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Abstract

We investigate a hybrid of two styles of algorithms for deriving bounds for op-
timization tasks over graphical models: non-iterative message-passing schemes
exploiting variable duplication to reduce cluster sizes (e.g. MBE) and iterative
methods that re-parameterize the problem’s functions aiming to produce good
bounds even if functions are processed independently (e.g.MPLP). In this work
we combine both ideas, augmenting MBE with re-parameterization, which we call
MBE with Moment Matching (MBE-MM). The results of preliminary empirical
evaluations show the clear promise of the hybrid scheme overits individual com-
ponents (e.g., pure MBE and pure MPLP). Most significantly, we demonstrate the
potential of the new bounds in improving the power of mechanically generated
heuristics for branch and bound search.

1 Introduction

Graphical models are a popular framework that generalize many combinatorial optimization tasks.
In this paper we consider probabilistic graphical models (e.g., Bayesian and Markov networks) [1].
The task of finding the variable assignment maximizing the joint probability of the model is known
as the MAP (maximum aposteriori) or MPE (most probable explanation) problem, and is NP-hard.

Mini-Bucket Elimination (MBE) [2] is a popular bounding scheme, which provides an approxima-
tion by applying the exact Bucket Elimination (BE) algorithm [3] to a simplified version of the
problem obtained by adding duplicates of some variables. Ifin the MAP assignment of the relaxed
problem the duplicates have the same values then this assignment yields the exact solution to the
original problem.

The relaxation view of MBE is closely related to the family ofiterative approximation techniques
based on linear programming (LP) forms of max-product: the “reweighted” max-product algo-
rithm [4], max-product linear programming (MPLP) [5], softarc consistency [6, 7], etc. [8, 9].
These algorithms can be thought of as “re-parameterizing” or “cost shifting” the original functions,
i.e., jointly modifying them in such a way that the original distribution remains unchanged.

In this work we use these ideas to define a new scheme we call mini-buckets with moment match-
ing (MBE-MM). While we do not provide any theoretical guarantees of superiority, our empirical
comparison of MBE-MM with pure MBE on various benchmarks shows that MBE-MM achieves
better accuracy than pure MBE, while its time overhead is insignificant in most problems. We also
compare and contrast MBE-MM with the Max Product Linear Programming (MPLP) algorithm [5].
Our experiments demonstrate that for many benchmarks MPLP can be slow to converge and is less
practical than MBE-MM, which acquires its strength from relying on large clusters and can obtain
reasonably accurate bounds in one iteration.

Finally, one of the primary uses of MBE is in generating heuristics for best-first and branch and
bound search [10, 11]. These have been shown to be quite powerful, and were highly competi-
tive in recent competitions [12, 13]. We show here that the improved scheme of MBE-MM can
generate much more powerful heuristics and thus increase the power of Branch and Bound search
significantly.
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2 Preliminaries and Background on mini-bucket elimination

Consider a set of probability functionsF over variablesX defining a graphG = (X,E). Vertices are
the variables and an edge connects any two variables appearing in the scope of the same function.
TheMAP task is to find the assignment maximizing the joint probability: x∗ = argmaxX

∏

i fi.

A popular algorithm for solving MAP task isBucket elimination (BE) that places each function
in the bucketof its latest variable according to a certain orderingo = (X1, . . . , Xn). For each
BucketXi notedBi, from Bn to B1, we compute a messageλi = maxXi

∏n
j=1 λj , whereλj are

the functions in theBi, including earlier computed messages.λi is placed in the bucket of its latest
variable ino. The optimal assignment is recovered in the second, bottom-up phase, when a value is
assigned to each variable ino, consulting the functions created during the top-down phase. The time
and space complexity of BE are exponential in the graph parameter induced widthw.

Mini-bucket elimination (MBE) is an approximation scheme designed to avoid the spaceand time
complexity of BE. Consider a bucketBi and an integer bounding parameterz. MBE creates a
z-partitionQ = {Q1, . . . , Qp} of Bi, where each set of functionsQj ∈ Q, calledmini-bucket,
includes no more thanz variables. Then each mini-bucket is processed separately,just as in BE,
generating an upper bound on the exact optimizing solution.The time and space complexity of
MBE is exponential inz, which is typically chosen to be less thanw. In general, greater values ofz
increase the quality of the bound, untill whenz = w, MBE finds the exact solution.

3 Background on moment matching strategies

While MBE is usually justified as a relaxation of variable elimination, most iterative re-
parameterization approaches are described in terms of solving an LP relaxation of the original model.
Wainwright et al. [14, 4] established the connections between LP relaxations of integer programming
problems and (approximate) dynamic programming methods using message-passing in the max-
product algebra; subsequent improvements in algorithms such as MPLP include coordinate-descent
updates that ensure convergence [5, 9].

Without loss of generality MPLP assumes as input the MAP problem for functionsθij defined over
pairs of variables, where theθij = log fij are a log-transform of the original functionsF. The
objective is simply the sum of the local functions’ maxima, and upper bounds the true optimum:

max
X

∑

ij

θij(xi, xj) ≤
∑

ij

max
xi,xj

θij(xi, xj), (1)

and messagesλij are used to reparameterize the local functionsθ. For space reasons we do not show
the derivation of the MPLP, only provide the resulting algorithm in Figure 1. The algorithm iterates
updating all edges until convergence, it is guaranteed to improve the objective with each iteration.

Algorithm 1 Algorithm MPLP
Input: graphical model〈X, D,Θ,

∑

〉, whereθij is a potential for each edgeij ∈ E
Output: optimizing assignmentx∗

1: Initialize: ∀ij, ji ∈ E setλij(xj) = 1
2 maxxi

θij(xi, xj)

2: Iterate until convergence:
3: for all edgesij, ji ∈ E do
4: Update:

λji(xi) = − 1
2λ

−j
i (xi) +

1
2 maxxj

[λ−j
i (xi) + θij(xi, xj)]

whereλ−j
i (xi) =

∑

k 6=j λki(xi)

5: end for
6: Calculate node beliefs:bi(xi) =

∑

k λki(xi)

7: Return: the optimizing assignmentx∗
i = argmaxxi

b(xi)

4 Mini-bucket elimination with moment-matching

The source of inaccuracy in MBE is the independent processing of mini-buckets{Q1, . . . , Qp}
of Bi, which is equivalent to creating duplicates of variableXi: {Xi1 , . . . , Xip} and then exactly
processing the new buckets{Bi1 , . . . ,Bip}. Given the assignmentX∗ found by MBE algorithm, we
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Figure 1: Example

can show that if all optimizing values of the duplicates of each variable take the same value, then
the solution found by MBE is exact.

One idea for increasing the accuracy of the solution is to usemoment-matching, an idea closely
related to the notions of cost-shifting ([6], [15]). We use the simple example in Figure 1a to il-
lustrate the idea underlying moment matching. Applying MBE-MM with z = 2 along ordering
o = {X3, X2, X1} to the problem in Figure 1a results in partitioning of the functions into mini-
buckets as shown in Figure 1c. As in cost-shifting for soft arc-consistency [6] the function of bucket
B1 can be devided and muptiplied some non-negative functiong(x1) without changing the expres-
sion, yielding:

C1(x2, x3) = max
x1

f1(x1, x2) · f3(x1, x3) = max
x1

f1(x1, x2)g(x1) · f3(x1, x3)/g(x1) (2)

BucketB1 is split into two mini-buckets:B′1 andB′′2 , resulting in the problem graph of Figure 1b,
and we can write the upper bound on the function inBi Ĉ as:

C1(x2, x3) ≤ Ĉ1(x2, x3) = max
x′
1

f1(x
′
1, x2)g(x

′
1) · max

x′′
1

f3(x
′′
1 , x3)/g(x

′′
1 ) (3)

We would like for the optimal values of the two buckets to agree,x∗1 = x∗1
′ = x∗1

′′ , since if this
condition holds for the full MBE solution, it will be optimal. Although we have not yet seen the rest
of the functions (e.g.,f2(x2, x3)), if we assume these functions are uninformative we can enforce
agreement by selecting

g(x1) =
√

max
x3

f3(x1, x3) / max
x2

f1(x1, x2). (4)

The functionsmaxx2 f1(x1, x2) andmaxx3 f3(x1, x3) are calledmax-marginalsof the functions
f1, f3, and (4) ensures that these max-marginals agree in the new parameterization,f1 · g andf3/g.

The MBE relaxation in Figure 1b can be shown to be equivalent to a Lagrangian relaxation of the
original problem, and thus to the set of LP relaxations optimized by many variants of max-product
[8]. Moreover, when taken on the original graph our moment-matching updates are equivalent to a
particular schedule of fixed point updates in the LP dual formulation of the MAP problem. These
updates can be viewed as coordinate descent on the upper bound given by independent maximiza-
tion, (1); see for example [16]. However, since the influenceof later functions is not yet known when
the matching step is performed, the single-pass algorithm MBE-MM is not necessarily guaranteed
to improve on the original MBE bound.

The major difference between MBE and LP relaxations is thus primarily in the decisions of what
variable scopes will be used, and in the amount of iterative tightening performed. At one end, MBE
is non-iterative but typically uses functions over many variables, whose scopes are easily selected
using heuristics and thez-bound parameter. In contrast, LP relaxations typically work on the original
graph, performing many iterations to tighten the bound; extensions to these methods may tighten the
bound by incrementally increasing the function sizes slightly, using heuristics to determine which
scopes to include [16]. MBE-MM is thus a single-pass bound that uses the iterative viewpoint to
inform its heuristic decisions. The algorithm is presentedin Algorithm 2.
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Algorithm 2 Algorithm MBE-MM
Input: An optimization taskP = (X, D, F,

∏

,max); An ordering of variableso = {X1, . . . , Xn}; parameterz.
Output: bounds on the MAP cost and the corresponding assignment for the expanded set of variables (i.e., node duplication).
1: Initialize: Generate an ordered partition of functionsF = {f1, ..., fj} into bucketsB1, . . . , Bn, whereBi alongo.
2: Backward:
3: for i← n down to 1 (Processing bucketBi) do
4: Partition functions in bucketBi into {Qi1 , ...,Qip}, where eachQik

has no more thanz variables.

5: Find the set of variables common to all the mini-buckets:Si = Si1 ∩ · · · ∩ Sip , whereSik
= var(Qik

)

6: Find the function of each mini-bucketQik
: Fik

←
∏

f∈Qik
f

7: Find the max-marginals of each mini-bucketQik
: µik

= maxvar(Qik
)/Si

(Fik
)

8: Update functions of each mini-bucketQik
: Fik

← Fik
· k
√

µi1 · · · · · µip/µik

9: Generate messagesλik
= maxXi

Fik
and place each in the largest index variable invar(Qik

)

10: end for

11: Return: The set of all buckets, and the vector of m-best costs bounds in the first bucket.

5 Empirical results

In our empirical evaluation we investigate the impact of moment-matching and other cost-shifting
schemes (e.g. h-MBE [15]) on the mini-bucket algorithm. We also compare MBE-MM with MPLP.

We experimented with two sets of instances, containing selected pedigree (Figure 2) and Weighted
CSP instances (Figure 4) from the UAI 2008 evaluation [12]. We solve the MAP task for all the
instances. One factor that can influence the performance of MBE significantly is the way functions
are partitioned into the mini-buckets. The issue was extensively studied by Rollon and Dechter [17],
who introduced and evaluated a set of partitioning heuristics that we use in our experiments.

5.1 Impact of moment-matching on the accuracy of the bound

Figure 2 presents the upper bounds computed by MBE with and without moment-matching (denoted
MBE-MM and MBE) and by h-MBE on the pedigrees with z-bound=10. The first two schemes use
two partitioning heuristics: scope-based and content-based with l2 distance measure (see [15] for
details). The h-MBE uses scope-based partitioning. We see that both cost-shifting methods, h-MBE
and MBE-MM produce better bounds than the pure MBE with no moment-matching. The figure
also shows the corresponding runtimes (sec) of the MBE-MM and MBE. The runtime of the h-
MBE scheme is omitted due to drastic differences in implementation that renders speed comparison
meaningless.

5.2 The impact of iterations (MPLP)

As can be seen from [8] and [18], MBE-MM applied to original factors is equivalent to a single itera-
tion of MPLP. Algorithm MPLP improves on this approach by running multiple updates, decreasing
the bound with each iteration. The MBE-MM scheme, on the other hand, can influence accuracy by
combining factors into larger clusters. Both of these enhancement schemes increase their runtime.
In our experiments we explore which method trades time for accuracy more effectively.

Figure 3 illustrates the typical behavior of algorithms on selected pedigrees, presenting the depen-
dence of the upper bound on the log(MPE) on time for MPLP, compared against MBE-MM and
pure MBE. Since MBE algorithms are not iterative, the results do not change with the time. Note
that in these figures we plot the results for MBE-MM and MBE with z-bound=10. The cutoff for
the MPLP algorithms was 1500 iterations.

We can see that even though MPLP algorithm improves the boundwith more time, as theory sug-
gests, it can not achieve the same accuracy as MBE-MM with given z-bounds. It shows that the
orthogonal use of large cluster can yield far better accuracies even though MBE-MM is not iterative.

In Table 4 we see the upper bounds produced by MBE-MM with two content-based heuristics using
l2 and linf distance measures and z-bound=10 and MPLP ran for5, 500 and 1500 iterations for
select WCSP instances. We see that even for a large number of iterations MPLP does not achieve
the same accuracy as MBE-MM for more than half of these instances.

4



Instances n k w

MBE scope heuristic MBE l2 heuristic h-MBE
with MM no MM with MM no MM
log(MPE) log(MPE) log(MPE) log(MPE) log(MPE)
time(sec) time(sec) time(sec) time(sec)

pedigree1.uai 298 4 15
-104.3317 -103.8327 -104.3453 -104.0717 -104.801258

1.043 0.827 1.51 1.019

pedigree7.uai 867 4 28
-251.2962 -247.1016 -251.6741 -252.9009 -250.083186

3.13 2.273 3.973 3.396

pedigree9.uai 935 7 25
-269.8636 -263.5919 -269.1398 -264.0459 -269.68553

3.194 2.369 4.496 3.505

pedigree13.uai 888 3 30
-158.3137 -156.9928 -158.4953 -157.7176 -104.801258

3.039 2.139 4.05 3.283

pedigree19.uai 693 5 21
-203.5111 -197.8175 -202.6335 -199.2458 -200.366564

3.72 2.367 5.602 3.808

pedigree20.uai 387 4 20
-118.3357 -114.7234 -117.7419 -116.0857 -116.049293

1.403 0.957 2.019 1.652

pedigree23.uai 309 5 21
-140.7592 -138.9552 -141.6805 -139.0275 -142.253279

1.583 0.948 2.803 1.562

pedigree31.uai 1006 5 29
-290.5953 -283.8814 -289.9581 -286.074 -289.030586

3.733 3.075 4.755 3.611

pedigree37.uai 726 5 20
-323.97 -316.8191 -324.8728 -318.3267 -320.589194
3.007 2.114 5.227 4.281

pedigree38.uai 581 5 16
-193.9027 -190.9309 -196.6335 -195.4372 -196.125622

5.59 2.549 13.594 7.512

pedigree39.uai 953 5 20
-348.4941 -340.3035 -349.1526 -340.6459 -343.058959

4.003 2.681 5.458 4.219

pedigree41.uai 885 5 29
-265.3413 -253.4084 -265.9065 -265.1594 -265.642738

4.136 2.916 5.607 4.13

pedigree50.uai 478 6 16
-141.221 -139.7527 -141.4497 -140.0774 -141.511359
19.945 6.607 28.057 20.161

pedigree51.uai 871 5 33
-236.7164 -222.4415 -235.9544 -229.6678 -236.635487

3.682 2.579 5.568 3.969

Figure 2: Upper bounds and runtime (sec) for pedigree instances computed by MBE with and
without moment matching (MM), using scope-based and l2-distance partitioning heuristics with
z-bound=10. For each instance we report number of variablesn, largest domain sizek and the in-
duced width along the ordering usedw. We also report the bound found by h-MBE. The runtimes
of the h-MBE are not included due to the difference in implementation.
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Figure 3: Upper bounds on log(MPE) as a function of time for selected pedigrees. We plot MPLP
ran on the original factors, MBE and MBE-MM with z-Bound=10 and partitioning heuristics with
distance measures l1 and linf. MBE and MBE-MM are not iterative, so their result doesn’t change
with time. MPLP ran for 1500 iterations. NB: for pedigree39 the results for l1 and linf overlap.

5.3 MBE-MM and MPLP as search guiding heuristic

One of the most popular applications of bounding schemes is generating heuristics for informed
search algorithms. We tested pure MBE, MBE-MM and MPLP algorithms as heuristic genera-
tors for the well-known AND/OR Branch and Bound algorithm [19] on pedigree, grid, WCSP and
mastermind instances for various z-bounds. We used scope-based partitioning for both MBE and
MBE-MM. Figure 7 shows the anytime results for the AOBB with different heuristic generators.
For each time cutoff we report the number of instances for which algorithm obtained any solution,
the number of instances, for which an exact solution was found, but not yet proved to be optimal,
and a number of instances for which the optimality of solution was proved. For each time interval
we show the results in bold only when all 3 numbers are higher than for the competing schemes.
Figures 5 and 6 show the runtimes in second and the number of nodes expanded by the AOBB
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Instance n k w
MBE-MM MPLP

l2 linf 5 iter 500 iter 1500 iter
1502.uai 209 4 6 -2.8954 -2.8954 -2.6753 -2.6886 -2.6886
29.uai 82 4 14 -3.6906 -3.6888 -3.2006 -3.2259 -3.2259
404.uai 100 4 19 -5.2229 -5.0545 -3.5222 -3.7092 -3.7432
408.uai 200 4 35 -3.1147 -3.1177 -3.6974 -3.9934 -4.0735
42.uai 190 4 26 -3.1872 -3.0472 -2.1092 -2.3906 -2.5227
503.uai 143 4 9 -3.1872 -3.1872 -2.9683 -3.2905 -3.4497
505.uai 240 4 22 -1.1207 -2.1888 -2.7076 -3.0725 -3.2433
54.uai 67 4 11 -3.0701 -2.9848 -1.8466 -2.0719 -2.0812

Figure 4: The upper bounds on the log(MPE) for the select WCSPinstances by MBE-MM with two
content-based heuristics using l2 and linf distance measures with z-bound=10 and MPLP ran for 5,
500 and 1500 iterations. For each instance we report the number of variablesn, the largest domain
sizek and the induced width along the ordering usedw. The best bounds are shown in bold.

with MBE, MBE-MM and MPLP heuristic generators for selectedpedigree and grids instances for
various z-bound.

We can see that neither of the bounding schemes generates heuristic information that would allow
the search to produce consistently better results. The search algorithm that uses MBE-MM in most
cases produce better results than the one that uses pure MBE.Notable exception is the set of WCSP
instances, where algorithm with MBE heuristic consistently performs the best. MPLP and MBE-
MM take turns in producing better results, depending on the time cut-off, cluster sizes and instance
set.

Instances
AOBB-MBE(z) AOBB-MBE(z) AOBB-MBE(z) AOBB-MBE(z)

AOBB-MBE-MM(z) AOBB-MBE-MM(z) AOBB-MBE-MM(z) AOBB-MBE-MM(z)
AOBB-MPLP(z) AOBB-MPLP(z) AOBB-MPLP(z) AOBB-MPLP(z)

(n,k,w,h) z-bound=4 z-bound=6 z-bound=8 z-bound=10
pedigree7 — — — —

867,4,32,90 — 46261 / 6414458757 5993 / 929988636 1987 / 303782644
— 54000 / 8115757656 13211 / 1967808000 4975 / 728673440

pedigree13 — — — —
888,3,32,102 — — — 57583 / 8816940735

— — — 70328 / 10533681283
pedigree20 4460 / 838691448 167 / 35218516 137 / 30109086 44 / 6894997
387,5,22,60 10805 / 1882064728 378 / 73141782 112 / 24006114 25 / 5353765

11203 / 1880718191 582 / 105186811 262 / 48856344 87 / 15256293
pedigree9 — — — 46434 / 7509543280

935,7,27,100 — — 7086 / 1209510942 1206 / 207241642
— — 9397 / 1366185532 2161 / 315235125

pedigree50 25440 / 4483574892 39 / 7903081 16 / 3817267 6 / 616641
478,6,17,47 — 47 / 9373215 11 / 2066749 17 / 99160

— 12146 / 1862620741 886 / 127499702 46 / 4451969
pedigree23 45 / 8621377 22 / 4525816 13 / 2204965 4 / 669332
309,5,25,51 31 / 5539840 3 / 737573 2 / 301362 0 / 46830

89 / 15065580 20 / 3472051 24 / 4133711 9 / 1606108
pedigree37 298 / 48846178 33 / 7774713 13 / 2996251 6 / 1594382
726,5,21,56 174 / 19065653 8 / 2012510 0 / 214882 1 / 36185

145 / 16043993 6 / 1416885 1 / 166267 0 / 30353
pedigree33 24142 / 3699778889 201 / 28902650 177 / 29051952 89 / 20884397
581,4,28,98 1958 / 287752998 260 / 36529410 7 / 1125722 5 / 992393

2076 / 312108999 287 / 40331678 8 / 1405533 8 / 1448901
pedigree30 13198 / 2320333183 1690 / 298201914 246 / 43567736 109 / 19246868

1015,5,21,108 — 442 / 65590061 36 / 5423758 21 / 3007912
— 508 / 71466803 99 / 14000719 34 / 4760013

pedigree39 30724 / 4849893762 2871 / 493752913 732 / 127985658 136 / 23482266
953,5,21,76 8315 / 1262698139 294 / 51962281 29 / 5224288 15 / 2745544

9100 / 1271875710 377 / 61178785 26 / 4188690 17 / 2776079
pedigree25 — 1303 / 212051451 145 / 25395001 58 / 9218653
993,5,25,69 13321 / 1779583093 36 / 5190620 4 / 559510 0 / 66674

4670 / 597669088 48 / 6456274 3 / 474334 1 / 161821
pedigree1 0 / 74793 0 / 143562 1 / 64978 0 / 3754

298,4,15,48 0 / 135762 0 / 14223 0 / 3833 1 / 1901
42 / 6435018 11 / 1988109 7 / 1142934 4 / 744348

Figure 5: Runtime (sec) / number of nodes expanded for pedigree instances by AOBB with MBE,
MBE-MM or MPLP as a heuristic generator. For each instance wereport number of variablesn,
largest domain sizek and the induced width along the ordering usedw.
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Instances
AOBB-MBE(z) AOBB-MBE(z) AOBB-MBE(z) AOBB-MBE(z)

AOBB-MBE-MM(z) AOBB-MBE-MM(z) AOBB-MBE-MM(z) AOBB-MBE-MM(z)
AOBB-MPLP(z) AOBB-MPLP(z) AOBB-MPLP(z) AOBB-MPLP(z)

(n,k,w,h) z-bound=3 z-bound=5 z-bound=10 z-bound=15
50-16-5 14047 / 3174893721 6759 / 1495170158 97 / 28789854 3 / 1188559

256,2,21,79 11918 / 2442554277 257 / 62304128 1 / 173174 0 / 20391
7243 / 1600369401 209 / 51010597 1 / 295211 1 / 86023

50-20-5 — — 3589 / 953505413 385 / 106703929
400,2,27,97 — 28985 / 6530721824 11 / 3125798 1 / 178389

— 6529 / 1477984347 26 / 6981464 6 / 1547636
75-16-5 2457 / 566137206 245 / 55464972 7 / 2065927 0 / 190759

256,2,21,73 511 / 111054314 32 / 8455201 0 / 56708 0 / 8749
516 / 104399258 37 / 9886997 1 / 86972 0 / 13694

75-20-5 — — 1912 / 422432794 7 / 1686365
400,2,27,99 — 25258 / 4544121013 6 / 1693491 1 / 11539

47557 / 10078495991 8458 / 1518974618 13 / 3330988 1 / 14719
90-20-5 7281 / 1611969572 1199 / 291338041 14 / 3765984 0 / 85134

400,2,27,99 5575 / 1206417015 585 / 136441594 1 / 103457 0 / 2461
3162 / 685514805 389 / 83159717 0 / 122851 0 / 4520

90-21-5 7722 / 1561888432 1585 / 323191066 15 / 4004517 1 / 373433
441,2,28,106 9064 / 1885446239 861 / 182302009 0 / 111099 0 / 6381

4709 / 919156950 593 / 128038384 1 / 146184 0 / 7314
90-22-5 27283 / 4804835455 2327 / 454068262 50 / 11323811 3 / 823393

484,2,30,109 17130 / 3159832586 1172 / 219854528 6 / 1402416 0 / 9998
10279 / 1903308709 604 / 112967966 1 / 187789 1 / 8715

90-26-5 — 36469 / 6252167622 386 / 79457203 52 / 12386883
676,2,36,136 70798 / 11832076161 7077 / 1267186678 21 / 4464564 2 / 231824

58797 / 10041886801 4000 / 724913557 16 / 3445275 2 / 240945

Figure 6: Runtime (sec) / number of nodes expanded for grid instances by AOBB with MBE, MBE-
MM or MPLP as a heuristic generator. For each instance we report number of variablesn, largest
domain sizek and the induced width along the ordering usedw.

Instances z-bound Heuristic 1 sec 5 sec 10 sec 1 min 5 min 1 h 24 h

pedigrees

10
MBE 17:2:1 20:7:2 21:8:4 21:11:8 21:12:10 22:14:11 22:17:14

MBE-MM 21:10:4 21:12:6 22:13:6 22:13:11 22:15:12 22:15:14 22:19:18
MPLP 17:7:2 20:7:4 20:9:6 22:13:9 22:14:10 22:16:12 22:18:18

8
MBE 15:2:1 16:3:1 16:5:1 19:7:4 20:9:9 20:13:11 22:16:14

MBE-MM 18:4:2 20:7:4 20:7:5 21:12:9 21:13:11 21:14:12 21:18:16
MPLP 15:5:1 17:6:2 19:6:4 22:10:7 22:11:9 22:16:10 22:19:17

6
MBE 10:2:1 14:3:1 16:3:1 17:6:4 17:8:6 20:11:11 21:14:11

MBE-MM 14:3:1 17:3:2 19:4:3 21:6:6 21:10:8 21:13:11 21:17:13
MPLP 13:3:0 16:4:0 19:4:1 20:7:5 21:9:6 22:11:9 22:16:13

4
MBE 7:1:0 10:1:0 11:1:0 14:1:1 15:2:1 18:6:4 19:8:7

MBE-MM 9:2:1 11:2:1 11:2:1 14:2:2 16:4:4 18:7:5 19:10:9
MPLP 9:1:0 10:1:0 12:1:0 17:3:1 20:4:4 21:8:5 21:11:8

grids

15
MBE 21:9:9 23:17:12 24:17:14 26:21:18 27:21:20 27:22:24 27:24:27

MBE-MM 27:22:21 28:22:24 28:23:24 29:24:25 29:25:27 29:25:28 29:26:29
MPLP 26:20:16 28:21:22 28:21:24 28:22:25 28:22:25 28:23:27 29:25:29

10
MBE 15:3:3 18:7:3 19:8:7 21:12:10 21:15:12 24:20:18 24:22:24

MBE-MM 22:12:11 23:17:11 23:19:17 24:20:20 25:21:23 26:23:25 27:24:27
MPLP 22:12:11 23:16:12 23:17:14 24:20:19 25:21:23 26:23:25 27:24:27

5
MBE 8:1:1 9:4:1 9:4:1 9:6:3 10:7:5 14:12:11 15:15:15

MBE-MM 10:2:1 11:3:1 12:3:2 14:7:4 18:8:7 18:14:11 19:19:19
MPLP 9:2:1 11:3:1 11:3:2 15:7:5 18:9:8 19:14:11 20:20:20

3
MBE 3:0:0 7:1:0 7:1:1 8:1:1 9:3:2 10:8:5 11:11:11

MBE-MM 7:1:1 8:1:1 8:1:1 9:3:3 9:5:4 12:8:6 13:13:13
MPLP 7:3:1 9:3:1 9:3:1 10:5:3 11:8:4 14:10:8 15:15:15

mastermind

15
MBE 128:128:56 128:128:61 128:128:72 128:128:88 128:128:107 128:128:128 128:128:128

MBE-MM 128:128:33 128:128:38 128:128:42 128:128:73 128:128:96 128:128:120 128:128:128
MPLP 96:96:1 116:116:16 124:124:18 125:125:35 126:126:56 126:126:94 126:126:126

10
MBE 126:126:19 128:128:25 128:128:37 128:128:61 128:128:90 128:128:113 128:128:128

MBE-MM 128:128:27 128:128:34 128:128:42 128:128:60 128:128:88 128:128:119 128:128:128
MPLP 92:92:0 103:103:16 116:116:17 128:128:33 128:128:59 128:128:93 128:128:112

5
MBE 102:102:46 105:105:54 105:105:60 105:105:75 105:105:88 105:105:98 105:105:105

MBE-MM 92:92:19 103:103:22 105:105:25 105:105:45 105:105:67 105:105:79 105:105:105
MPLP 58:58:0 73:73:9 82:82:16 97:97:26 105:105:44 105:105:56 105:105:81

3
MBE 94:94:27 100:100:37 105:105:51 105:105:68 105:105:75 105:105:93 105:105:104

MBE-MM 65:65:0 75:75:15 88:88:16 104:104:17 105:105:22 105:105:61 105:105:79
MPLP 53:53:0 59:59:1 68:68:13 78:78:16 90:90:17 105:105:38 105:105:73

WCSP 5
MBE 6:6:4 6:6:4 6:6:5 6:6:6 6:6:6 6:6:6 6:6:6

MBE-MM 5:5:4 5:5:4 5:5:5 5:5:5 5:5:5 5:5:5 5:5:5
MPLP 5:5:4 5:5:4 5:5:5 5:5:5 5:5:5 5:5:5 5:5:5

Figure 7: Anytime results for the AOBB with different heuristic for pedigree, grid, mastermind and
WCSP instances for various z-bound. For each time cutoff we report the 3 numbers: the number of
instances for which algorithm obtained any solution, the exact solution or for which the optimality
of solution was proved. For example, the expression ”20:7:2” in the first row of the 3rd column
means that in 5 seconds, MBE with z-bound=10 found any solutions (possibly suboptimal) for 20
instances, found exact solution for 7 out of them and proved the optimality of the solution for 2.
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6 Conclusion

We presented Mini-bucket elimination with moment-matching, a new bounding scheme for op-
timization tasks in graphical model. We discussed the connection between moment-matching in
MBE-MM and methods used in the previously developed algorithms: a) shifting costs procedure,
used, for example, in horizontal MBE [15], Max-sum diffusion [20] or Soft arc-consistency algo-
rithm [6]; b) update in the MPLP, which is derived as a step in the block coordinate descent in
the dual of the LP relaxation of the original problem. We demonstrated empirically that moment-
matching improves MBE performance across all instances andfor any partitioning heuristic (we
only showed two schemes here for lack of space, but our results were consistently better). We also
demonstrated that in many cases MBE-MM can find a more accurate bound than MPLP faster, even
for small z-bounds, and has a performance comparable with horizontal-MBE presented earlier by
[15]. The most impressive aspect is the ability to improve search algorithm with heuristic function
that do not require more computational power (i.e., when z isfixed). Future work includes devel-
oping of a hybrid scheme that would use the output of MBE-MM asa starting point for the MPLP
algorithm this extending MPLP to be executed over the mini-bucket clusters.
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