be no more than a factor ofw worse than the optimal one.

3 Anytime Heuristic Search

Proposing Anytime Weighted AOBF Since the accuracy of a solution found by Weighted AOBF
is bounded byw, it is possible to formulate a simple anytime scheme, calledwAOBF, that executes
Weighted AOBF iteratively, starting with an initial weight, and decreasing the weight at each itera-
tion by a fixed amount. Clearly, this approach, similar to theRestarting Weighted A* by Richter at
al. [9], results in a series of solutions, each with a sub-optimality factor equal to thew.

Anytime Repairing AOBF Running each search iteration from scratch, aswAOBF does, is
wasteful, since the same search subspace might be explored multiple times. To remedy this prob-
lem, we propose the Anytime Repairing AOBF scheme, denoted by wR-AOBF, which is a simple

1http://www.cs.huji.ac.il/project/PASCAL/realBoard.php

2



1.01.52.02.53.03.54.0
weight

−22

−20

−18

−16

−14

−12

Lo
g(

pr
ob

ab
ili

ty
)

75-19-5 (n=361 k=2 w*=25 h=89) i=12

optimal (C*)
2 x C*
1.6 x C*
1.2 x C*
wR-AOBF
wAOBF

1.01.52.02.53.03.54.0
weight

0
10
20
30
40
50
60
70

tim
e 
(s
ec
)

75-19-5 (n=361 k=2 w*=25 h=89) i=12
wR-AOBF
wAOBF

1.01.52.02.53.03.54.0
weight

−90

−80

−70

−60

−50

Lo
g(

pr
ob

ab
ili

ty
)

pdb1at0 (n=122 k=81 w*=8 h=25) i=4

optimal (C*)
2 x C*
1.6 x C*
1.2 x C*
wR-AOBF
wAOBF

1.01.52.02.53.03.54.0
weight

0.0

0.5

1.0

1.5

2.0

tim
e 

(s
ec

)

pdb1at0 (n=122 k=81 w*=8 h=25) i=4
wR-AOBF
wAOBF

1.01.52.02.53.03.54.0
weight

−240

−220

−200

−180

−160

−140

−120

Lo
g(

pr
ob

ab
ili

ty
)

pedigree9 (n=1119 k=5 w*=25 h=123) i=12

optimal (C*)
2 x C*
1.6 x C*
1.2 x C*
wR-AOBF
wAOBF

1.01.52.02.53.03.54.0
weight

0
1
2
3
4
5
6
7
8

tim
e 

(s
ec

)

pedigree9 (n=1119 k=5 w*=25 h=123) i=12
wR-AOBF
wAOBF

Figure 1: Solution cost and time vs weight (wR-OBF, wAOBF). Starting weight=4.C∗ - exact cost,
w x C∗ - the theoretical bound on the approximate solution for weightw, i - i-bound,n - number of
variables,k - domain size,w∗ - induced width,h - pseudo-tree height.

extension of theAnytime Repairing A* (ARA*)algorithm [7] to AND/OR search spaces. At each
iteration,wR-AOBF keeps track of the partially explored AND/OR graph and, after decreasingw,
it performs a bottom-up update of all node values starting from the leaf nodes (whoseh-values are
inflated with the new weight) and continuing upwards towardsthe root node. Then, the search con-
tinues with the newly identified best partial solution tree.As well as ARA*,wR-AOBF provides the
same guarantees with respect to the quality of the suboptimal solutions found. We note that a more
recent anytime scheme calledAnytime Nonparametric A* (ANA*)[8], which regulates automatically
the weight based on the cost of the current best solution, also has an extention to AND/OR search
spaces for graphical models, wN-AOBF. However, our preliminary evaluation, omitted for space
reasons, showed that this scheme does not perform well on ourbenchmarks and thus wN-AOBF is
excluded from further discussion.

Anytime AND/OR branch-and-bound Depth-first AND/OR branch-and-bound (AOBB) [12] is
a powerful search scheme for graphical models. The algorithm, however, lacks a proper anytime
behavior because at each AND node all but one independent child subproblems have to be solved
completely, before the last one is even considered.Breadth-Rotating AND/OR Branch and Bound
(BRAOBB) [2] remedies this deficiency of AOBB by combining depth-first exploration of the search
space with the notion of rotating through different subproblems in a breadth-first manner. Empiri-
cally, BRAOBB outputs the first suboptimal solutions significantly faster than plain AOBB [2].

4 Experiments

We compare the anytime behaviour of our schemes using commonvariable orderings and Mini-
Bucket heuristics [11], whose strength is controlled by a parameteri-bound(higher i-bounds typi-
cally yield more accurate heuristics). We solve the MPE task, the algorithms output lower bounds on

3



100101

weight

−28

−27

−26

−25

−24

−23

−22

Lo
g(

pr
ob

ab
ili

ty
)

50-18-5 (n=324 k=2 w*=24 h=84)
optimal (C*)
wR-AOBF-i12
wAOBF-i12
wR-AOBF-i20
wAOBF-i20

100101

weight

0

10

20

30

40

50

60

tim
e 

(s
ec

)

50-18-5 (n=324 k=2 w*=24 h=84)
wR-AOBF-i12
wAOBF-i12
wR-AOBF-i20
wAOBF-i20

100101

weight

−95
−90
−85
−80
−75
−70
−65
−60

Lo
g(

pr
ob

ab
ili

ty
)

pdb1acf (n=91 k=81 w*=9 h=26)
optimal (C*)
wR-AOBF-i4
wAOBF-i4
wR-AOBF-i6
wAOBF-i6

100101

weight

0
100
200
300
400
500
600
700
800

tim
e 
(s
ec
)

pdb1acf (n=91 k=81 w*=9 h=26)

wR-AOBF-i4
wAOBF-i4
wR-AOBF-i6
wAOBF-i6

100101

weight

−82
−81
−80
−79
−78
−77
−76
−75

Lo
g(

pr
ob

ab
ili

ty
)

pedigree33 (n=798 k=5 w*=24 h=132)

optimal (C*)
wR-AOBF-i12
wAOBF-i12
wR-AOBF-i20
wAOBF-i20

100101

weight

0

10

20

30

40

50

60
tim

e 
(s
ec

)
pedigree33 (n=798 k=5 w*=24 h=132)

wR-AOBF-i12
wAOBF-i12
wR-AOBF-i20
wAOBF-i20

Figure 2: Solution cost, time vs weight (wR-OBF, wAOBF), starting weight = 32.C∗ - optimal cost,
”-i” - i-bound, n - number of variables,k - domain size,w∗ - induced width,h - pseudo-tree height.

solutions, so higher values are preferable. We use 3 datasets: 16 pedigree networks, 17 binary grids
and 20 protein instances. Time limit is 1 hour, memory limit is 2 Gb. Due to lack of space we chose
a subset of instances from each dataset to demonstrate the typical performance of the algorithms.

The influence of weight on the performance of AND/OR weightedBF schemes. Fig. 1 shows
the solution cost (left) and time to find the corresponding solution (right) as functions of weight for
wAOBF and wR-AOBF. The starting weight is 4, decreasing by 0.1 at each iteration.

Theory claims that smaller values of weight yield more accurate solutions, since the cost of the
solutionC is provably within a factor ofw from the exact oneC∗. Plots in the left column of Fig. 1
showC = w · C∗ for weightsw = {1.2, 1.6, 2}. We see that the actual solutions found by both
schemes are much better than theory suggests. Same is true for the all the omitted instances.

Though there are no theoretical guarantees, we expect higher weights to yield faster performances.
Experiments show that in practice this intuition is correctfor our benchmarks, illustrated by exam-
ples in the right column of Fig. 1. While the runtime of wAOBF always noticeably increases as
weights get smaller, for some instances (e.g., pdb1at0, pedigree9) the runtime of wR-AOBF remains
almost constant.

We observed that for wR-AOBF the solution cost always increases monotonically as weight de-
creases. But for wAOBF the accuracy of the solutions, thoughalways bounded byw ·C∗, can either
improve or get worse as weight reduces (e.g., 70-19-5).

Such cost fluctuations are even more noticeable on the pedigree33 plot in Fig. 2. The figure displays
solution accuracy (left) and runtime (right) for a larger range ofw, starting at 32. For pedigrees we
observed these cost oscillations for 9 instances out of 16, while for grids and proteins they are rare
and cost most often changes monotonically with weight. At this point it is unclear what causes this
difference in the behaviour between benchmarks.

4



As a rule, higher values of the i-bound yield more accurate heuristics and thus better solutions, but
for some instances high i-bounds correspond to worse results, e.g. compare wAOBF with i=4 and
i=6 for pdb1acf. Although in our experiments the starting weight and the decrease interval were
chosen arbitrary, it is obvious that the solution quality isinfluenced by the relation between the
i-bound value and weight, which can potentially be utilizedto pick optimal weight parameters.

Anytime profiles of weighted AOBF schemes. Consider the left column of Fig. 3. It shows the
cost of the best solution found by wAOBF and wR-AOBF algorithms as a function of time for teo
i-bounds, corresponding to medium and high accuracy of the heuristic.

The plots use three problems to illustrate the recurring trends observed across all instances. For a
given time wR-AOBF finds solutions of better quality than wAOBF. For both schemes larger values
of i-bound normally yield more accurate performance (e.g. 50-20-5, pedigree33), however for a few
instances the opposite is true (e.g. for pdb1acf wAOBF performs worse fori = 6 than fori = 4).

100 101 102 103

Search time in seconds

−34

−32

−30

−28

−26

Lo
g(

pr
ob

ab
ili

ty
)

50-20-5 (n=400 k=2 w*=27 h=97)

optimal (C*)
wR-AOBF-i12
wAOBF-i12
wR-AOBF-i20
wAOBF-i20

100 101 102 103

Search time in seconds

−27.5

−27.0

−26.5

−26.0

Lo
g(

pr
ob

ab
ili

ty
)

50-20-5 (n=400 k=2 w*=27 h=97) weight=4

optimal (C*)
wR-AOBF-i12
BRAOBB-i12
wR-AOBF-i20
BRAOBB-i20

100 101 102 103

Search time in seconds

−95
−90
−85
−80
−75
−70
−65
−60

Lo
g(

pr
ob

ab
ili

ty
)

pdb1acf (n=91 k=81 w*=9 h=26)

optimal (C*)
wR-AOBF-i4
wAOBF-i4
wR-AOBF-i6
wAOBF-i6

100 101 102 103

Search time in seconds

−95
−90
−85
−80
−75
−70
−65
−60

Lo
g(

pr
ob

ab
ili

ty
)

pdb1acf (n=91 k=81 w*=9 h=26) weight=32

optimal (C*)
wR-AOBF-i4
BRAOBB-i4
wR-AOBF-i6
BRAOBB-i6

100 101 102 103

Search time in seconds

−82
−81
−80
−79
−78
−77
−76
−75

Lo
g(

pr
ob

ab
ili

ty
)

pedigree33 (n=798 k=5 w*=24 h=132)

optimal (C*)
wR-AOBF-i12
wAOBF-i12
wR-AOBF-i20
wAOBF-i20

100 101 102 103

Search time in seconds

−80

−79

−78

−77

−76

−75

Lo
g(

pr
ob

ab
ili

ty
)

pedigree33 (n=798 k=5 w*=24 h=132)

optimal (C*)
wR-AOBF-i12
BRAOBB-i12
wR-AOBF-i20
BRAOBB-i20

Figure 3: Solution cost vs time (sec); right: wR-OBF & wAOBF;left: wR-OBF & BRAOBB.

Anytime weighted BF vs BB We compare the more efficient one of the BF schemes, wR-AOBF,
to the state-of-the art BRAOBB. Consider the right column ofFig. 3 showing the dependence of
the solution cost on time. We observed that for certain instances (here represented by pdb1acf)
BRAOBB is faster and finds solutions of better quality than wR-AOBF. However, for some problems
(such as 50-20-5,i = 12) wR-AOBF produces better solutions for some time cut-offs.

Table 1 compares the performance of all three schemes for 2 i-bounds on a subset of instances,
showing the best solution found for various time cut-offs. wAOBF is typically dominated by wR-
AOBF, with a few exceptions, such as 50-19-5,i = 12. BRAOBB is the fastest to find the exact
solution on the majority of instances, but fails to produce any results for problems known to be hard,
such as protein pdb1a7w,i = 6.

Table 2 summarizes the experiments, providing for several time cut-offs the number of problems, for
which within the respective time bound any solution was found, the optimal solution was found and

5



Instance (n, k, w∗ , h) Algorithms
Optimal Time bound

cost 10 sec 1 min 10 min 1 hour 10 sec 1 min 10 min 1 hour
Pedigree networks i-bound=12 i-bound=20

pedigree7 (1069, 5, 47, 204)
wR-AOBF -113.889 -118.071 -118.071 -118.071 -118.071 -119.22 -119.22 -119.22 -119.22
BRAOBB -113.889 -124.207 -121.344 -118.745 -118.745 -116.683 -116.683 -113.889 -113.889
wAOBF -113.889 -125.438 -117.117 -117.813 -117.813 -120.103 -114.042 -114.042 -114.042

pedigree9 (1119, 5, 25, 123)
wR-AOBF -122.904 -129.225 -129.225 -129.225 -129.225 -128.037 -128.037 -128.037 -128.037
BRAOBB -122.904 -126.13 -124.142 -123.858 -123.858 -122.904 -122.904 -122.904 -122.904
wAOBF -122.904 -136.471 -126.529 -126.529 -126.529 -133.254 -124.547 -124.547 -124.547

pedigree31 (1184, 5, 29, 131)
wR-AOBF -130.461 -136.967 -136.967 -136.967 -136.967 fail fail fail fail
BRAOBB -130.461 -141.085 -140.622 -133.977 -131.622 fail fail fail fail
wAOBF -130.461 -138.969 -135.701 -135.08 -135.08 fail fail fail fail

pedigree41 (1063, 5, 29, 119)
wR-AOBF -120.735 -124.872 -124.872 -124.872 -124.872 -121.792 -121.792 -121.792 -121.792
BRAOBB -120.735 -125.347 -123.276 -122.614 -120.735 fail fail fail fail
wAOBF -120.735 -133.549 -133.549 -126.774 -126.774 -130.7 -130.7 -120.916 -120.916

Grid networks i-bound=12 i-bound=20

50-19-5 (361, 2, 25, 93)
wR-AOBF -23.2894 -24.9678 -24.4856 -24.4856 -24.4856 -23.8008 -23.2894 -23.2894 -23.2894
BRAOBB -23.2894 -23.659 -23.3556 -23.3556 -23.2894 -23.2894 -23.2894 -23.2894 -23.2894
wAOBF -23.2894 -24.3493 -23.3495 -23.3495 -23.3495 -23.7389 -23.2894 -23.2894 -23.2894

90-21-5 (441, 2, 28, 106)
wR-AOBF -7.65823 -8.23285 -7.65823 -7.65823 -7.65823 -7.65823 -7.65823 -7.65823 -7.65823
BRAOBB -7.65823 -7.65823 -7.65823 -7.65823 -7.65823 -7.65823 -7.65823 -7.65823 -7.65823
wAOBF -7.65823 -8.59967 -8.59967 -7.65823 -7.65823 -9.47549 -9.47549 -7.65823 -7.65823

90-22-5 (484, 2, 30, 109)
wR-AOBF -6.62929 -9.34089 -6.62929 -6.62929 -6.62929 -6.62929 -6.62929 -6.62929 -6.62929
BRAOBB -6.62929 -6.94762 -6.62929 -6.62929 -6.62929 -6.62929 -6.62929 -6.62929 -6.62929
wAOBF -6.62929 -9.34089 -9.34089 -6.62929 -6.62929 -7.29493 -7.29493 -6.62929 -6.62929

90-23-5 (529, 2, 31, 116)
wR-AOBF -8.37526 -9.64825 -8.50184 -8.50184 -8.50184 -9.00014 -8.37526 -8.37526 -8.37526
BRAOBB -8.37526 -8.93201 -8.93201 -8.37526 -8.37526 -8.37526 -8.37526 -8.37526 -8.37526
wAOBF -8.37526 -9.64825 -9.64825 -8.40246 -8.40246 -10.2926 -10.2926 -8.37526 -8.37526

Protein networks i-bound=4 i-bound=6

pdb1a62 (106, 81, 10, 31)
wR-AOBF -48.3581 -48.3581 -48.3581 -48.3581 -48.3581 -48.3581 -48.3581 -48.3581 -48.3581
BRAOBB -48.3581 -48.3581 -48.3581 -48.3581 -48.3581 fail fail fail fail
wAOBF -48.3581 -91.7971 -48.3581 -48.3581 -48.3581 -75.5978 -48.3581 -48.3581 -48.3581

pdb1a7w (53, 81, 6, 25)
wR-AOBF -14.228 -15.7759 -15.7759 -14.228 -14.228 fail fail fail fai
BRAOBB -14.228 -14.228 -14.228 -14.228 -14.228 fail fail fail fai
wAOBF -14.228 -15.7759 -15.7759 -15.7759 -14.228 fail fail fail fail

pdb1aba (77, 81, 8, 30)
wR-AOBF -31.6949 -31.6949 -31.6949 -31.6949 -31.6949 -31.6949 -31.6949 -31.6949 -31.6949
BRAOBB -31.6949 -31.6949 -31.6949 -31.6949 -31.6949 fail fail fail fail
wAOBF -31.6949 -38.9925 -31.6949 -31.6949 -31.6949 -35.586 -31.6949 -31.6949 -31.6949

pdb1b0b (98, 81, 9, 29)
wR-AOBF -89.3655 -107.495 -107.495 -106.091 -106.091 -103.537 -103.537 -103.537 -103.537
BRAOBB -89.3655 -90.5106 -89.5608 -89.3655 -89.3655 fail fail fail fail
wAOBF -89.3655 -107.495 -107.495 -107.495 -95.6883 -89.3655 -89.3655 -89.3655 -89.3655

pdb1b0y (61, 81, 8, 18)
wR-AOBF -35.6712 -41.7016 -35.8095 -35.8095 -35.8095 -61.8207 -45.3506 -45.3506 -45.3506
BRAOBB -35.6712 -35.6712 -35.6712 -35.6712 -35.6712 fail fail fail fail
wAOBF -35.6712 -51.0568 -51.0568 -35.6712 -35.6712 -61.8207 -61.8207 -35.7726 -35.7726

Table 1: Best solution costs found within the time cut-off, exact solutions are shown in bold.

Algorithms
Time bound

10 sec 1 min 10 min 1 hour 10 sec 1 min 10 min 1 hour
Pedigree networks (16 total),ŵ = 21.1 i-bound=8 i-bound=20

wAOBF 13 / 1 / 1 13 / 2 / 2 15 / 7 / 5 16 / 9 / 6 10 / 4 / 4 11 / 4 / 4 12 / 7 / 6 12 / 12 / 12
wR-AOBF 11 / 1 / 1 13 / 3 / 3 13 / 6 / 6 16 / 6 / 6 11 / 6 / 6 12 / 6 / 6 12 / 7 / 7 12 / 12 / 12
BRAOBB 13 / 6 / 4 13 / 6 / 5 14 / 9 / 8 14 / 11 / 9 3 / 3 / 3 8 / 6 / 6 10 / 8 / 8 11 / 9 / 9

Grid networks (17 total),ŵ = 22.6 i-bound=8 i-bound=20
wAOBF 15 / 2 / 1 17 / 4 / 3 17 / 8 / 6 17 / 10 /10 17 / 9 / 9 17 / 12 / 12 17 / 16 / 16 17 / 16 / 16

wR-AOBF 10 / 3 / 3 13 / 5 / 4 16 / 11 / 11 17 / 11 / 11 17 / 13 / 13 17 / 16 / 15 17 / 16 / 16 17 / 16 / 16
BRAOBB 14 / 8 / 5 15 / 13 / 10 16 / 14 / 14 16 / 15 / 15 11 / 10 / 10 17 / 16 / 16 17 / 17 / 17 17 / 17 / 17

Protein networks (20 total),ŵ = 9.8 i-bound=2 i-bound=6
wAOBF 9 / 0 / 0 10 / 1 / 1 11 / 4 / 3 20 / 9 / 20 14 / 6 / 4 14 / 10 / 8 14 / 12 / 11 14 / 11 / 10

wR-AOBF 5 / 3 / 2 9 / 6 / 5 10 / 9 / 7 20 / 10 / 20 11 / 9 / 8 14 / 12 / 11 14 / 13 / 12 14 / 13 / 13
BRAOBB 20 / 10 / 9 20 / 14 / 12 20 / 14 / 13 20 / 14 / 14 6 / 5 / 4 14 / 14 / 11 20 / 19 / 17 20 / 20 / 18

Table 2: Statistics over 53 instances for each scheme for a fixed i-bound: the number of cases for
which, within the respective time bound, (1) any solution was found, (2) the optimal solution was
found, (3) optimality was proven,̂w - average tree-width for benchmark.

optimality was proven. We see that it is hard to pinpoint a clear winner among the three schemes,
also the performance is greately influenced by the i-bounds.

To summarize, we see that the reuse of the explored search space by wR-AOBF yields a more
efficient scheme than the simpler wAOBF algorithm, and, witha few exceptions, both BF methods
perform worse than the state-of-the-art BRAOBB algorithm.

5 Conclusion

Best First search schemes are often neglected in the contextof solving combinatorial optimization
problems over graphical models due to their exponential memory requirements. Yet, this paper
demonstrates the potential of the anytime Best-First search for finding approximated solutions.

We conducted an extensive empirical evaluation of several anytime best-first schemes, and showed
that they have potential for providing an alternative for anytime branch-and-boundschemes for some
benchmarks especially for difficult problem instances.

6



Acknowledgement

This work was supported by NSF grant IIS-1065618.

References

[1] R. Marinescu and R. Dechter. Memory intensive AND/OR search for combinatorial optimiza-
tion in graphical models.Artificial Intelligence, 173(16-17):1492–1524, 2009.

[2] L. Otten and R. Dechter. Anytime AND/OR depth first searchfor combinatorial optimization.
In SOCS, 2011.

[3] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of A*.
Journal of the ACM, 32:506–536, 1985.

[4] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths.IEEE Trans on Systems Science and Cybernetics, 4(2):100–107, 1968.

[5] I. Pohl. Heuristic search viewed as path finding in a graph. Artif. Intell., 1(3-4):193–204, 1970.

[6] E.A. Hansen and R. Zhou. Anytime heuristic search.Journal of Artificial Intelligence Re-
search, 28(1):267–297, 2007.

[7] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with provable bounds on sub-
optimality. NIPS, 16, 2003.

[8] J. van den Berg, R. Shah, A. Huang, and K. Goldberg. Anytime nonparametric A*. InAAAI,
2011.

[9] S. Richter, J.T. Thayer, and W. Ruml. The joy of forgetting: Faster anytime search via restart-
ing. In ICAPS, pages 137–144, 2010.

[10] R. Dechter and R. Mateescu. AND/OR search spaces for graphical models.Artificial Intelli-
gence, 171(2-3):73–106, 2007.

[11] R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference.Journal of the
ACM, 50(2):107–153, 2003.

[12] R. Marinescu and R. Dechter. AND/OR Branch-and-Bound search for combinatorial optimiza-
tion in graphical models.Artificial Intelligence, 173(16-17):1457–1491, 2009.

[13] P.P. Chakrabarti, S. Ghose, and SC De Sarkar. Admissibility of AO* when heuristics overesti-
mate.Artificial Intelligence, 34(1):97–113, 1987.

7


