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Abstract

This paper describes our entry for the MAP/MPE track of thesBAL 2011
Probabilistic Inference Challenge, which placed first intlalee time limit cate-
gories, 20 seconds, 20 minutes, and 1 hour. Our baselinersnatzand-bound
algorithm that explores the context-minimal AND/OR seagcdph of a graphical
model guided by a mini-bucket heuristic. Augmented witherécadvances that
convert the algorithm into an anytime scheme, that impréeehteuristic power
via cost-shifting schemes, and using enhanced variabkriogilschemes, it con-
stitutes one of the most powerful MAP/MPE inference methodsate.

1 Introduction

There has been a recent tendency in the graphical models woitynto dismiss traditional search
algorithms as unsuitable for combinatorial optimizatidralienges such as MAP/MPE problems,
due to the huge search spaces inherent to these problemsstrapmications. Moreover, search
algorithms often advertise themselves as exact, the vesyallwhich seems hopeless for many real-
world applications. Belief propagation and sampling scegon the other hand seem appealing due
to their more modest goals. They are expressively intena@daduce approximations, an attitude
that appears to sidestep the issue of a combinatoriallg Isegrch space and makes them the more
attractive alternative for approximate inference.

However, this perception is challenged by the success otlsdrmsed solvers in competitions for

approximate reasoning [5, 6]. Success in real-world appbos such as vision has also started to
emerge [18, 19]. A more nuanced view, in which both “exactrsh and approximate techniques

like message passing complement one another is criticahieng the best performance.

In this paper we describe our search-based algorithm e oprT, that won first place in all MPE
categories of the PASCAL 2011 Probabilistic Inference @&male [6]. Through this algorithmic
example we demonstrate the relevance of complete anytiarets¢éo approximation algorithms.
The guarantee of an eventual proof of optimality is clearlgtaer virtue of such schemes.

Our baseline is an AND/OR Branch-and-Bound scheme thabeapthe context-minimal AND/OR
search graph of the graphical model with the aid of a minikletibeuristic. This class of algorithms
has been developed over the last decade as summarized inense®f papers [12, 4, 3, 16, 17];
an implementation of it won 3rd place in the 2010 UAI Competit[5]. The most recent push
in performance can be attributed to three central advar(d@@soosting the anytime capability of
AND/OR depth-first search schemes [20], combined with siettb local search [10]; (2) significant
improvement of the mini-bucket heuristic using belief prgption and dual decomposition views of
cost-shifting [11]; and (3) enhanced, highly efficient whie ordering schemes [14].

In the following we describe the different algorithmic cooments of DoopT and the empirical
evaluation in the PASCAL Challenge [6].



(a) Primal graph. (b) Indu- (c)Pseudotree. (d) Context-minimal AND/OR search graph with AOBB
ced graph. pruning example.

Figure 1: Example problem with six variables, induced grafing orderingA, B,C, D, E, F,
corresponding pseudotree, and resulting AND/OR seargihgréth AOBB pruning example.

2 Algorithm Details

We consider a MPE (Most Probable Explanation, sometimes MIB&P, Maximum A Posteriori
assignment) problem over a graphical model, F, D, max,[[). F = {f1,..., f-} is a set of
functions over variableX = {X;, ..., X,,} with discrete domain® ={D,,...,D,}, we aim to
computemaxx [[, fi, the probability of the most likely assignment. The set ofdiion scopes
implies aprimal graphand, given an ordering of the variables, iaduced graph(where, from
last to first, each node’s earlier neighbors are connectétth) avcertaininduced width Another
closely related combinatorial optimization problem is tixeighted constraint problenwhere we
aim to minimize the sum of all costs, i.e. computénx >, f;. These tasks have many practical
applications but are known to be NP-hard in general [13].

2.1 AND/OR Search Spaces

The concept oAND/OR search spaces has recently been introduced to graphical models to better
capture the structure of the underlying graph during sef@ichirhe search space is defined using a
pseudotre®f the graph, which captures problem decomposition:

DEFINITION 1. A pseudotre®f an undirected graplis = (X, E) is a directed, rooted tre§ =
(X, E"), such that every arc af not included inE’ is a back-arc in7 , namely it connects a node
in 7 to an ancestor itV . The arcs inE’” may not all be included itf.

Given a graphical model instance with variablésand functionsF' its primal graph(X, E), and

a pseudotred, the associateAND/OR search treeonsists of alternating levels of OR and AND
nodes. Its structure is based on the underlying pseud@trethe root of the AND/OR search tree
is anOR noddabeled with the root of . The children of an OR nodgX;) areAND nodedabeled
with assignment$éX;,, z;) that are consistent with the assignments along the pathtfienroot; the
children of an AND nod€.X;, z;) are OR nodes labeled with the childrenXfin 7, representing
conditionally independent subproblems.

Identical subproblems, identified by their context (thetiphinstantiation that separates the sub-
problem from the rest of the network), can be merged, yigltirecontext-minimal AND/OR search
graph[3]. It was shown that, given a pseudotrgeof heighth, the size of the AND/OR search
tree based off” is O(n - k"), wherek bounds the variables’ domain size. The context-minimal
AND/OR search graph has sizEn- k%) , wherew is the induced width of the problem graph along
a depth-first traversal of [3].

Example. Figure 1a shows an example problem graph with six varialsliggires 1b and 1c depict
the induced graph and corresponding pseudotree alongmydérB, C, D, E, F', respectively. Fig-
ure 1d shows the resulting context-minimal AND/OR seareppgr(induced width 2). Note that the
AND nodes forB have two children each, representing independent sulgraband thus demon-
strating problem decomposition. Furthermore, the OR néole® (with context{B,C}) and F’
(context{ B, E'}) have two edges converging from the AND level above themmifsitng caching.



Given an AND/OR search spadg-, asolution subtreeSol s, is a tree such that (1) it contains the
root of S ; (2) if a nonterminal AND node: € S is in Solg, then all its children are it¥ols, ;
(3) if a nonterminal OR node € St is in Sols., then exactly one of its children is iflols. .

2.2 AND/OR Branch-and-Bound

AND/OR Branch-and-Bound (AOBB) is a state-of-the-art algorithm for solving optiration
problems such as MAP/MPE over graphical models. The edgd®eoAND/OR search graph can
be annotated by weights derived from the set of cost funstioim the graphical model; finding the
optimal-cost solution subtree solves the stated optinoimaask [16, 17].

Assuming maximization, AOBB traverses the weighted canteximal AND/OR graph in a depth-
first manner while keeping track of the current lower boundr@maximal solution cost. A node
will be pruned if this lower bound exceeds a heuristic uppema on the solution to the subproblem
belown (cf. Section 2.2.1). The algorithm interleaves forward e@dpansion with a backward
cost revision or propagation step that updates node vatag$uring the current best solution to the
subproblem rooted at each node), until search terminatétharoptimal solution has been found.

2.2.1 Mini-bucket Heuristics

The heuristich(n) we use is the mini-bucket heuristic. It is based on mini-leiakimination,

an approximate variant of variable elimination that coreglgpproximations to reasoning problems
over graphical models [4]. A control parametedlows a trade-off between accuracy of the heuristic
and its computational requirements — higher value$ yield a more accurate heuristic but take
more time and space to compute. It was shown that the inteateefiinctions generated by the
mini-bucket algorithm MBE{) can be used to derive a heuristic function thatdsnissible namely

in a maximization context it never underestimates the ogitonst solution to a subproblem [12].

Example. Figure 1d contains a simple pruning example in a maximipationtext: Assume that
node(B) (with contextA = 1) has a current value of 0.4, as a result of exploring its lefdd AND
node(B, 0)). Given a heuristic estimate of 0.3 for its right chilB, 1), the respective subproblem
can safely be pruned, since it can’t possibly lead to a bsttieition (because an admissible heuristic
value provides upper bounds in a maximization context).

2.3 Breadth-Rotating AOBB

As a depth-first branch-and-bound scheme one would expe&BA® quickly produce a non-
optimal solution and then gradually improve upon it, maimiteg the current best one throughout
the search. However this ability is compromised in the card€AND/OR search.

Specifically, in AND/OR search spaces depth-first traveskalset of independent subproblems will
solve to completion all but one subproblem before the lasti®even considered. As a consequence,
the first generated overall non-optimal solution contaimsditionally optimal solutions to all sub-
problems but the last one. Furthermore, depending on tHagrostructure and the complexity of
the independent subproblems, the time to return even tkisniim-optimal overall solution can be
significant, practically negating the anytime behavior epth-first search (DFS).

Breadth-Rotating AND/OR Branch-and-Bound (BRAOBB) presents a principled extension of
plain AOBB that addresses this issue and restores the amptmavior over AND/OR search spaces
[20]. It combines depth-first exploration with the notion‘adtating” through different subproblems
in a breadth-first manner. Namely, node expansion still icdapth-first as in standard AOBB, but
the algorithm takes turns in processing independent sblgres, each up to a given number of
operations at a time, round-robin style.

Figure 2 illustrates this concept: In Figure 2a the two sabjfams on the left have been solved to
completion before the third subproblem is considered atiling BRAOBB, on the other hand, the
three independent subproblems in Figure 2b contributeg@tierall solution simultaneously.

Full algorithm details and analysis are provided in [20]. dug other things, it is shown that the de-
sirable asymptotic memory complexity of depth-first seasctmaintained despite the breadth-first
rotation over subproblems. BRAOBB is also demonstratedrovige drastically improved any-
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time performance for instances with several complex sutipro, yielding better solutions sooner —
something critically important in the context of the timeited PASCAL Inference Challenge.

2.4 Dual Decomposition and M essage Passing

The mini-bucket bounding approach is equivalent to a paleicdual decompositiobbound, a class
of methods that have gained considerable recent popularitiye machine learning community.
Dual decomposition bounds for MAP/MPE are the dual formaiaof a class of linear programming
relaxations of the original graphical model [23, 2, 21]. ¥loan be optimized in a number of ways,
including several belief propagation-like message pasalgorithms, most notably the “message
passing linear programming” (MPLP) algorithm.

Practically speaking, the literature on mini-bucket andlalecomposition bounds are quite differ-
ent. Standard mini-bucket gives a non-iterative bounghatametei is typically chosen to be high
(“top-down”, as close as possible to exact inference),ltieguin a relaxation with large cliques.
In contrast, most current dual decomposition approachek aothe original graph factors [8] or
incrementally add slightly larger cliques such as cycles hottom-up” fashion [22, 15].

In our implementation, we use cliques generated using atdndini-bucket approaches, but make
use of message passing updates to improve the bound. Ira@iohsatisfaction literature, these
updates are often callazbst shifting[2]. Since message passing is fastest on models with small
cliques, like existing bottom-up approaches we first passsages on the original graph, stopping
after a time limit or convergence. We then find the largeghose mini-bucket representation will fit

in memory. We create an intermediate join-graph with cligizei/2 using mini-buckets, and again
tighten the bound using message passing. Finally, we ceesitegle-pass mini-bucket heuristic of
sizei, performing a “max-marginal matching” update that is eglént to a single round of message
passing, but requires no more memory than standard mirkietb{it1].

Our approach inherits the advantage both of large cliguesn(fnini-buckets) and of iterative im-
provements (from message passing). Many practical quesstimwever, such as the correct balance
between quickly identifying larg cliques (like mini-budk or using energy-based heuristics to
identify the most important cliques (like cycle pursuit [e&main open.

2.5 Enhanced Variable Ordering Scheme

As an algorithm exploring the context-minimal AND/OR sdagraph, the asymptotic time com-
plexity of AOBB (and BRAOBB) iO(n-k"), i.e., exponential in the induced widthalong a given
variable ordering (cf. Section 2.1 and [17, 20]). Hence,itgworderings that yield small induced
width is of central importance, yet for a given problem ims&finding an ordering with the lowest
possible width is known to be NP-hard. One therefore oftdiegen heuristics likemin-fill and
min-degreewhich have proven to yield good results in practice.



20 seconds 20 minutes 1 hour
1. MPLP on input graph 2 sec 30 sec /500 iter| 60 sec /2000 iter
2. Stochastic Local search 2x2 sec 10x6 sec 20x10 sec
3. Iterative variable ordering 3 sec /500 iter | 60 sec /10000 iter 180 sec / 30000 iter
4. MPLP on join graph 2 sec 30 sec/250iter| 60 sec/1000 iter
5. Mini-buckets + MM 1 =15, max 125MB| ¢ = 25, max 4GB | i = 35, max 4GB
6. BRAOBB to completion or until timeout

Table 1: Algorithm parameters for different time limits.ef$ are limited by execution time and
max. number of iterations (whichever comes first), or in theecof mini-buckets with moment
matching, the largegtbound that can fit within the given memory limit (4GB limittd®y competi-
tion environment).

These greedy schemes can have significant variance in téthresarderings they produce, as Figure
3 illustrates by plotting a histogram of induced widths 0287000 orderings produced by min-fill
with simple random tie-breaking for a single problem ins&falso shown is the variance in state
space size, i.e., the product of variable domain sizes &t leael in the resulting AND/OR search
graph). We thus take the approach of iteratively runningeéhl@dering heuristics with the following
key enhancements [14]:

o Highly efficient implementation with optimized data struiets, to allow many times more
iterations;

e Early detection and termination of redundant iterationthwinpromising results (in the
spirit of branch-and-bound);

e Additional stochasticity in the greedy process, to encgeidiscovery of a more diverse set
of orderings (in the spirit of local search).

The last point goes beyond simple tie-breaking, but insédladvs the algorithm to deviate from the
heuristically best choice with a certain probability thghurandom “pooling”. The details of this

scheme and its optimizations were developed in [14]. Anrestte empirical evaluation showed
impressive results, both in terms of speedup over previopéementations as well as the quality of
the orderings returned.

2.6 Stochastic Local Search

Stochastic local search (SLS) is a general, powerful pgradivhich can often find good solutions
quickly in the context of optimization problems. In contrasexhaustive search like AOBB, how-
ever, SLS is incomplete in the sense that it can never protimality. In our competition entry,
several rounds of SLS are thus used as a preprocessing stbfato a first solution quickly, which
is then also provided as an initial bound to BRAOBB.

In particular, we adapted open-source code by Frank Huté¢limplement&uided Local Search+
(GLS+) [9]. This particular variant of dynamic local sea@tmbines greedy hill-climbing with a
penalty mechanism for local optima, to make these configuraiess desirable going forward. Its
effectiveness for MPE problem has been demonstrated eraibyr[10].

2.7 Puttingit All Together

Our competition entry RooPT was comprised of a combination of all of the above components
Table 1 outlines the order in which they were executed, atagatheir runtime allocation for the
three different time limits that were evaluated.

3 Overview of Results

To compare performance of different solvers in the PASCAlaligimge, each solver was run on
a variety of problem instances by the organizers, the out@s recorded, and a scoring metric
computed. For the MPE track, the score is defined as theveletiprovement over a common
asynchronous belief propagation baseline and a “defaaltition (chosen to maximize only the



20 seconds 20 minutes 1 hour

| Category [ daoopt ficolofo| daoopt ficolofo| daoopt ficolofo
CSP -0.9123 -0.8669]| -0.8739 -0.7862[ -0.8442 -0.6958
Deep belief networks - - | -1.6286 -1.6342 | -5.0470 -5.1707
Grids -0.3403 -0.3210| -0.2437 -0.2241| -0.1721 -0.1590
Image alignment 0.0000 0.0000 -0.0006 -0.0006 -0.0006 -0.0006
Medical diagnosis -0.0028 -0.0046 | -0.0037 -0.0043 | -0.0041 -0.0043
Object detection -4.8201 -4.8287 | -4.8237 -4.8743 | -1.9368 -1.9628
Protein folding -0.0308 -0.0308 -0.1135 -0.1187 | -0.1146 -0.1183
Protein protein interaction - - 1 -0.1341 -0.1317| -0.1681 -0.1744
Relational 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Segmentation -0.0300 -0.0300 -0.0300 -0.0300 -0.0338 -0.0338
Overall -6.1364 -6.0819| -7.8519 -7.8041| -8.3214 -8.3196

Table 2: Final MPE results as reported on the PASCAL Chadlemgbsite [6]. Shown are, for each
of the three time limits, per-domain scores (averaged adnssances) and overall scores (sum over
all domains). Lower scores are better.

unary functions). More specifically, denote wiiti = z3,...,z? the solution of the solver in
questionz® = z% ... 2P andz¥ = 2% ... 2% the baseline belief propagation and default

solution, respectively, anfl(z) = — Zj log f;(x) the energyof a given solutionz. The score of
x* is then defined as follows:

E(z®) — min{E(2*), E(z¥)}
| min{ E(z"?), E(z4)}|

Score(x®) =

Table 2 lists the final competition results as published @ndfficial website [6]. We include our
solver DaooPT as well the runner-upicolofo, which interleaves variable neighborhood search and
exact search, limited to varying subspaces, with soft ansistency / constraint propagation [1, 7].

The results in Table 2 show that the final overall results vagiige close (in fact, in the final weeks
of the competition the scoreboard leaders changed seumied,tas solvers got tweaked and bugs
got ironed out). In particular, for the 1 hour category thiéedénce in overall score is only 0.0018.
In general we note that the results are somewhat balanctédbuth solvers having a slight edge in
certain problem classes. Noteworthy, however, is the lady@ntage that BOoPT seems to have
in the CSP domain. Looking at the per-instance results @3, this advantage seems to be due to
only a handful of instances whereaDoPTreturned a vastly better solution than Ficolofo.

More detailed analysis of the results, regarding the net&@l$P instances as well as other cases,
necessitates access to the actual input files. This is natvgdaible but has been announced for the
future by the competition organizers.

4 Summary

We have described ADopT, our submission to the 2011 PASCAL Probabilistic Infere@ballenge
that won all three categories of the MAP/MPE track. Its sasaghallenges the notion that “tradi-
tional”, complete search algorithms are of little pradtiedevance in today’s applications, compared
to dedicated approximate inference schemes. On the cgrtiaroutcome of the competition indi-
cates that powerful techniques from both ends of the spaatan be combined efficiently to yield
unrivaled performance.

Source Code. The C++ source code of BRAOBB is available under open-soGiek license at
http://github.com | otten/daoopt/ .
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