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Abstract

We investigate a hybrid of two styles of algorithms for dergybounds for op-
timization tasks over graphical models: non-iterative sagg-passing schemes
exploiting variable duplication to reduce cluster sizeg.(eMBE) and iterative
methods that re-parameterize the problem’s functionsrajnd produce good
bounds even if functions are processed independently K&R1.P). In this work
we combine both ideas, augmenting MBE with re-parametiéoizavhich we call
MBE with Moment Matching (MBE-MM). The results of preliminaempirical
evaluations show the clear promise of the hybrid schemeits/grdividual com-
ponents (e.g., pure MBE and pure MPLP). Most significantlydemonstrate the
potential of the new bounds in improving the power of mecbalhi generated
heuristics for branch and bound search.

1 Introduction

Graphical models are a popular framework that generalizeyrnambinatorial optimization tasks.
In this paper we consider probabilistic graphical modelg.(8ayesian and Markov networks) [1].
The task of finding the variable assignment maximizing ttiet jorobability of the model is known
as the MAP (maximum aposteriori) or MPE (most probable exgtian) problem, and is NP-hard.

Mini-Bucket Elimination (MBE) [2] is a popular bounding seime, which provides an approxima-
tion by applying the exact Bucket Elimination (BE) algonith3] to a simplified version of the
problem obtained by adding duplicates of some variablgs. tie MAP assignment of the relaxed
problem the duplicates have the same values then this assigryields the exact solution to the
original problem.

The relaxation view of MBE is closely related to the familyitgrative approximation techniques
based on linear programming (LP) forms of max-product: tfewtighted” max-product algo-
rithm [4], max-product linear programming (MPLP) [5], s@ftc consistency [6, 7], etc. [8, 9].
These algorithms can be thought of as “re-parameterizint¢ast shifting” the original functions,
i.e., jointly modifying them in such a way that the origin&tdibution remains unchanged.

In this work we use these ideas to define a new scheme we catbotkets with moment match-
ing (MBE-MM). While we do not provide any theoretical guaraes of superiority, our empirical
comparison of MBE-MM with pure MBE on various benchmarkswhdhat MBE-MM achieves
better accuracy than pure MBE, while its time overhead igmfcant in most problems. We also
compare and contrast MBE-MM with the Max Product Linear Paogming (MPLP) algorithm [5].
Our experiments demonstrate that for many benchmarks MEhme slow to converge and is less
practical than MBE-MM, which acquires its strength fromyiefy on large clusters and can obtain
reasonably accurate bounds in one iteration.

Finally, one of the primary uses of MBE is in generating hstics for best-first and branch and
bound search [10, 11]. These have been shown to be quite fubweend were highly competi-
tive in recent competitions [12, 13]. We show here that thpromed scheme of MBE-MM can
generate much more powerful heuristics and thus increaspdiver of Branch and Bound search
significantly.



2 Preliminaries and Background on mini-bucket elimination

Consider a set of probability functioffsover variableX defining a grapli = (X, E). Vertices are
the variables and an edge connects any two variables apgéarihe scope of the same function.
TheMAP task is to find the assignment maximizing the joint probapili* = argmazx]]; f;.

A popular algorithm for solving MAP task iBucket elimination (BE) that places each function
in the bucketof its latest variable according to a certain ordering= (X,...,X,,). For each
Bucketx, notedB;, from B,, to B;, we compute a message = maxx;, H;‘:l Aj, where); are
the functions in thé3,, including earlier computed messaggsis placed in the bucket of its latest
variable ino. The optimal assignment is recovered in the second, botipphase, when a value is
assigned to each variableanconsulting the functions created during the top-down ph@ike time
and space complexity of BE are exponential in the graph petemnmduced widtho.

Mini-bucket elimination (MBE) is an approximation scheme designed to avoid the spadd¢ime
complexity of BE. Consider a buck&; and an integer bounding parameter MBE creates a
z-partition @ = {Q1,...,Q,} of B;, where each set of function@; € @, calledmini-bucket
includes no more than variables. Then each mini-bucket is processed separistyas in BE,
generating an upper bound on the exact optimizing solutibime time and space complexity of
MBE is exponential ire, which is typically chosen to be less than In general, greater values of
increase the quality of the bound, untill wher= w, MBE finds the exact solution.

3 Background on moment matching strategies

While MBE is usually justified as a relaxation of variable nalation, most iterative re-
parameterization approaches are described in terms afig@wa LP relaxation of the original model.
Wainwright et al. [14, 4] established the connections betwieP relaxations of integer programming
problems and (approximate) dynamic programming methoulgusessage-passing in the max-
product algebra; subsequent improvements in algorithrets a8 MPLP include coordinate-descent
updates that ensure convergence [5, 9].

Without loss of generality MPLP assumes as input the MAP leraljor functions;; defined over
pairs of variables, where th#; = log f;; are a log-transform of the original functiof®s The
objective is simply the sum of the local functions’ maximagaipper bounds the true optimum:

m)gXZHij(xi,:vj) < Zg}gﬁ;@ij(xi,%), (1)
) ¥
and messages; are used to reparameterize the local functigrsor space reasons we do not show

the derivation of the MPLP, only provide the resulting aljon in Figure 1. The algorithm iterates
updating all edges until convergence, it is guaranteed pwarre the objective with each iteration.

Algorithm 1 Algorithm MPLP

Input: graphical mode(X, D, ©, >"), whered,; is a potential for each edgg € E
Output: optimizing assignment *

10 Initialize: Vig, ji € E seth;j(z;) = 3 max,, 0i;(z:, x;)

2: Iterate until convergence:

3: for all edgesij, ji € E do

4:  Update: _ )
Nji(@i) = =30, 7 (wi) + § maxe [\ (22) + 055 (2, 7))
whereX; 7 (z:) = 32, ., Aki(wi)

5: end for

6: Calculate node beliefds; (z;) = 32, Ari(w:)

7: Return: the optimizing assignment; = arg max,,; b(x;)

4 Mini-bucket elimination with moment-matching

The source of inaccuracy in MBE is the independent procgssirmini-buckets{Q1,...,Q,}
of B;, which is equivalent to creating duplicates of variallle {X;,,...,X;, } and then exactly
processing the new buckeB;, , .. ., B;, }. Given the assignmeit” found by MBE algorithm, we
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Figure 1: Example

can show that if all optimizing values of the duplicates offesariable take the same value, then
the solution found by MBE is exact.

One idea for increasing the accuracy of the solution is tormsement-matchingan idea closely
related to the notions of cost-shifting ([6], [15]). We uée tsimple example in Figure 1a to il-
lustrate the idea underlying moment matching. Applying MBI with z = 2 along ordering
o = {X3, X2, X1} to the problem in Figure 1a results in partitioning of thedtions into mini-
buckets as shown in Figure 1c. As in cost-shifting for soft@eonsistency [6] the function of bucket
B, can be devided and muptiplied some non-negative fungtien) without changing the expres-
sion, yielding:

Ci(z2,23) = ””g;llel(xhb) f3(z1,23) = T’ggﬂffl(xhxz)g(xl) fa(wi,@3)/g(z1)  (2)

BucketB,; is split into two mini-bucketsB) andB, resulting in the problem graph of Figure 1b,
and we can write the upper bound on the functioBjrC as:

Ci (w2, 3) < C1(72,23) = max f1 (1, 2)g(w1) - max fa (2], x3)/g(x7) ©)

Y

We would like for the optimal values of the two buckets to &gref = 27" = 27", since if this
condition holds for the full MBE solution, it will be optimaRAlthough we have not yet seen the rest
of the functions (e.g.f2(x2, x3)), if we assume these functions are uninformative we canreafo
agreement by selecting

g(z1) = \/12§Xf3($1,9€3)/ H;fixfl(ffl,fz)- 4)

The functionsmax,, f1(x1,x2) andmax,, f3(x1,x3) are calledmax-marginalf the functions
f1, f3, and (4) ensures that these max-marginals agree in the nawepterizationf; - g andfs/g.

The MBE relaxation in Figure 1b can be shown to be equivaleiat tagrangian relaxation of the
original problem, and thus to the set of LP relaxations ot by many variants of max-product
[8]. Moreover, when taken on the original graph our momeatahing updates are equivalent to a
particular schedule of fixed point updates in the LP dual idation of the MAP problem. These
updates can be viewed as coordinate descent on the uppet bivem by independent maximiza-
tion, (1); see for example [16]. However, since the influesidater functions is not yet known when
the matching step is performed, the single-pass algoritBENVM is not necessarily guaranteed
to improve on the original MBE bound.

The major difference between MBE and LP relaxations is thiragrily in the decisions of what
variable scopes will be used, and in the amount of iteraijleening performed. At one end, MBE
is non-iterative but typically uses functions over manyiafales, whose scopes are easily selected
using heuristics and thebound parameter. In contrast, LP relaxations typicallyknam the original
graph, performing many iterations to tighten the boundgesions to these methods may tighten the
bound by incrementally increasing the function sizes #ljglusing heuristics to determine which
scopes to include [16]. MBE-MM is thus a single-pass bourad tises the iterative viewpoint to
inform its heuristic decisions. The algorithm is presentedigorithm 2.



Algorithm 2 Algorithm MBE-MM

Input: An optimization task? = (X, D, F, [T, max); An ordering of variables = {X1, ..., X,, }; parametek.
Output: bounds on the MAP cost and the corresponding assignmeritdaxpanded set of variables (i.e., node duplication).
1: Initialize Generate an ordered partition of functidhs= { f1, ..., f; } into bucketsBy, . . ., B,,, whereB; alongo.
2: Backward:
3: for i +— n down to 1 (Processing buckBt) do
4. Partition functions in buckeB; into {Q; , ..., Qip }, where eacl®);, has no more than variables.
5: Find the set of variables common to all the mini-buckets:= S;; N --- N Sip, WhereST;k = var(Qik)
6: Find the function of each mini—buck@ik: Fik — HfEQik f
7. Find the max-marginals of each mini-buck@t, : u;, = MaToar(Q;, )/S; (Fiy)
8: Update functions of each mini—buckévxik: Fik — Fik . 16/;”1 Cee Hip /,uik
9: Generate messagas, = maxx, Fi, and place each in the largest index variablea'rr(Qik )
10: end for
11: Return: The set of all buckets, and the vector of m-best costs bounttiifirst bucket.

5 Empirical results

In our empirical evaluation we investigate the impact of neatamatching and other cost-shifting
schemes (e.g. h-MBE [15]) on the mini-bucket algorithm. \d® @ompare MBE-MM with MPLP.

We experimented with two sets of instances, containingctsdepedigree (Figure 2) and Weighted
CSP instances (Figure 4) from the UAI 2008 evaluation [12f s@lve the MAP task for all the
instances. One factor that can influence the performanceB# Bgnificantly is the way functions
are partitioned into the mini-buckets. The issue was extelysstudied by Rollon and Dechter [17],
who introduced and evaluated a set of partitioning hegggtiat we use in our experiments.

5.1 Impact of moment-matching on the accuracy of the bound

Figure 2 presents the upper bounds computed by MBE with atiebui moment-matching (denoted
MBE-MM and MBE) and by h-MBE on the pedigrees with z-bound=TRe first two schemes use
two partitioning heuristics: scope-based and conteneédbasth 12 distance measure (see [15] for
details). The h-MBE uses scope-based partitioning. Wetsgdobth cost-shifting methods, h-MBE
and MBE-MM produce better bounds than the pure MBE with no mietimatching. The figure
also shows the corresponding runtimes (sec) of the MBE-MM BIBE. The runtime of the h-
MBE scheme is omitted due to drastic differences in impleiaigon that renders speed comparison
meaningless.

5.2 Theimpact of iterations (MPLP)

As can be seen from [8] and [18], MBE-MM applied to originattiars is equivalent to a single itera-
tion of MPLP. Algorithm MPLP improves on this approach by ming multiple updates, decreasing
the bound with each iteration. The MBE-MM scheme, on therdtlaed, can influence accuracy by
combining factors into larger clusters. Both of these eckarent schemes increase their runtime.
In our experiments we explore which method trades time fouexy more effectively.

Figure 3 illustrates the typical behavior of algorithms efested pedigrees, presenting the depen-
dence of the upper bound on the log(MPE) on time for MPLP, cmeg against MBE-MM and
pure MBE. Since MBE algorithms are not iterative, the resdth not change with the time. Note
that in these figures we plot the results for MBE-MM and MBEhnitbound=10. The cutoff for
the MPLP algorithms was 1500 iterations.

We can see that even though MPLP algorithm improves the baithdnore time, as theory sug-
gests, it can not achieve the same accuracy as MBE-MM witangasbounds. It shows that the
orthogonal use of large cluster can yield far better acéesam/en though MBE-MM is not iterative.

In Table 4 we see the upper bounds produced by MBE-MM with terdent-based heuristics using
I2 and linf distance measures and z-bound=10 and MPLP raB,f600 and 1500 iterations for
select WCSP instances. We see that even for a large numbterations MPLP does not achieve
the same accuracy as MBE-MM for more than half of these i&tsn



MBE scope heuristic MBE I2 heuristic h-MBE
Instances n K w withMM noMMm withMM noMMm
log(MPE) log(MPE) log(MPE) log(MPE) log(MPE)
time(sec) time(sec) time(sec) time(sec)
edigreel.uai 208 4 15 -104.3317 | -103.8327 | -104.3453 | -104.0717 | -104.801258
pedigree.L 1.043 0.827 151 1.019
. . -251.2962 | -247.1016 | -251.6741 | -252.9009 | -250.083186
pedigree7.uai 867 4 28 313 2973 3973 3396
. R -269.8636 | -263.5919 | -269.1398 | -264.0459 -269.68553
pedigreeg.uai | 935 | 7 | 25 | T34, 2.369 4.496 3.505
. K -158.3137 | -156.9928 | -158.4953 | -157.7176 | -104.801258
pedigreel3.uai| 888 3 30 3.039 2139 4.05 3.083
. . -203.5111 | -197.8175 | -202.6335 | -199.2458 | -200.366564
pedigreel9.uai| 693 5 21 370 2367 5.602 3.808
. . -118.3357 | -114.7234 | -117.7419 | -116.0857 | -116.049293
pedigree20.uai| 387 4 20 1.403 0.957 2.019 1652
R K -140.7592 | -138.9552 | -141.6805 | -139.0275 | -142.253279
pedigree23.uai| 309 5 21 1.583 0.948 2.803 1562
. K -290.5953 | -283.8814 | -289.9581 -286.074 -289.030586
pedigree3l.uai| 1006 5 29 3.733 3.075 4.755 3611
. . -323.97 -316.8191 | -324.8728 | -318.3267 | -320.589194
pedigree37.uai| 726 5 20 3.007 2114 5297 2.081
. . -193.9027 | -190.9309 | -196.6335 | -195.4372 | -196.125622
pedigree38.uai| 581 5 16 5.59 2549 13.594 7512
K . -348.4941 | -340.3035 | -349.1526 | -340.6459 | -343.058959
pedigree39.uai| 953 5 20 4.003 2681 5.458 4219
. K -265.3413 | -253.4084 | -265.9065 | -265.1594 | -265.642738
pedigree4l.uai| 885 5 29 4136 2916 5.607 413
. K -141.221 -139.7527 | -141.4497 | -140.0774 | -141.511359
pedigreeSO.uai| 478 | 6 | 16 | g g45 6.607 28.057 20.161
. . -236.7164 | -222.4415 | -235.9544 | -229.6678 | -236.635487
pedigree51.uai| 871 5 33 3.682 2579 5568 3.069

Figure 2: Upper bounds and runtime (sec) for pedigree iosmmromputed by MBE with and
without moment matching (MM), using scope-based and I2adise partitioning heuristics with
z-bound=10. For each instance we report number of variahleggest domain sizé and the in-
duced width along the ordering used We also report the bound found by h-MBE. The runtimes
of the h-MBE are not included due to the difference in implatagon.

pedigree3?.uai log(MPE) as a function of time (sec), MPLP and MBE with i-Bound=10 pedigree39.uai log(MPE) as a function of time (sec), MPLP and MBE with i-Bound=10
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Figure 3: Upper bounds on log(MPE) as a function of time féected pedigrees. We plot MPLP
ran on the original factors, MBE and MBE-MM with z-Bound=18dapartitioning heuristics with
distance measures |11 and linf. MBE and MBE-MM are not itemtso their result doesn’t change
with time. MPLP ran for 1500 iterations. NB: for pedigreeB@ tesults for 11 and linf overlap.

5.3 MBE-MM and MPLP assearch guiding heuristic

One of the most popular applications of bounding schemesgn®mgting heuristics for informed
search algorithms. We tested pure MBE, MBE-MM and MPLP athgors as heuristic genera-
tors for the well-known AND/OR Branch and Bound algorithn®]bn pedigree, grid, WCSP and
mastermind instances for various z-bounds. We used scagedipartitioning for both MBE and
MBE-MM. Figure 7 shows the anytime results for the AOBB witiffetent heuristic generators.
For each time cutoff we report the number of instances foctvhilgorithm obtained any solution,
the number of instances, for which an exact solution wasdpbnt not yet proved to be optimal,
and a number of instances for which the optimality of soluticas proved. For each time interval
we show the results in bold only when all 3 numbers are highan for the competing schemes.
Figures 5 and 6 show the runtimes in second and the numberdesnexpanded by the AOBB



MBE-MM MPLP
Instance n k w 12 finf Siter 500 iter | 1500 iter
1502.uai | 209 4 6 -2.8954 -2.8954 -2.6753 -2.6886 -2.6886
29.uai 82 4 14 -3.6906 -3.6888 -3.2006 -3.2259 -3.2259
404.uai 100 4 19 -5.2229 -5.0545 -3.5222 -3.7092 -3.7432
408.uai 200 4 35 -3.1147 -3.1177 -3.6974 -3.9934 -4.0735
42.uai 190 4 26 -3.1872 -3.0472 -2.1092 -2.3906 -2.5227
503.uai 143 4 9 -3.1872 -3.1872 -2.9683 -3.2905 -3.4497
505.uai 240 4 22 -1.1207 -2.1888 -2.7076 -3.0725 -3.2433
54.uai 67 4 11 -3.0701 -2.9848 | -1.8466 | -2.0719 -2.0812

Figure 4: The upper bounds on the log(MPE) for the select Wi@Stances by MBE-MM with two
content-based heuristics using 12 and linf distance measwith z-bound=10 and MPLP ran for 5,
500 and 1500 iterations. For each instance we report the eudaflvariables:, the largest domain
sizek and the induced width along the ordering usedrhe best bounds are shown in bold.

with MBE, MBE-MM and MPLP heuristic generators for selecteztligree and grids instances for

various z-bound.

We can see that neither of the bounding schemes generatesticeénformation that would allow
the search to produce consistently better results. Thels@dgorithm that uses MBE-MM in most
cases produce better results than the one that uses pureMNéiihle exception is the set of WCSP
instances, where algorithm with MBE heuristic consistep#rforms the best. MPLP and MBE-
MM take turns in producing better results, depending onithe tut-off, cluster sizes and instance

set.

AOBB-MBE(z) AOBB-MBE(z) AOBB-MBE(z) AOBB-MBE(z)
Instances AOBB-MBE-MM(z) AOBB-MBE-MM(z) AOBB-MBE-MM(z) AOBB-MBE-MM(z)
AOBB-MPLP(z) AOBB-MPLP(z) AOBB-MPLP(z) AOBB-MPLP(z)
(n,k,w,h) z-bound=4 z-bound=6 z-bound=8 z-bound=10
pedigree? — — — —
867,4,32,90 — 46261 /6414458757 5993 /929988636 1987 /303782644
— 54000 /8115757656 13211/1967808000| 4975/ 728673440
pedigree13 — — — —
888,3,32,102 — — — 57583 /8816940735
— — — 70328 /10533681283
pedigree20 4460/ 838691448 167 /35218516 137 /30109086 44 /6894997
387,5,22,60 10805 /1882064728 378/73141782 112 /24006114 25/5353765
11203 /1880718191 582/105186811 262 /48856344 87 /15256293
pedigree9 — — — 46434 [ 7509543280
935,7,27,100 — — 7086 /1209510942 1206 /207241642
— — 9397 /1366185532 2161/315235125
pedigree50 25440/ 4483574892 39/7903081 16 /3817267 6/616641
478,6,17,47 — 479373215 11/2066749 17 /99160
— 12146/ 1862620741 886 /127499702 46/ 4451969
pedigree23 4578621377 2274525816 1372204965 47669332
309,5,25,51 31/5539840 3/737573 2/301362 0/46830
89 / 15065580 20/ 3472051 24 /4133711 9/1606108
pedigree37 298748846178 33/7774713 13/2996251 6/1594382
726,5,21,56 174 /19065653 8/2012510 0/214882 1/36185
145 /16043993 6/1416885 1/166267 0/30353
pedigree33 24142 73699778889 201728902650 177 129051952 89 /20884397
581,4,28,98 1958 /287752998 260 /36529410 711125722 5/992393
2076 /312108999 287 /40331678 8/1405533 8/1448901
pedigree30 13198/2320333183 1690 /298201914 246 /43567736 109 /19246868
1015,5,21,108 — 442 [ 65590061 36 /5423758 21/3007912
— 508 /71466803 99 /14000719 34 /4760013
pedigree39 30724/ 4849893762 2871/493752913 7321127985658 136 /23482266
953,5,21,76 8315/1262698139 29451962281 29 /5224288 15/2745544
9100/1271875710 377161178785 26 /4188690 1712776079
pedigree25 — 1303 /212051451 145 /25395001 58/9218653
993,5,25,69 13321 /1779583093 36/5190620 4 /559510 0/66674
4670 /597669088 48 /6456274 3/474334 1/161821
pedigreel 0/74793 0/143562 1764978 0/3754
298,4,15,48 0/135762 0/14223 0/3833 1/1901
42 /6435018 11/1988109 711142934 4/744348

Figure 5: Runtime (sec) / number of nodes expanded for peeligstances by AOBB with MBE,
MBE-MM or MPLP as a heuristic generator. For each instanceepert number of variables,

largest domain sizg and the induced width along the ordering used



AOBB-MBE(7) AOBB-MBE(z7) AOBB-MBE(z7) AOBB-MBE(7)
Instances AOBB-MBE-MM(z) AOBB-MBE-MM(z) | AOBB-MBE-MM(z) | AOBB-MBE-MM(z)
AOBB-MPLP(z) AOBB-MPLP(z) AOBB-MPLP(z) AOBB-MPLP(z)
(n,k,w,h) z-bound=3 z-bound=5 z-bound=10 z-bound=15
50-16-5 14047 /3174893721 6759 /1495170158 97 /28789854 3/1188559
256,2,21,79 11918 /2442554277 257 /162304128 1/173174 0/20391
7243 /1600369401 209 /51010597 1/295211 1/86023
50-20-5 — — 3589 /953505413 385/106703929
400,2,27,97 — 28985/ 6530721824 11/3125798 1/178389
— 6529 /1477984347 26 /6981464 6/1547636
75-16-5 2457 /566137206 24555464972 712065927 0/190759
256,2,21,73 511/111054314 32/8455201 0/56708 0/8749
516 /104399258 37 /9886997 1/86972 0/13694
75-20-5 — — 1912422432794 711686365
400,2,27,99 — 25258 /4544121013 6/1693491 1/11539
47557 /10078495991 8458/1518974618 13 /3330988 1/14719
90-20-5 7281/1611969572 1199/291338041 1473765984 0/85134
400,2,27,99 5575 /1206417015 585 /136441594 1/103457 0/2461
3162 / 685514805 389 /83159717 0/122851 0/4520
90-21-5 7722 /1561888432 1585/323191066 15/4004517 1/373433
441,2,28,106 9064 / 1885446239 861 /182302009 0/111099 0/6381
4709 /919156950 593 /128038384 1/146184 0/7314
90-22-5 27283 /4804835455 2327/ 454068262 50/11323811 3/823393
484,2,30,109 17130/ 3159832586 1172 /219854528 6/1402416 0/9998
10279/1903308709 604 /112967966 1/187789 1/8715
90-26-5 — 36469 /6252167622 386 /79457203 52 /12386883
676,2,36,136 | 70798/11832076161| 7077 /1267186678 21/4464564 2/231824
58797 /10041886801 4000/ 724913557 16 /3445275 2240945

Figure 6: Runtime (sec) / number of nodes expanded for gsichimtes by AOBB with MBE, MBE-
MM or MPLP as a heuristic generator. For each instance werteponber of variables, largest
domain sizet and the induced width along the ordering used

Instances z-bound Heuristic 1sec 10 sec 1min 5min 1h 24h
MBE 17:2:1 21:8:4 21:11:8 21:12:10 22:14:11 22:17:14
10 MBE-MM 21:10:4 22:13:6 22:13:11 22:15:12 22:15:14 22:19:18
MPLP 17:7:2 20:9:6 22:13:9 22:14:10 22:16:12 22:18:18
MBE 15:2:1 16:5:1 19:7:4 20:9:9 20:13:11 22:16:14
8 MBE-MM 18:4:2 20:7:5 21:12:9 21:13:11 21:14:12 21:18:16
pedigrees MPLP 15:5:1 19:6:4 22:10:7 22:11:9 22:16:10 22:19:17
MBE 10:2:1 16:3:.1 17:6:4 17:8:6 20:11:11 21:14:11
6 MBE-MM 14:3:1 19:4:3 21:6:6 21:10:8 21:13:11 21:17:13
MPLP 13:3:0 19:4:1 20:7:5 21:9:6 22:11:9 22:16:13
MBE 7:1.0 11:1:0 1411 15:2:1 18:6:4 19:8:7
4 MBE-MM 9:2:1 11:2:1 14:2:2 16:4:4 18:7:5 19:10:9
MPLP 9:1:0 12:1:0 17:3:1 20:4:4 21:8:5 21:11:8
MBE 21:9:9 23:17:12 24:17:14 26:21:18 27:21:20 27:22:24 27:24:27
15 MBE-MM 27:22:21 28:22:24 28:23:24 29:24:25 29:25:27 29:25:28 29:26:29
MPLP 26:20:16 28:21:22 28:21:24 28:22:25 28:22:25 28:23:27 29:25:29
MBE 15:3:3 18:7:3 19:8:7 21:12:10 21:15:12 24:20:18 24:22:24
10 MBE-MM 22:12:11 23:17:11 23:19:17 24:20:20 25:21:23 26:23:25 27:24:27
grids MPLP 22:12:11 23:16:12 23:17:14 24:20:19 25:21:23 26:23:25 27:24:27
MBE 811 9:4:1 9:4:1 9:6:3 10:7:5 14:12:11 15:15:15
5 MBE-MM 10:2:1 11:3:1 12:3:2 14:7:4 18:8:7 18:14:11 19:19:19
MPLP 9:2:1 11:3:1 11:3:2 15:7:5 18:9:8 19:14:11 20:20:20
MBE 3:0:0 710 711 811 9:3:2 10:8:5 111111
3 MBE-MM 7:1:1 8:1:1 8:1:1 9:3:3 9:5:4 12:8:6 13:13:13
MPLP 731 9:3:1 9:3:1 10:5:3 11:8:4 14:10:8 15:15:15
MBE 128:128:56 128:128:61 128:128:72 128:128:83 128:128:107 128:128:128 128:128:128
15 MBE-MM 128:128:33 128:128:38 | 128:128:42 | 128:128:73 128:128:96 128:128:120 | 128:128:128
MPLP 96:96:1 116:116:16 | 124:124:18 | 125:125:35 126:126:56 126:126:94 126:126:126
MBE 126:126:19 128:128:25 | 128:128:37 128:128:61 128:128:90 128:128:113 | 128:128:128
10 MBE-MM 128:128:27 128:128:34 128:128:42 128:128:60 128:128:88 128:128:119 128:128:128
mastermind MPLP 92:92:0 103:103:16 | 116:116:17 | 128:128:33 128:128:59 128:128:93 128:128:112
MBE 102:102:46 105:105:54 105:105:60 105:105:75 105:105:88 105:105:98 105:105:105
5 MBE-MM 92:92:19 103:103:22 105:105:25 105:105:45 105:105:67 105:105:79 105:105:105
MPLP 58:58:0 73:73:9 82:82:16 97:97:26 105:105:44 105:105:56 105:105:81
MBE 94:94:27 100:100:37 105:105:51 105:105:68 105:105:75 105:105:93 105:105:104
3 MBE-MM 65:65:0 75:75:15 88:88:16 104:104:17 105:105:22 105:105:61 105:105:79
MPLP 53:53:0 59:59:1 68:68:13 78:78:16 90:90:17 105:105:38 105:105:73
MBE 6:6:4 6:6:4 6:6:5 6:6:6 6:6:6 6:6:6 6:6:6
WCSP 5 MBE-MM 5:5:4 5:5:4 5:5:5 5:5:5 5:5:5 5:5:5 5:5:5
MPLP 5:5:4 5:5:4 5:5:5 5:5:5 5:5:5 5:5:5 5:5:5

Figure 7: Anytime results for the AOBB with different heurisfor pedigree, grid, mastermind and
WCSP instances for various z-bound. For each time cutoffepent the 3 numbers: the number of
instances for which algorithm obtained any solution, thacesolution or for which the optimality
of solution was proved. For example, the expression "20:in:Z2he first row of the 3rd column
means that in 5 seconds, MBE with z-bound=10 found any swiat{possibly suboptimal) for 20
instances, found exact solution for 7 out of them and prokedptimality of the solution for 2.




6 Conclusion

We presented Mini-bucket elimination with moment-matghia new bounding scheme for op-
timization tasks in graphical model. We discussed the cotime between moment-matching in
MBE-MM and methods used in the previously developed algors: a) shifting costs procedure,
used, for example, in horizontal MBE [15], Max-sum diffusif20] or Soft arc-consistency algo-
rithm [6]; b) update in the MPLP, which is derived as a stephia block coordinate descent in
the dual of the LP relaxation of the original problem. We destoated empirically that moment-
matching improves MBE performance across all instancesfandny partitioning heuristic (we
only showed two schemes here for lack of space, but our seaglte consistently better). We also
demonstrated that in many cases MBE-MM can find a more aechoatnd than MPLP faster, even
for small z-bounds, and has a performance comparable wiildmdal-MBE presented earlier by
[15]. The most impressive aspect is the ability to improwersle algorithm with heuristic function
that do not require more computational power (i.e., whenfixéd). Future work includes devel-
oping of a hybrid scheme that would use the output of MBE-MMasarting point for the MPLP
algorithm this extending MPLP to be executed over the mirdket clusters.
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