
Empirical Evaluation of AND/OR Multivalued
Decision Diagrams for Compilation and

Inference

William Lam and Rina Dechter

Donald Bren School of Information and Computer Sciences
University of California, Irvine, CA 92697, USA

{willmlam,dechter}@ics.uci.edu

Abstract. AND/OR Multi-valued Decision Diagrams (AOMDD) were
shown provide a more compact representation of discrete-domain real-
valued functions compared to other decision diagram variants [1]. We
show the performance of AOMDDs on compilation and inference tasks
in graphical models. We introduce the elimination operator to AOMDDs,
which in conjunction with the combination operator introduced in previ-
ous work, yields a full bucket elimination (BE) scheme using AOMDDs
as an alternative function representation to tables. For compilation, we
show that we can achieve a more compact AOMDD compared to previ-
ous work. For inference, we show that we are able to solve instances that
do not fit in main memory when using tables.

Keywords: graphical models, compilation, counting queries, determin-
ism, context-specific independence

1 Introduction

AND/OR Multi-valued Decision Diagrams (AOMDDs) combine the two frame-
works of AND/OR search spaces and Multi-valued Decision Diagrams (MDDs)
to create a framework that compactly represents discrete-domain functions such
as those in discrete graphical models [1]. The AND/OR search space is a more
compact search space for search-based inference algorithms in graphical models
compared to OR search spaces. For problems with decomposition into subprob-
lems, the AND/OR search space captures this. Decision diagrams are generally
used to represent functions compactly. [2]

The key algorithm for combining AOMDDs, apply, first introduced in [3] was
never implemented before. We show empirical results of the bottom-up compi-
lation scheme introduced in that work. Our work also extends upon previous
work by introducing the elimination operator to AOMDDs. With these two op-
erators in place (apply and elimination), this yields the full bucket elimination
scheme using AOMDDs as an alternative function representation to tables. We
provide the first empirical results demonstrating the algorithm and contrasting
its performance with the BE algorithm using tables.

2 W. Lam and R. Dechter

Similar work is presented in [4], where an algebraic decision diagram (ADD)
structure is considered. In [5], ADDs are extended with affine transformations
to capture additive and multiplicative structures in graphical models. However,
AND structure is still not exploited in these alternative decision diagram variants
and they are restricted to variables with binary domains.

2 Background

We start with presenting preliminaries by defining graphical models and counting
queries.

Definition 1 (graphical model) A graphical model is a tuple R = 〈X,D,F,⊗〉,
where X = {X1, ..., Xn} is a set of variables, D = {D1, ..., Dn} is the set of
the respective finite domains of the variables in X, F = {f1, ..., fr} is a set of
real-valued functions defined over a subset of variables Si ⊆ X, and ⊗ is a com-
bination operator (i.e.

∏
,
∑
,on) The graphical model represents a global function

computed by ⊗r
i=1fi

Definition 2 (counting query) For a CSP, the number of solutions is the
number of assignments which do not violate any constraints. For a weighted
CSP, the weighted solution count is the sum of the costs of all solutions such that
no constraint is violated (having a cost of 0). For graphical models representing
probability distributions, this is likelihood/ partition function computation.

For counting queries, the combination operator is
∏

. The task is then to find∑∏r
i=1 fi.

Definition 3 (induced width/treewidth) - An ordered graph is a pair (G, d),
where G is the primal graph and d = X(1), ..., X(n) is an ordering of the nodes,

where X(i) denotes the ith node in the ordering. The width of a node is the
number of neighbors that a node has that precedes it in the ordering. The induced
width of the ordered graph w∗(d) is the width maximum width among all nodes
after processing the nodes from last to first such that when a node is processed,
all of its preceding neighbors are connected. The induced width w∗ of a graph is
the minimal induced width over all possible orderings.

2.1 Bucket Elimination

It can be seen that computing the global function directly results in a function
with

∏n
i=1 |Di| entries, which is not feasible to compute with a large enough n.

Therefore we require a way to compute a query without resorting to computing
the global function, which is to separate the elimination operator into parts that
eliminate over single variables and push them into the combination operation.

To formalize this process, bucket elimination is the standard framework for
performing exact queries on a graphical model [6]. In BE, we construct a tree
structure which guides how messages are passed based on a variable ordering.

Evaluation of AOMDDs for Compilation and Inference 3

This data structure captures the process of separating the elimination opera-
tion. The largest message generated has a scope size of w(d), the induced width
with respect to ordering d. The result is an algorithm with a time and space
complexity of O(nkw∗(d)), where n is the number of variables, k is the maximum
domain size over all variables.

2.2 AND/OR Search

AND/OR search spaces allow us to use the underlying structure of the graphical
model to save on work over the standard search techniques. AND nodes represent
the decomposition of the problem into independent subproblems, not captured
by the standard OR search space. We first need to find a pseudo tree of the
primal graph to define the structure of the AND/OR search tree for a graphical
model.

Definition 4 (pseudo tree) A pseudo tree T of a graph is a rooted tree with
the same nodes and that each arc in the induced graph is a backarc in T .

Definition 5 (AND/OR search tree)
An AND/OR search tree uses the structure of a pseudo tree T . It contains: (1)
OR nodes that correspond to variables in the network labeled Xi and (2) AND
nodes labeled 〈Xi, xi〉, corresponding to the values Xi can take on. Finally, each
AND node has child OR nodes corresponding to the children of variable Xi in T .

Some subtrees may actually correspond to identical subproblems, so we can
merge them, yielding the context minimal AND/OR search graph. This captures
the fact that the assignment to variables along a path are sometimes irrelevant,
allowing us to take advantage of this to achieve as smaller search space.

2.3 Decision Diagrams

A decision diagram is a directed acyclic graph representing a function that ex-
ploits problem structure, creating a compact canonical representation. The main
work that led to its many variants is based upon the reduced ordered binary de-
cision diagram (OBDD)[2].

Definition 6 (binary decision diagram (BDD)) A BDD is a directed acyclic
graph representing a function f : BN ⇒ B. The graph has two terminal nodes
0 and 1 that represent the right-hand side of the mapping. Each internal node
then corresponds to one of the N boolean variables on the left-hand side of the
mapping each with two pointers to either other internal nodes or terminal nodes.

Much like search graphs, BDDs are subject to a variable ordering. We can
similarly merge isomorphic subgraphs for compactness. In addition we can re-
move redundant nodes, which are defined as nodes whose children are identical.

4 W. Lam and R. Dechter

Applying these two properties yields the reduced ordered binary decision dia-
gram (OBDD) [2].

Since OBDDs only represent functions of the form f : BN ⇒ B, there are
variants which extend to functions whose variables have arbitrary sized domains,
such as multi-valued decision diagrams (MDD) [7]. Additionally, there are also
variants which extend the output to real-values, such as algebraic decision dia-
grams (ADD) [8]. For the various extensions of decision diagrams, we can per-
form arbitrary binary operations between two diagrams via the apply operator,
detailed in [2] for OBDDs. The variants have similar algorithms for performing
apply adapted for its needs.

Weighted Decision Diagrams MDDs are sufficient for representing con-
straints in a CSP, as MDDs encode functions of the form f : XN ⇒ B which
encode set membership over the domain XN .

However, we are interested in more general classes of graphical models, such
as Markov networks, Bayesian networks, and weighted CSPs. To do this, decision
diagrams need to represent functions of the form f : XN ⇒ R.

A possible extension is to place weights on the arcs. The function’s value can
then be evaluated by taking the combination (product or sum, depending on the
problem) over the weights encountered on a path representing a full assignment.

With this extension, we must also consider if the weights are equal when
we wish to merge isomorphic subgraphs. This alone allows us rescale the any
weight and the weights on adjacent levels of the diagram accordingly and have
a decision diagram representing the same function. Therefore, to ensure canon-
icity, we normalize the weights of all arcs out of a node to 1, collecting all the
normalization factors at the root of the diagram [1].

2.4 AOMDD

By augmenting context-minimal AND/OR search graphs to remove redundant
nodes, we attain AOMDDs (or equivalently, augmenting weighted MDDs with
AND nodes.) The basic unit of an AOMDD is the meta-node:

Definition 7 (meta-node) A meta-node u in an AOMDD is either: (1) a ter-
minal node labeled with 0 or 1, or (2) a nonterminal node grouping an OR node
labeled with a variable X and its k AND children representing each assignment
to X. Each AND node stores a set of pointers to other meta-nodes which are
labeled with variables that are descendants of X in the pseudo-tree. Additionally,
the AND node stores a weight for weighted graphical models.

Rather than being subject to a variable ordering as in most decision diagram
variants, the structure of an AOMDD is subject to a pseudo tree. For a function
in any graphical model, the structure is guided by an embeddable pseudo tree.

Definition 8 (embeddable pseudo tree) A pseudo tree T1 is embeddable in a
pseudo tree T if the set of variables of T1 is a subset of the set of variables of T
and have the same ancestor-descendant relationships.

Evaluation of AOMDDs for Compilation and Inference 5

It is also important to know the embedded pseudo tree due to redundancy
reduction. For instance, if a variable is always redundant in the function, it will
not appear in the AOMDD structure. However, when performing an operation
to sum over that variable, it needs to be made clear that the variable exists in
the function that the AOMDD represents.

Fig. 1. Comparison of the table representation, AND/OR tree, and AOMDD. Unla-
beled AND nodes in the tree are assumed to have a weight of 1. Using the AND/OR
tree as a starting point, the last two C nodes are merged for isomorphism, which in
turn makes the last B node redundant and is therefore removed. The second C node is
redundant from the start and is removed.

There are two problem structural properties which AOMDDs mainly exploit.
The first is determinism, which shows up naturally in WCSPs as hard constraints
with a cost of 0 in the functions. The other property is context-specific indepen-
dence [9]. We provide an alternative definition here for functions rather than
conditional distributions.

Definition 9 (context-specific independence)
For any function f : X1 × ...×XN : R, context-specific independence exists in f
iff ∃ an assignment A to some subset of the domain such that f(A, ·) is constant
(· denotes the arguments to the unassigned variables).

This has similarities to the idea behind context-minimality, in that case we
require all assignments to some subset to satisfy the same condition. Essentially,
context-specific independence tells us that we can merge subgraphs at a finer
granularity. In an AOMDD structure, context-specific independence is captured
by the removal of redundant nodes. Figure 1 demonstrates the AOMDD data
structure on a small table.

It is easy to see that the number of nodes in an AOMDD is bounded by
the number of entries in the table. In the worst case, the diagram is a full tree
over the domains of the variables. Therefore, given k is the largest domain size
and N is the number of variables in the function, an AOMDD has

∑N
i=1 k

i−1

metanodes nodes in this case, giving us O(kN).

6 W. Lam and R. Dechter

3 Algorithms

In this work, we include the reduction rule by redundancy and use AOMDDs
as an alternative to a tabular representation of the functions and messages in
bucket elimination. To perform this, we require a method of applying the com-
bination operator to AOMDDs and the elimination operators. For AOMDDs, it
is presented here for the first time.

3.1 Apply

The main operation to perform the combination of two AOMDDs is the apply
operator. It is stated that the runtime of apply is quadratic in the size of the
input AOMDDs. We omit the full details of the algorithm for space issues and
refer the reader to previous work [1].

3.2 Elimination

In this section, we will introduce the elimination operator for AOMDDs and dis-
cuss the differences and restrictions of the operation when compared to decision
diagrams without AND decomposition.

In the case of AOMDDs, the AND/OR structure requires extra care to be
taken when performing any operation different from the one chosen for prob-
lem decomposition (multiplication by default). This is due to the fact that a
full assignment is represented by a subtree of the diagram rather than a path.
Therefore, this means that we cannot simply perform an apply with a different
operator arbitrarily; doing so may switch the order of operations.

This requires us to impose a restriction on the elimination operator such
that the variable being eliminated must the bottom-most node of the embedded
pseudo tree that has not already been eliminated. This guarantees that we do
not run into an AND decomposition structure when eliminating a variable. At
the same time, this also means that only the ancestor variables’ metanodes of
the eliminated variable will need to be changed.

From another viewpoint, since AOMDDs further compress a function repre-
sentation by taking advantage of decomposition in the pseudo tree, operations
on it are bound by the same rules as variable elimination. Namely, once we con-
sider a fixed variable ordering, eliminating a variable whose children are not yet
eliminated would induce edges in the induced graph between all of its neighbors.
For the AOMDD, this would suggest that any decomposition in the embed-
ded pseudo tree would need to be removed by converting to a chain structure.
However, doing so would make AOMDDs incompatible for operations with each
other as well not leveraging the computations made on decomposing the function
structure.

The pseudo code is given in Algorithm 1. A basic description of the algorithm
is as follows. From the embedded pseudo tree of the AOMDD, we create a
list of relevant variables by tracing a path from the leaf node representing the
elimination variable to the root of the tree. This creates a direct path from the

Evaluation of AOMDDs for Compilation and Inference 7

Algorithm 1 ELIMINATE(f, eV ar,⇓: elimination operator : (
∑
,max,min))

Input:
AOMDD f (with embedded pseudo tree T containing eV ar as a leaf)

Output:
AOMDD f ′ representing ⇓eV ar f (with embedded pseudo tree T ′)

1: if f = 0 or f = 1 then
2: Remove eV ar from T
3: if ⇓ =

∑
then

4: return |eV ar| ∗ f
5: else
6: return f
7: end if
8: end if
9: R← set of variables corresponding to nodes on the path from node eV ar to

the root of T
10: bfsOrder ← metanodes of AOMDD f in a BFS ordering corresponding to

variables in R
11: receivedWeight = ∅
12: for m ∈ reversed(bfsOrder) do
13: if var(m) = elimVar then
14: weight←⇓ (m.weights) // apply operator on AND node weights

15: scale each parent’s weight by weight
16: insert each parent into receivedWeight
17: change all references to m to terminal δ(weight! = 0)
18: else
19: if ⇓ =

∑
then

20: for child ∈ m.children do
21: if child /∈ receivedWeight then
22: continue
23: else if none of child.children ∈ R then
24: scale child.weight by |eV ar|
25: end if
26: end for
27: end if
28: if m is redundant then
29: weight← m.children[0].weight
30: scale each parent’s weight by weight of any AND node (identical)
31: change all references to m to terminal δ(weight! = 0)
32: else
33: Normalize m and scale each parent’s weight by the normalizer
34: end if
35: end if
36: end for

8 W. Lam and R. Dechter

root of the AOMDD down to the elimination variable without the need to explore
other branches of the AOMDD. We then create a reverse BFS ordering based on
list of relevant variables. If the node is an elimination variable, we eliminate the
node by performing the necessary operator and promote the weight to the parent.
Otherwise, we normalize the node and pass on the normalization constant to the
parent.

One caveat to note is that the metanode for a variable we are eliminating
may not be present in the decision diagram due to the reduction rules. This
is an issue when the elimination operator is summation. We must compensate
for any missed metanodes, which we can identify if we see an ancestor of the
elimination variable connected to a terminal metanode. Since nodes would be
missing only if it were redundant, we can simply multiply the weight of that
ancestor metanode by the domain size of the elimination variable. However, in
the process after eliminating a node, the intermediate structure looks identical
to that of when the input diagram does not have the node due to redundancy
reduction. Therefore, we keep track of which nodes already received a weight
from a child node to distinguish between these two. Lines 19-27 in the pseudocode
serve this purpose.

Fig. 2. Example of elimination on AOMDDs. The state of the AOMDD is shown
through the process.

Evaluation of AOMDDs for Compilation and Inference 9

We demonstrate the algorithm on a small example, shown in Figure 3.2. The
function tables above (a) the AOMDDs demonstrate the operation performed
in a standard representation. We are interested in summing out variable B. The
embedded pseudo tree (b) is used to determine the set of relevant variables,
which in this case is {A,B}.

We begin with the AOMDD shown at (1), which represents the same function
as the input table. Visiting the relevant nodes in a reverse BFS order, we visit
the metanode B first, eliminate it, and propagate its result up to the parent
AND node in metanode A, shown in (2). At (3), we are left with only metanode
A. Checking the 0 AND node, since it received a weight from something, we are
done with it. Checking the 1 AND node, since it has not received a weight, we
multiply it by the domain size of B, which is 2 in this case. The result is now
shown at (4). Finally, we normalize the AND node weights of metanode A and
propagate its normalization term up to the root, yielding the resulting AOMDD
in (5), which represents the same function as the output table.

In the cases of maximization and minimization, we do not encounter the same
problem since these operators choose one from the set of values, which has no
effect on functions where all the output values are identical. Conditioning can
also be considered a form of elimination and also does not suffer from the issues
that summation encounters for the same reasons.

3.3 Compilation

To compile a graphical model into an AOMDD, there are two methods. The
first, presented in [3] is similar to bucket elimination [10]. We use the scheduling
of bucket elimination, but do not eliminate variables as we work our way up the
tree structure.

Since AOMDDs are based on the more specific pseudo-tree (as opposed to a
variable ordering in MDDs), [3] also defines a new apply operator that combines
two AOMDDs provided their structure is based on pseudo trees that can be
embedded in some pseudo tree.

The second method performs an AND/OR search and the trace is used to
build the AOMDD [1] by also performing the necessary reductions to achieve
the canonical AOMDD.

The size of a AOMDD can be bounded by the induced width/treewidth of
the graph, yielding O(nkw∗(d)). In practice, the size is smaller since the bound
assumes the worst case where no problem structure can be exploited. For compi-
lation of AOMDDs we use a process identical to BE, except we do not eliminate
any variables in the process.

3.4 Inference

By eliminating variables in the BE compilation process, this yields a full BE
algorithm for inference using AOMDDs as a function representation (AOMDD-
BE). The complexity remains the same as standard BE, as in the worst case,

10 W. Lam and R. Dechter

the AOMDD has as many AND nodes as the number of entries in the table.
However, for some problem structures, the AOMDD size can be far smaller than
the table size.

4 Experiments

For all tables in this section, for each problem instance, we report number of
variables (n), induced width (w), height of the pseudo tree (h), maximum domain
size (k), time, and memory usage. The algorithms were implemented in C++
(64-bit) and the experiments were run on 2.6 GHz machines with 24GB of RAM.

4.1 Compilation

Previous work in [1] compiles AOMDDs by using the trace of an execution of
AND/OR search. However, in their implementation, the redundancy rule is not
applied in [1], so those AOMDDs are not as compact as possible. In this work,
we compile the AOMDDs via a bucket elimination schedule. We also apply the
redundancy rule by doing so on every metanode that is generated. This way,
memory is freed as soon as possible at the finest granularity when operating on
AOMDDs.

We evaluate the BE based compilation algorithm with redundancy reduc-
tion (BE-AOMDD+R) and the top-down compilation scheme which traces the
context minimal AO search, using boolean constraint propagation to detect de-
terminism (AOMDD-BCP).

We ran the both compilation algorithms on the ISCAS problems within the
UAI 2006 evaluation set and only BE-AOMDD+R on the protein side-chain
prediction networks.

time (s) Metanodes Memory Compiled
[BE-AOMDD+R] [BE-AOMDD+R] Usage AOMDD

name n w h k functions [AOMDD-BCP] CM OR [AOMDD-BCP] (MB) mem (MB)
BN 42 850 20 50 2 879 10 5623680 25841 405.21 8.12

36 95963
BN 43 850 21 50 2 881 73 22731586 148184 2132.53 46.37

647 629027
BN 45 850 21 56 2 875 17 15778481 122763 646.25 34.44

142 260917

Table 1. Compilation results on UAI 2006 benchmarks (ISCAS circuits). Note that
many instances are not shown here, which BE-AOMDD+R fails to compile due to
memory limitations.

UAI 2006 ISCAS networks. In table 1, the CM OR column and Metanodes
column show the differences between the size of the context minimal AO graph

Evaluation of AOMDDs for Compilation and Inference 11

and the AOMDD. Within the Metanode column of a particular instance, the
sizes of the AOMDDs generated by BE-AOMDD+R and AOMDD-BCP are
contrasted.

We can see that there are significant savings yielded from applying the re-
dundancy rule. However, there are many instances of the UAI 2006 set not
explicitly shown in the table for which BE-AOMDD fails to compile without
running out of memory which AOMDD-BCP is able to. One possible reason for
this is that AOMDD-BCP preprocesses the network for determinism and prunes
out branches of the search graph before they are generated. Our implementa-
tion of BE-AOMDD performs no preprocessing on the input problem. This can
be additionally attributed to the difference in a bottom-up vs. a top-down ap-
proach [11], where it is possible that for these particular problem instances and
variable orderings, determinism is encountered earlier by exploring top-down.
The actual AOMDD generated by AOMDD-BCP has some redundancy reduc-
tion due to pruning in the AO search graph. Given enough time and memory
resources, we expect BE-AOMDD to always yield a smaller compiled AOMDD
than AOMDD-BCP, due to stronger redundancy reduction which removes any
nodes whose corresponding variables’ assignments do not affect the value of any
extension of the assignment by descendant variables in the pseudo tree.

Max Compiled
Metanodes Memory AOMDD

name n w h k functions time (s) CM OR [BE-AOMDD+R] Usage (MB) memory (MB)
pdb1fna 75 6 18 81 218 136 1983522 56377 467.61 44.44
pdb1j8e 39 6 12 81 119 294 2714323 258198 950.33 238.32
pdb1pef 17 6 11 81 55 430 4123288 342367 4499.79 772.83
pdb1rb9 42 7 14 81 128 1127 13370233 1163424 3789.48 1751.98
pdb2igd 50 6 19 81 146 1295 33711674 451081 3396.36 1132.93

Table 2. Compilation results on protein networks using BE-AOMDD+R.

Protein networks. Table 2 shows the results. We look at the same quantities
as with the previous set of instances, but do not compare between the two
compilation algorithms.

We can observe that these problems have low treewidth, but high domain
sizes. The AOMDDs are able to capture the constantness of a function with
respect to different assignments to the function input domain. Although we did
not run AOMDD-BCP on these instances, but we speculate that due the large
number of values, those problems would run out of time.

4.2 Inference

The following evaluates the AOMDD-BE algorithm, which is the same as bucket
elimination, but uses AOMDDs to represent all functions. We ran experiments

12 W. Lam and R. Dechter

on the UAI 2006 evaluation problems, mastermind instances, and genetic linkage
analysis networks, available at http://graphmod.ics.uci.edu. In each table,
we compare the time and memory usages of standard BE vs. AOMDD-BE. Times
reported as “OOM” indicate that the algorithm exceeded our memory bound.
Results on memory usage are based on the usage of the cache storing nodes of
the AOMDDs. For instance where BE runs out of memory, we simulated the its
execution by only passing information about scope sizes to compute the memory
usage.

time (s) time (s) Mem (MB) Mem (MB)
problem n w h k [BE] [AOMDD-BE] [BE] [AOMDD-BE]
BN 22 2425 5 575 91 1 13 26.93 581.27
BN 24 1819 5 381 91 1 23 24.07 977.52
BN 28 24 5 9 10 1 13 1.79 568.36
BN 30 1156 48 179 2 OOM 38 1.50E+10 245.93
BN 32 1444 56 219 2 OOM 4384 4.45E+12 3006.08
BN 34 1444 55 220 2 OOM 145 2.30E+12 515.45
BN 36 1444 56 210 2 OOM 7792 3.51E+12 2629.44
BN 40 1444 55 235 2 OOM 91 1.82E+12 322.76
BN 42 880 23 54 2 21 2 314.04 21.62
BN 43 880 22 53 2 10 2 153.66 11.83
BN 46 499 22 49 2 18 <1 248.97 1.99
BN 49 661 44 59 2 OOM 1188 7.83E+08 2991.78
BN 51 661 44 61 2 OOM 3433 1.17E+09 2274.11
BN 53 561 48 95 2 OOM 4063 8.43E+09 3303.48
BN 61 667 44 61 2 OOM 17 9.46E+08 235.72
BN 65 440 61 95 2 OOM 1062 Overflow* 2843.65
BN 67 440 61 99 2 OOM 9893 Overflow* 1270.54
BN 78 54 13 24 2 <1 <1 0.51 29.82
BN 84 360 20 24 2 4 22 24.76 546.21
BN 86 422 22 40 2 26 73 179.44 1084.59
BN 92 422 22 33 2 26 23 187.43 433.65

Table 3. UAI 2006 benchmarks.(* The size in MB could not be stored within a double
precision number representation.)

UAI 2006 and Mastermind benchmarks. Results are presented in Tables 3
and 4. In columns 5 and 6, we see the runtimes for BE and AOMDD-BE, while
the last two columns show the the memory usages of BE and AOMDD-BE.

We see that our scheme is able to solve some problems which do not fit in
standard main memory. These problems have structures that AOMDDs exploit
well. Namely, the functions of these problems have many zero values that can be
represented easily by AOMDDs. In addition, AOMDDs are able to take advan-
tage of functions that have many values that are the same, but not necessarily
zero. Such functions are present in a number of the instances on which it outper-
forms BE based on memory usage. However, there must be a significant amount
of compression before we get any memory savings. Namely, as each node contains
information to capture the structure of the problem, it means that much more
memory is used when representing a function which has many different values.

Evaluation of AOMDDs for Compilation and Inference 13

time (s) time (s) Mem (MB Mem (MB)
name n w h k [BE] [AOMDD-BE] [BE] [AOMDD-BE]
03 08 03-0000 1220 18 53 2 4 5 48.23 154.45
03 08 03-0001 1220 18 54 2 4 4 53.63 105.21
03 08 03-0006 1220 18 41 2 2 2 44.38 41.70
03 08 03-0007 1220 18 52 2 2 1 46.40 21.64
03 08 04-0000 2288 29 79 2 OOM 643 49865.56 4187.84
03 08 04-0001 2288 28 76 2 OOM 293 39769.34 2610.66
03 08 05-0006 3692 37 101 2 OOM 6 24847465.64 39.04
03 08 05-0007 3692 37 80 2 OOM 9 25456599.73 120.19
04 08 03-0001 1418 22 58 2 46 54 638.49 907.49
04 08 03-0002 1418 22 55 2 41 33 621.16 786.86
04 08 03-0006 1418 22 59 2 46 11 621.98 270.47
04 08 03-0007 1418 22 52 2 36 2 617.11 47.70
04 08 04-0006 2616 35 88 2 OOM 17 4675522.59 371.95
04 08 04-0007 2616 35 93 2 OOM 17 3467438.50 349.37
05 08 03-0000 1616 26 57 2 690 1064 9092.90 5742.06
05 08 03-0001 1616 26 67 2 758 759 8853.24 3919.56
06 08 03-0006 1814 29 73 2 OOM 135 92849.60 1150.94
06 08 03-0007 1814 29 66 2 OOM 27 76976.00 588.10
06 08 03-0008 1814 29 64 2 OOM 24 85068.34 523.36
06 08 03-0010 1814 29 66 2 OOM 13 93097.25 253.99
10 08 03-0006 2606 43 92 2 OOM 654 2085939395.05 673.54

Table 4. Mastermind instances.

We generally see that for lower treewidth networks, standard BE is sufficient and
has better runtime, however, it is unable to solve problems with higher treewidth
simply due to lack of memory.

time (s) time (s) Mem (MB) Mem (MB)
name n w h k [BE] [AOMDD-BE] [BE] [AOMDD-BE]
pedigree1 334 15 61 4 2 14 23.61 210.09
pedigree9 1118 25 137 7 550 5301 7499.77 4030.34
pedigree18 1184 19 102 5 7 200 136.13 959.28
pedigree20 437 21 58 5 131 291 1393.90 1030.66
pedigree23 402 20 58 5 19 52 241.57 532.46
pedigree25 1289 23 86 5 146 1284 2037.69 2999.84
pedigree30 1289 20 102 5 13 307 220.63 1044.76
pedigree33 798 24 116 4 347 883 4277.26 1368.42
pedigree37 1032 20 62 5 OOM 3535 251109.68 7992.43
pedigree38 724 16 67 5 OOM 2201 172249.65 6253.16
pedigree39 1272 20 83 5 46 400 772.20 1555.68
pedigree44 811 24 79 4 516 3795 6153.63 4782.29

Table 5. Pedigree networks. Instances not shown here (7,13,19,31,34,40,41,42,50,51)
run out of memory with both algorithms.

Pedigree networks. We also ran experiments on genetic linkage analysis net-
works (known as pedigree), for which the partition function value of many of
them were not known before the work in [12], which makes use of hard disk to
push the memory restrictions of solving a problem.

14 W. Lam and R. Dechter

The results are shown in table 5. As with the previous set or problem in-
stances, timing results are shown in columns 5 and 6 while memory usage is
shown in columns 7 and 8.

Our results are less promising on these networks. There are only two instances
which AOMDD-BE manages to perform very well on, which standard BE would
require about 30 times the amount of memory. For the rest that AOMDD-BE
managed to solve, a large number of problems were solvable by standard BE with
a shorter amount of time and less memory. Even with those where AOMDD-BE
uses less memory, the runtime is often much worse, due to overhead in maintain-
ing the properties of a canonical AOMDD. We can attribute these results this
set of problems having overall less determinism and context-specific indepen-
dence. However, these results also demonstrate the use of decision diagrams on
non-binary networks for inference, when compared to related work using ADDs
[4, 13].

5 Conclusion

For many hard problems (such as the pedigree networks), the overhead of using
the minimal AOMDD structure for function representation actually results in
worse performance in terms of both time and space. On other problems, such
as the ISCAS networks in the UAI 2006 evaluation set and the mastermind
instances, our scheme shows good performance despite having high treewidth. We
demonstrated results reinforcing the potential of using AOMDDs for the classic
BE algorithm. Future work would include comparing with related techniques for
exploiting determinism and context-specific independence such as ACE [14].

Other related work includes using ADDs for approximate inference [13],
where the size of the diagram in bucket elimination is bounded by merging nodes
until the diagram is with in a specified bound, subject to minimizing a metric,
such as KL divergence between the function represented by the compacted dia-
gram and the original function. It would be interesting to apply similar schemes
to AOMDDs.

References

1. Mateescu, R., Dechter, R., Marinescu, R.: AND/OR multi-valued decision dia-
grams (AOMDDs) for graphical models. Journal of Artificial Intelligence Research
33(1) (2008) 465–519

2. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986)

3. Mateescu, R., Dechter, R.: Compiling constraint networks into AND/OR multi-
valued decision diagrams (AOMDDs). In: Principles and Practice of Constraint
Programming (CP 2006). (2006) 10.1007/11889205 25.

4. Chavira, M., Darwiche, A.: Compiling bayesian networks using variable elimina-
tion. In: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI-07). (2007) 2443–2449

Evaluation of AOMDDs for Compilation and Inference 15

5. Sanner, S., McAllester, D.: Affine algebraic decision diagrams (AADDs) and their
application to structured probabilistic inference. In: Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI-05). Volume 19.
(2005) 1384

6. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113(1) (1999) 41–85

7. Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: Multi-valued decision
diagrams: theory and applications. Multiple-Valued Logic 4(1) (1998) 9–62

8. Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi,
F.: Algebric decision diagrams and their applications. Formal methods in system
design 10(2) (1997) 171–206

9. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific inde-
pendence in bayesian networks. In: Proc. of the 12th International Conference on
Uncertainty in Artificial Intelligence (UAI-96). (1996) 115–123

10. Dechter, R.: Constraint processing. Morgan Kaufmann (2003)
11. Mateescu, R., Dechter, R.: The relationship between and/or search and variable

elimination. In: Proceedings of the Twenty First Conference on Uncertainty in
Artificial Intelligence (UAI05). (2005) 380–387

12. Kask, K., Dechter, R., Gelfand, A.: BEEM: Bucket elimination with external
memory. In: Proc. of the 26th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-10). (2010) 268–276

13. Gogate, V., Domingos, P.: Approximation by quantization. In: Proc. of the 27th
Annual Conference on Uncertainty in Artificial Intelligence (UAI-11). (2011) 247–
255

14. Chavira, M., Darwiche, A.: Compiling bayesian networks with local structure. In:
Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-05). Volume 19. (2005) 1306

