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Abstract

It is well known that computing relative approximations of weighted counting queries
such as the probability of evidence in a Bayesian network, the partition function of a
Markov network, and the number of solutions of a constraint satisfaction problem is
NP-hard. In this paper, we settle therefore on an easier problem of computing high-
confidence lower bounds and propose an algorithm based on importance sampling and
Markov inequality for it. However, a straight-forward application of Markov inequality
often yields poor lower bounds because it uses only one sample. We therefore propose
several new schemes that extend it to multiple samples. Empirically, we show that
our new schemes are quite powerful, often yielding substantially higher (better) lower
bounds than state-of-the-art schemes.

1 Introduction

Many inference problems in graphical models such as finding the probability of evidence in a
Bayesian network, the partition function of a Markov network, and the number of solutions
of a constraint satisfaction problem are special cases of the following weighted counting
problem: given a discrete function F', find the sum of F over its domain. Therefore,
efficient algorithms for computing the weighted counts are of paramount importance for
a wide variety of applications that use graphical models, such as genetic linkage analysis
(Fishelson and Geiger, 2003; Allen and Darwiche, 2008), car travel activity modeling (Liao
et al., 2007; Gogate and Dechter, 2005), functional verification (Bergeron, 2000; Dechter
et al., 2002a), target tracking (Pavlovic et al., 1999), machine vision (Fieguth et al., 1998;
Li and Perona, 2005), medical diagnosis (Middleton et al., 1991; Pradhan et al., 1994) and
music parsing (Raphael, 2002).

The weighted counting problem is in #P and as a result there is no hope of designing ef-
ficient, general-purpose algorithms for it. Moreover, even approximations with relative error
guarantees are NP-hard (Dagum and Luby, 1993). Therefore, previous work has focused
either on approximations that have relative error guarantees for a restricted subclass of
problems or on approximations with weaker guarantees such as bounding and convergence,
whose good performance is demonstrated empirically.



In this paper, we focus on general-purpose, lower bounding approximations of weighted
counts and propose new randomized algorithms for it. An approximation algorithm is
deterministic if it is always guaranteed to output a lower or an upper bound. On the other
hand, an approximation algorithm is randomized if the approximation fails with a known
probability 6 > 0. Lower bounds are useful because almost all applications of graphical
models use probability thresholding. For instance, in medical diagnosis (Middleton et al.,
1991; Pradhan et al., 1994), a disease diagnosis is made if the disease probability is greater
than some threshold t. If the lower bound is greater than ¢, we are guaranteed that the
actual probability is greater than t too. Genetic linkage analysis (Ott, 1999; Fishelson and
Geiger, 2003) is another example of an application where thresholds are used. Here, we are
interested in knowing whether the likelihood of observing the test data given a particular
value of linkage is greater than a threshold. If it is, then genetic linkage is said to have
occurred.

Existing randomized, bounding algorithms (Cheng, 2001; Dagum and Luby, 1997) use
known inequalities such as the Chebyshev and the Hoeffding inequalities (Hoeffding, 1963)
to compute a relative approximation. These inequalities bound the deviation of the sample
mean of N independent random variables from the actual mean. The idea which is in some
sense similar to importance sampling (Rubinstein, 1981; Geweke, 1989) is to express the
weighted counting problem as the problem of computing the mean (or the expected value) of
independent random variables and then use the mean over the sampled random variables to
bound the deviation from the true mean. A serious limitation of these algorithms is that the
number of samples required to guarantee high confidence bounds is inversely proportional to
the weighted counts. Therefore, if the weighted counts are arbitrarily small (e.g., < 10729),
a large number of samples (approximately 10'?) are required to provide high confidence on
the result.

We propose to alleviate this difficulty by using the Markov inequality which uses just
one sample for lower bounding the weighted counts. The caveats are that we do not have
relative error guarantees and the lower bound is quite weak because only one sample is
used. To address this one-sample limitation, we propose to extend the Markov inequality
to multiple samples. Recently, (Gomes et al., 2007) proposed to achieve this by using the
minimum statistic. A major drawback of this approach is that as more samples are drawn,
the minimum value will likely decrease and as a result the lower bound will decrease as well.
To address this problem, we propose several new schemes that use the average, maximum
and order statistics to improve the Markov inequality. Our new schemes guarantee that as
more samples are drawn, the lower bound will likely increase.

We provide a thorough empirical evaluation demonstrating the potential of our new
schemes. For the task of computing the probability of evidence, we compared against
state-of-the-art deterministic approximations such as Variable elimination and Conditioning
(VEC) (Dechter, 1999) and the active-tuples based (ATB) scheme (Bidyuk et al., 2010).
For the task of counting the number of models of a satisfiability formula, we compared
against Relsat (Bayardo and Pehoushek, 2000), which is a deterministic approximation and
SampleCount (Gomes et al., 2007), which is a randomized algorithm. Our results clearly
show that our new randomized approximations based on the Markov inequality are far more
scalable than deterministic approximations such as VEC, Relsat and ATB, and in most cases
yield far higher accuracy. Our schemes also yield higher lower bounds than SampleCount.

The rest of this paper is organized as follows. In Section 2, we describe preliminaries

!The research presented in this paper is based in part on (Gogate et al., 2007).



and previous work. In Section 3, we present our basic lower bounding scheme and several
enhancements. Experimental results are presented in Section 4 and we conclude in Section
5.

2 Notation, Background and Previous work

We denote variables by upper case letters (e.g., X, Y, ...) and values of variables by lower
case letters (e.g., z,y,...). Sets of variables are denoted by bold upper case letters (e.g.,
X ={X1,...,X,}). We denote the set of possible values (also called the domain) of X; by
D(X;). X; = z; (or simply z; when the variable is clear) denotes an assignment of a value
x; € D(X;) to X; while X = x (or simply x) denotes an assignment of values to all variables
in X, namely x = (X7 = x1, X9 = x9, ... X;, = z,). D(X) denotes the Cartesian product
of the domains of all variables in X, namely D(X) = D(X;) x ... x D(X,,). The projection
of x on a set S C X is denoted by xg. Given an assignment y and z to the partition Y and
Z of X, x = (y,z) denotes their composition.

Y xe D(X) denotes the sum over all possible configurations of variables in X, namely,
DoxeD(X) = 2ugieD(X1) DomaeD(Xa) -+ X DozneD(X,)- For brevity, we will abuse notation
and write }° cpix,) a8 Xopex, and Y yepix) as D oxex- The expected value Exq[X] of a
random variable X with respect to a distribution @ is defined as: Exg[X] = > .y 2Q(z).
The variance Varg[X] of X is defined as: Varg[X] =, . ¢ (z — Exo[X])?. To simplify, we
will write Exg[X] as Ex[X| and Varg[X] as Var[X], when the identity of @ is clear.

We denote (discrete) functions by upper case letters (e.g. F, H, C, I etc.), and the
scope (set of arguments) of a function ' by V(F'). Given an assignment y to a superset Y
of V((F'), we will abuse notation and write F'(yy(p) as F(y).

Definition 1. A discrete graphical model or a Markov network denoted by G is a 3-

tuple (X, D, F) where X = {X1, ..., X,,} is a finite set of variables, D = {D(X4),...,D(X,)}
is a finite set of domains where D(Xj;) is the domain of variable X; and F = {F},..., F,,} is

a finite set of discrete-valued non-negative functions (also called potentials). The graphical

model represents a joint distribution Pg over X defined as:

Po(x) = 5 [ Fitx) (1

z=> T[Fx (2)

The primary queries over Markov networks are computing the partition function and
computing the marginal probability Pg(X; = x;). The weighted counting problem is to
compute the weighted counts Z.

Each graphical model is associated with a primal graph which depicts the dependencies
between its variables.

Definition 2. The primal graph of a graphical model G = (X, D, F) is an undirected
graph G(X, E) which has variables of G as its vertices and an edge between two variables
that appear in the scope of a function.



2.1 Bayesian and Constraint networks

Definition 3. A Bayesian network is a graphical model B = (X,D, G,P) where G =
(X,E) is a directed acyclic graph over the set of variables X. Each function P, € P is a
conditional probability table defined as P;(X;|pa;), where pa; = V(F;) \ {X;} is the set of
parents of X; in G.

The primal graph of a Bayesian network is also called the moral graph. When the
entries of the CPTs are 0 and 1 only, they are called deterministic or functional CPTs. An
evidence E = e is an instantiated subset of variables. A Bayesian network represents the
following joint probability distribution:

n

Pg(x) = [ [ Pi(x(x:}%pa;) (3)

i=1

By definition, given a Bayesian network B the probability of evidence Pg(e) is given by:

PB(G): Z HB((yve){Xi}’(y7e)pai) (4)

yeX\E i=1

It is easy to see from Equations 2 and 4 that Pi(e) is equivalent to the weighted counts Z
over an evidence instantiated Bayesian network. Another important query over a Bayesian
network is computing the conditional marginal probability Pg(x;|e) for a query variable
X; e X\ E.

Definition 4. A constraint network is a graphical model R = (X, D, C) where C =
{C1,...,Cy} is a set of constraints. Each constraint C; is a 0/1 function defined over its
scope. Given an assignment x, a constraint is said to be satisfied if C;(x) = 1. A constraint
can also be expressed by a pair (R;,S;) where R; is a relation defined over the scope of C;
that contains all tuples for which Cj(s;) = 1. The primal graph of a constraint network is
called the constraint graph.

A solution of a constraint network is an assignment x to all variables that satisfies all
the constraints. The primary query over a constraint network is to determine whether it
has a solution and if it does to find one. Another important query is that of counting the
number of solutions K of the constraint network, defined by:

K=Y T[Cix) (5)

xeXi=1

K is clearly identical to the weighted counts over a constraint network.

2.2 Previous work

Earlier work by Dagum and Luby (Dagum and Luby, 1997) and by Cheng (Cheng, 2001) on
randomized bounding algorithms for weighted counting has focused on providing relative-
error guarantees. Their algorithms are based on importance sampling (Marshall, 1956).
The main idea in importance sampling is to express the weighted counts as an expectation
using an easy-to-sample distribution @), which is called the proposal (or trial or importance)
distribution. Then, the algorithm generates samples from ) and estimates the expectation



(which equals the weighted counts) by a weighted average over the samples, where the
weight of a sample x is [}~ F;(x)/Q(x). The weighted average is often called the sample
mean.

Formally, given a proposal distribution @ such that [, Fj(x) > 0 = Q(x) > 0, we
can rewrite Equation 2 as follows:

_ [T, Fi(x) X) — Fx [, Fi(x)
Z=2. "0 9 | g ©

Given independent and identically distributed (i.i.d.) samples (x!,...,x") generated from
@, we can estimate Z by:

N N o poxk N
k=1 k=1
where
?,U(X) — Hzil ‘FZ(X)

is the weight of sample x. It is easy to show that Zn is unbiased, namely Exg [2 N =Z.

Dagum and Luby (Dagum and Luby, 1997) provide a bound on the number of samples
N required to guarantee that for any €, > 0, the estimate Z approximates Z with relative
error € with probability at least 1 — §. Formally,

PriZ(1-¢)<Zn<Z(1+¢]>1-0 (8)
when N satisfies: 4 5
> InZ

N > Zezlné 9)

This bound was later improved by Cheng (Cheng, 2001) yielding:

| | 2
N>= z
Z 70T omito—<"

(10)

In both of these bounds (see Equations 9 and 10 ) N is inversely proportional to Z and
therefore when Z is small, a large number of samples are required to achieve an acceptable
confidence level (1 —§) > 0.99.

A bound on N is required because (Dagum and Luby, 1997; Cheng, 2001) insist on a
relative error e. If we relax this requirement and if we use the Markov inequality, even
a single sample would yield a high confidence lower bound on Z. Furthermore, the lower
bound can be improved with more samples, as we demonstrate in the next section.

3 Markov Inequality based Lower Bounds

Proposition 1 (Markov Inequality). For any random variable X and a real number r > 1,
Pr (X > rE[X]) < L.

The Markov inequality states that the probability that a random variable is r times its
expected value is less than or equal to 1/r.



We can apply the Markov inequality for lower bounding the weighted counts in a
straight-forward manner. We can consider the weight of each sample generated by im-
portance sampling as a random variable. Because the expected value of the weight equals
the weighted counts Z, by Markov inequality, given a real number r > 1, the probability
that the weight of a sample is greater than r times Z is less than 1/r. Alternately, the
weight of the sample divided by r is a lower bound on Z with probability greater than
1 —1/r. Formally, given a sample x drawn independently from a proposal distribution @,
we have:

Pr(w(x)>rxZ) <

(11)

S =

Rearranging Equation 11, we get:

Pr <“’(X) < Z) >1- 2 (12)

r T

Equation 12 can be used to probabilistically lower bound Z as shown in the following
example.

Example 1. Let r :( 1)00 and let x be a sample generated using importance sampling. Then
w(xX

from Equation 12, 555~ is a lower bound on Z with probability greater than 1 — (1/100) =
0.99.

The lower bound based on the Markov inequality uses just one sample and is therefore
likely to be very weak. In the following four subsections, we show how the lower bounds
can be improved by utilizing multiple samples.

3.1 The Minimum scheme

The Minimum scheme (Gomes et al., 2007) uses the minimum over the sample weights
to compute a lower bound on Z. Although, originally introduced in the context of lower
bounding the number of solutions of a Boolean satisfiability (SAT) problem, we can easily
modify it to compute a lower bound on the weighted counts as we show next.

Theorem 1 (minimum scheme). Given N samples (z',..., ") drawn independently
from a proposal distribution Q such that Elw(z)] = Z fori = 1,...,N and a constant
0<a<l,

Pr [mini]\il [#} < Z} > «, where 8= (1 1 >N

—

Proof. Consider an arbitrary sample x’. From the Markov inequality, we get:

Pr [w(:) > Z] < % (13)

Since, the generated N samples are independent, the probability that the minimum over
them is also an upper bound is given by:

Pr [minﬁ\il [w(;i)] > Z] <L (14)



Algorithm 1: Minimum-scheme

Input: A graphical model G = (X, D, F), a proposal distribution @, an integer N
and a real number 0 < a <1
Output: Lower Bound on Z that is correct with probability greater than «

minCount < oo;
1

8= (ﬁ) AE
fori =1 to N do
L Generate a sample x* from Q ;

IF minCount > % THEN minCount = w(gi);

Return minCount;

Rearranging Equation 14, we get:

: 1
Pr |min®. [w(x)] gZ] >1-— — 15
miniLs |3 av (15)
1
Substituting § = (ﬁ) Yin1-— 6%’ we get:
1 1
=8 = 17— =%
1 N
(()7)
1
= 1-—=
l—«
= 1-(1-a)
= « (16)

Therefore, from Equations 15 and 16, we have

Pr [mmf:l [w(gi)] < Z} > a (17)

O

Algorithm 1 describes the minimum scheme based on Theorem 1. The algorithm first
calculates 3 based on the value of v and N. It then returns the minimum of % (minCount
in Algorithm 1) over the N samples.

A nice property of the minimum scheme is that with more samples the divisor, 5 =

( 1) — decreases, thereby (possibly) increasing the lower bound. The problem is that
l1-a)N

because it computes a minimum over the sample weights, we expect the lower bound to
decrease when the number of samples increases, unless the variance of the weights is very
small. Next, we present our first contribution, the average scheme, which avoids this prob-
lem.




3.2 The Average Scheme

An obvious scheme is to use the unbiased importance sampling estimator Zy given in

Equation 7. Because EQ[ZN] = Z, from the Markov inequality ZTN where g = 1% is a

(0%
lower bound of Z with probability greater than a. Formally,

~

ZN

1
— < Z
3 =

—

Pr >, where = (18)

As more samples are drawn the average is likely to be get larger than the minimum value,
increasing the lower bound. However, unlike the minimum scheme in which the divisor
B decreases with an increase in the sample size thereby increasing the lower bound, the
divisor § in the average scheme remains constant. As a consequence, for example, if all
the generated samples have the same weight (or almost the same weight), the lower bound
due to the minimum scheme would be greater than the lower bound output by the average
scheme. In practice the variance is typically never close to zero and therefore the average
scheme is likely to be superior.

3.3 The Maximum scheme

We can also use the maximum instead of the average over the IV i.i.d samples as shown in
the following Lemma.

Lemma 1 (maximum scheme). Given N samples (x',...,x") drawn independently from
a proposal distribution Q such that Elw(x%)] = Z fori=1,...,N and a constant 0 < a < 1,

N i
Pr[ng]Za,whweﬁ: 11
B 1—an
Proof. From Markov inequality, we have:
w(x?) ] 1
Pr <Z|>1-- 19
3 E (19

Given a set of NV independent events such that each event occurs with probability >
(1 —1/B), the probability that all events occur is > (1 — 1/8)V. In other words, given N
independent samples such that the weight of each sample divided by S is a lower bound on
Z with probability > (1 — 1/), the probability that the weights of all samples divided by
3 are a lower bound on Z is > (1 — 1/3)". Consequently,

N
Substituting the value of § in (1 — %) , we have:

1\ 1
-8 - (-




From Equations 20 and 21, we get:
i
—(X) < 7 >« (22)

O

The problem with the maximum scheme is that increasing the number of samples in-
creases 3 and consequently the lower bound decreases. However, when only a few samples
are available and the variance of the weights w(x?) is large, the maximum value is likely to
be larger than the sample average and obviously the minimum.

3.4 Using the Martingale Inequalities

Another approach to utilize the maximum over the N samples is to use the martingale
inequalities.

Definition 5 (Martingale). A sequence of random variables X,..., Xy is a martingale
with respect to another sequence Yi,..., Yy defined on a common probability space 2 iff
E[XAY&, e ,Y;_l] = Xi—l for all i.

It is easy to see that given i.i.d. samples (x,... ,xN ) generated from @, the sequence
Av,..., AN, where A, =T, w(;l) forms a martingale as shown below:
w(xP
E[A, X!, ..., xP7Y] = E [Ap_l * %b{l, e ,xp_l]

p
= Ay xE [—w(; )|x1,...,xp_1]

Because E[#b{l, ..., xP71] = 1, we have E[A,|x!,...,xP7!] = A,_1 as required. The
expected value E[A;] = 1 and for such martingales which have a mean of 1, Breiman

(Breiman, 1968) provides the following extension of the Markov inequality:

1
Pr(max;_ A; > 5) < 5 (23)
and therefore,
J 1
Pr | |maz, w(x!) >B| <= (24)
: Z B
j=1
From Inequality 24, we can prove that:
Theorem 2 (Random permutation scheme). Given N samples (x',...,x") drawn

independently from a proposal distribution Q such that Elw(x%)] = Z fori=1,...,N and
a constant 0 < a <1,

) 1
Pr |maz;_; | = Hw(xj) < Z| > «a, where 8=




Proof. From Inequality 24, we have:

1
Pr | [mazl, H >pB1 < 3 (25)
Rearranging Inequality 25, we have:
1/i

1 - 1
Pr ma:nj\i — w(x? <Z|>1— ==« 26
M [T w) 5 (26)
O

Therefore, given N samples, the following quantity
1/i
1
maxly Hw (x%) where § = T o

is a lower bound on Z with a confidence greater than «. In general one could use any
randomly selected permutation of the samples (x',...,x") and apply inequality 24. We
therefore call this scheme as the random permutation scheme.

Another related extension of Markov inequality for martingales deals with the order

(1) (
statistics of the samples. Let w(XZ ) < < w(xZ( ) <...< w(XT)) be the order statistics of the
sample. Using martingale theory, Kaplan (Kaplan, 1987) proved that the random variable

O = max;_ 1H

7j=1

(X(N J+1))

z % (7)
satisfies the inequality Pr(©* > k) < 1/k. Therefore,

x(N—=j+1) 1
Pr | |max;_ IHTZ)) >3 SB (27)

7j=1

From Inequality 27, we can prove that:

Theorem 3 (Order Statistics scheme). Given an order statistics of the weights w(me) <
“)(XT@)) < ... < M of N samples (x ,...,XN) drawn independently from a proposal
distribution Q, such that Elw(x!)] = Z fori=1,...,N and a constant 0 < o < 1,
i (N—j+1) i
1 37 wxW—7T) 1
Pr max]\i — B ' T —— < Z| > «a, where =
W] 1:[1 (N) 11—«
J= 1
Proof. From Inequality 27, we have:
i N—j+1)
w(x(N=7+1)) 1
Pr [ |mazl, 7 (N) >p| < 3 (28)
j=1 7



Rearranging Inequality 28, we have:

. 1/i
1 g w(xV=7+D) 1
Pr |maz;Z, | 5 <Z|>1—-—=-=« 29
1= (2
O
Thus, given N samples, the following quantity
. W~ ) /i
1 14 w(x(N=i+1h) 1
maz;_; | = _— , where g =
A iy i

is a lower bound on Z with probability greater than «. Because the lower bound is based
on the order statistics, we call this scheme as the order statistics scheme.

To summarize, we described five schemes that generalize the Markov inequality to mul-
tiple samples: (1) The minimum scheme (Gomes et al., 2007), (2) The average scheme, (3)
The maximum scheme, (4) The martingale random permutation scheme and (5) The mar-
tingale order statistics scheme. All these schemes can be used with any sampling scheme
that outputs unbiased sample weights to yield a probabilistic lower bound on the weighted
counts.

4 Empirical Evaluation

In this section, we compare the performance of the probabilistic lower bounding schemes
presented in this paper with other deterministic schemes from literature. We also evaluate
the relative performance of the various lower bounding schemes presented in Section 3. We
conducted experiments on three weighted counting tasks: (a) Satisfiability model counting,
(b) computing probability of evidence in a Bayesian network and (¢) computing the partition
function of a Markov network. Our experimental data clearly demonstrates that our new
lower bounding schemes are more accurate, robust and scalable than all other deterministic
approximations, yielding far better (higher) lower bounds on large, hard instances.

4.1 The Algorithms Evaluated

We experimented with the following five schemes.

1. Variable Elimination and Conditioning (VEC). When a problem having a high
treewidth is encountered, bucket elimination? (Dechter, 1999) may be unsuitable, primarily
because of its extensive memory demand. To alleviate this limitation, (Dechter, 1999; Rish
and Dechter, 2000; Larrosa and Dechter, 2003) proposed the w-cutset conditioning scheme.
The main idea is to condition or instantiate enough variables (the w-cutset) such that the
remaining problem, after removing the instantiated variables, can be solved exactly using
bucket elimination. Formally, given an integer bound w, we partition the variables into two
subsets K and R such that the treewidth of the graphical model restricted to R is bounded

2Bucket elimination is an exact algorithm for computing the weighted counts. Its time and space com-
plexity is exponential in the treewidth.

11



by w (K is called the w-cutset). Then, we compute the weighted counts by summing over
the exact solution output by bucket elimination for all possible instantiations K = k of
the w-cutset. We call this scheme variable elimination and conditioning (VEC). If VEC
is terminated before completion, it outputs a partial sum yielding a lower bound on the
weighted counts.

For VEC, our design choice is to select the w-cutset such that bucket elimination would
require less than 1.5GB of space. This is done to ensure that bucket elimination terminates
in a reasonable amount of time and uses bounded space.

For models having determinism, as pre-processing, we use a SAT solver for removing
all inconsistent values from the domains of all variables. We found that this pre-processing
step yields significant performance gains in practice (for details, see the results of UAI 2008
(Darwiche et al., 2008) and UAI 2010 (Elidan and Globerson, 2010) competitions). We
now briefly describe how we implemented this pre-processing. We first encode all the zero
probabilities in the graphical model as a CNF formula F' (this can be done, for example,
using the direct encoding of (Walsh, 2000)). Then, for each variable-value pair (X, ), we
construct a new CNF formula Fx, by adding a unit clause corresponding to X = z to
F and check using a SAT solver (we used the minisat solver (Sorensson and Een, 2005)
in our implementation) whether Fx , is consistent or not. If Fx , is inconsistent then the
assignment X = z is inconsistent and we delete x from the domain of X.

The implementation of VEC is available publicly from our software web page (Dechter
et al., 2009).

2. Active-Tuples based scheme We also experimented with the state of the art any-
time bounding scheme (Bidyuk et al., 2010) that combines sampling-based w-cutset condi-
tioning and bound propagation (Leisink and Kappen, 2003). As mentioned earlier, given a
w-cutset K C X, we can compute the weighted counts exactly as follows:

Z =Y Z(k) (30)

keK

where Z(k) = > g [Ii~; Fi(r,k). The lower bound on Z is obtained by computing Z (k)
for h high probability tuples of K (selected through sampling) and lower bounding the
remaining probability mass using bound propagation (Leisink and Kappen, 2003). Formally,
let (k',...,k™) denote all the tuples D(K). Given h w-cutset tuples, 0 < h < m, that we
assume without loss of generality to be the first A tuples according to some enumeration
order, we can rewrite Equation 30 as:

h
Z = Z Z(K') + Zap (KT (31)
i=1

where Z& ,,(k"™™) is a lower bound on D Z(k"), obtained using bound propagation.
The lower bound obtained by Equation 31 can be improved by exploring a larger number
of tuples h thus relying on exact computation and less on the bounding scheme. In
our experiments we run the bound propagation with w-cutset conditioning scheme until
convergence or until a stipulated time bound has expired. Note that the bound propagation
with cutset conditioning scheme provides deterministic lower and upper bounds on the
weighted counts while the schemes presented in this paper only provide a probabilistic
lower bound.

12



3. Markov-LB with SampleSearch and IJGP-sampling. Recall that our Markov
inequality based lower bounding schemes described in Section 3 can be combined with
any importance sampling algorithm (henceforth, we will call them Markov-LB). In order
to compete and compare fairly with existing algorithms, we apply Markov-LB on top of
state-of-the-art importance sampling techniques such as IJGP-IS (Gogate and Dechter,
2005; Gogate, 2009) and IJGP-SampleSearch (Gogate and Dechter, 2011). Both of these
are importance sampling schemes that sample from a proposal distribution generated from
the output of a generalized belief propagation (Yedidia et al., 2004) algorithm. IJGP-
SampleSearch utilizes, in addition, a scheme to manage rejection when the probability
distribution contains significant amount of determinism. We provide some more details and
background next.

1JGP-1S constructs the proposal distribution using the output of a generalized belief
propagation scheme called Iterative Join Graph Propagation (IJGP) (Dechter et al., 2002b;
Mateescu et al., 2010). It was shown that belief propagation schemes whether applied over
the original graph or on clusters of nodes yield a better approximation to the true posterior
than other available choices (Mateescu et al., 2010; Murphy et al., 1999; Yedidia et al.,
2004) and thus could lead to a better proposal distribution (see (Yuan and Druzdzel, 2006;
Gogate and Dechter, 2005; Gogate, 2009) for more details).

IJGP (Dechter et al., 2002b; Mateescu et al., 2010) is a generalized belief propagation
scheme which is parametrized by an i-bound, yielding a class of algorithms IJGP(7) whose
complexity is exponential in ¢, that trade-off accuracy and complexity. As i increases,
accuracy generally increases. In our experiments, for every instance, we select the maximum
i-bound that can be accommodated by 512 MB of space as follows. The space required by
a message (or a function) is the product of the domain sizes of the variables in its scope.
Given an i-bound, we can create a join graph whose cluster size is bounded by i as described
in (Mateescu et al., 2010) and compute, in advance, the space required by IJGP by summing
over the space required by the individual messages.? We iterate from ¢ = 1 until the space
bound (of 512 MB) is surpassed. This ensures that IJGP terminates in a reasonable amount
of time and requires bounded space.

On networks having substantial amount of determinism, we use IJGP-based Sample-
Search (IJGP-SS) (Gogate and Dechter, 2007, 2011). It is known that on such networks
pure importance sampling generates many useless zero weight samples which are eventu-
ally rejected. SampleSearch overcomes this rejection problem by explicitly searching for a
non-zero weight sample, yielding a more efficient sampling scheme in heavily determinis-
tic databases. It was shown that SampleSearch is an importance sampling scheme which
generates samples from a modification of the proposal distribution which is backtrack-free
w.r.t. the constraints. Thus, in order to derive the weights of the samples generated by
SampleSearch, all we need is to replace the proposal distribution with the backtrack-free
distribution. The details are given in (Gogate and Dechter, 2011).

To reduce the variance of the weights, we combine both IJGP-IS and SampleSearch with
sampling-based w-cutset conditioning (Bidyuk and Dechter, 2007). In w-cutset sampling,
we sample only the w-cutset variables and then for each sample, we exactly compute the
weighted counts of the graphical models using bucket elimination. Using the Rao-Blackwell
theorem (Casella and Robert, 1996; Liu, 2001), it is easy to show that w-cutset sampling
reduces variance. Formally, given a graphical model G = (X, D, F), a w-cutset K and a
sample k generated from a proposal distribution Q(K), in w-cutset sampling, the weight of

3Note that we can do this without constructing the messages explicitly.
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k is given by:
ZrER H;nzl Fj(r, K =k)

wuelld) = Q)

(32)

where R = X'\ K.

It was demonstrated that the higher the w-bound (Bidyuk and Dechter, 2007), the
smaller the sampling variance. Here also, we select the maximum w such that the resulting
bucket elimination algorithm uses less than 512 MB of space. We can choose the appropriate

w by using a similar iterative scheme to the one described above for choosing the i-bound
of IJGP.

4. Markov-LB with SampleCount. SampleCount (Gomes et al., 2007) is an algorithm
for estimating the number of solutions of a Boolean Satisfiability problem. It is based on the
ApproxCount algorithm of (Wei and Selman, 2005). ApproxCount is based on the formal
result of (Valiant, 1987), which states that if one can sample uniformly (or close to it) from
the set of solutions of a SAT formula F', then one can exactly count (or approximate with a
good estimate) the number of solutions of F'. Consider a SAT formula F' with S solutions.
If we are able to sample solutions uniformly, then we can compute exactly the fraction of
the number of solutions, denoted by 7 that have a variable X set to True or 1 (and similarly
to False or 0). If « is greater than zero, we can set X to 1 and simplify F' to F’. The
estimate of the number of solutions is now equal to the product of % and the number of
solutions of F’. Then, we recursively repeat the process, leading to a series of multipliers,
until all variables are assigned a value or until the conditioned formula is easy for exact
model counters like Cachet (Sang et al., 2005). To reduce the variance, (Wei and Selman,
2005) suggest to set the selected variable to a value that occurs more often in the given set
of sampled solutions. In this scheme, the fraction for each variable branching is selected via
a solution sampling method called SampleSat (Wei et al., 2004), which is an extension of
the well-known local search SAT solver Walksat (Selman et al., 1994).

SampleCount (Gomes et al., 2007) differs from ApproxCount in the following two ways:
(a) SampleCount heuristically reduces the variance by branching on variables which are
more balanced i.e. variables having multipliers 1/ close to 2 and (b) At each branch point,
SampleCount assigns a value to a variable by sampling it with probability 0.5 yielding an
unbiased estimate of the solution counts. SampleCount is an importance sampling technique
in which the weight of each sample equals 2* x s, where k is the number of variables sampled
and s is the model count of the SAT formula conditioned on the sampled assignment to
the k sampled variables. Therefore, it can be easily combined with Markov-LB yielding the
Markov-LB with SampleCount scheme.

In our experiments, we used an implementation of SampleCount available from the
authors of (Gomes et al., 2007). Following the recommendations made in (Gomes et al.,
2007), we use the following parameters for ApproxCount and SampleCount: (a) Number
of samples for SampleSat = 20, (b) Number of variables remaining to be assigned a value
before running Cachet = 100 and (c) local search cutoff o = 100K

5. Relsat. Relsat (Bayardo and Pehoushek, 2000) is an exact algorithm for counting the
number of solutions of a SAT formula. When Relsat is stopped before termination, it yields
a lower bound on the solution count. We used an implementation of Relsat available at
http://www.bayardo.org/resources.html.
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We experimented with four versions of Markov-LB (combined on top of SampleSearch,
SampleCount and IJGP-Sampling): (a) Markov-LB as given in Algorithm 1, (b) Markov-LB
with the average scheme, (¢) Markov-LB with the martingale random permutation scheme
and (d) Markov-LB with the martingale order statistics scheme. Note that the maximum
scheme is subsumed by the Markov-LB with the martingale order statistics scheme. In all
our experiments, we set « = 0.99, namely there is better than 99% chance that our lower
bounds are correct.

4.1.1 Evaluation Criteria

We evaluate the performance using the log relative error between the exact value of prob-
ability of evidence (or the solution counts for satisfiability problems) and the lower bound
generated by the respective techniques. Formally, if Z is the actual probability of evidence
(or solution counts) and Z is the approximate probability of evidence (or solution counts),
the log-relative error denoted by A is given by:

_ log(2) — log(2)
8= log(Z)

(33)

When the exact value of Z is not known, we use the highest lower bound reported by the
schemes as a substitute for Z in Equation 33. We use the log relative error because when
the probability of evidence is small (< 1071%) or when the solution counts are large (e.g.
> 10'9) the relative error between the exact and the approximate weighted counts will be
arbitrarily close to 1 and we would need a large number of digits to determine the best
performing scheme.

Notation in Tables The first column in each table (see for example Table 1) gives the
name of the instance. The second column provides raw statistical information about the
instance such as: (i) number of variables (n), (ii) average domain size (d), (iii) number of
clauses (c) or number of evidence variables (e) and (iv) the upper bound on the treewidth
of the instance computed using the min-fill algorithm (w). The third column provides the
exact answer for the problem if available while the remaining columns display the output
produced by the various schemes after the specified time-bound. The columns Min, Avg,
Per and Ord give the log-relative-error A for the minimum, the average, the martingale
random permutation and the martingale order statistics schemes respectively. For each
instance, the log-relative error of the scheme yielding the best performance is highlighted
in bold. The final column Best LB reports the best lower bound.

We organize our results in two parts. We first present results for networks which do
not have determinism and compare ATB with IJGP-sampling based Markov-LB schemes.
Then, we consider networks which have determinism and compare SampleSearch based
Markov-LB with Variable elimination and Conditioning for probabilistic networks and with
SampleCount for Boolean satisfiability problems.

4.2 Results on networks having no determinism

Table 1 summarizes the results. We ran each algorithm for 2 minutes. We see that our
new strategy of Markov-LB scales well with problem size and provides good quality high-
confidence lower bounds on most problems. It clearly outperforms the ATB scheme. We
discuss the results in detail below.
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Markov-LB with |ATB
IJGP-sampling
Problem |(n,d, e, w)|Exact |Min| Avg | Per | Ord Best
Pe) | A A A A A LB

Alarm
BN_3 (100, 2, 36)|2.8E-13|0.157(0.031(0.040 [ 0.059 | 0.090 |1.1E-13
BN_4 (100, 2, 51)|3.6E-18|0.119(0.023| 0.040 | 0.045 | 0.025 |1.4E-18

BN_5 (125, 2, 55)|1.8E-19]0.095(0.020( 0.021 [ 0.030 | 0.069 |7.7E-20

BN_6 (125, 2,71)|4.3E-26|0.124(0.016(0.024 [ 0.030 | 0.047 |1.6E-26

BN_11 [(125,2,46)|8.0E-18|0.185|0.023| 0.061 | 0.064 | 0.102 3.3E-18

CPCS

CPCS-360-1

CPCS-360-2

360, 2, 20
360, 2, 30

( )|1.3E-25/0.012| 0.012|0.000| 0.001 | 0.002 |1.3E-25

( )|7.6E-22|0.045| 0.015]0.010 | 0.010 |0.000|7.6E-22
CPCS-360-3((360, 2, 40)|1.2E-33(0.010{ 0.009 | 0.000 |0.000|0.000|1.2E-33
CPCS-360-4/(360, 2, 50) |3.4E-38(0.022| 0.009 | 0.002 |0.000|0.000)|3.4E-38
CP(CS-422-1|(422, 2, 20)|7.2E-21|0.028] 0.016 | 0.001 |0.001| 0.002 |6.8E-21
CPCS-422-2((422, 2, 30)|2.7E-57(0.005| 0.005 | 0.000 |0.000|0.000|2.7E-57
CP(CS-422-3|(422, 2, 40)|6.9E-87|0.003| 0.003 | 0.000 |0.000| 0.001 |6.9E-87
CPCS-422-4|(422, 2, 50)(1.4E-73(0.007| 0.004 | 0.000 |0.000| 0.001 |1.3E-73
Random
BN_94 ( 6) [4.0E-11(0.235|0.029|0.063|0.025|0.028 |2.2E-11
BN_96 ( 5) [2.1E-09(0.408|0.036 | 0.095|0.013| 0.131 |1.6E-09
BN_98 (57,50, 6) [1.9E-11|0.131{ 0.024|0.013| 0.024 | 0.147 |1.4E-11
BN_100 |{ 8) [1.6E-14(0.521]{0.022|0.079|0.041 | 0.134 |8.1E-15
BN_102 (76,50, 15)(1.5E-26(0.039|0.007 |0.007|0.012|0.056 |9.4E-27

Table 1: Table showing the log-relative error A of ATB and four versions of Markov-LB
combined with IJGP-sampling for Bayesian networks having no determinism after 2 minutes
of CPU time.
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Non-deterministic Alarm networks. The Alarm networks are one of the earliest
Bayesian networks designed by medical experts for monitoring patients in intensive care.
The evidence in these networks was set at random. These networks have between 100-125
binary nodes. We can see that Markov-LB with IJGP-sampling is slightly superior to ATB
accuracy-wise. Among the different versions of Markov-LB with IJGP-sampling, the av-
erage scheme performs better than the martingale schemes. The minimum scheme is the
worst performing scheme.

The CPCS networks. The CPCS networks are derived from the Computer-based Pa-
tient Case Simulation system (Pradhan et al., 1994). The nodes of CPCS networks cor-
respond to diseases and findings and conditional probabilities describe their correlations.
The CPCS360b and CPCS422b networks have 360 and 422 variables respectively. We re-
port results on the two networks with 20,30,40 and 50 randomly selected evidence nodes.
We see that the lower bounds reported by ATB are slightly better than Markov-LB with
1JGP-sampling on the CPCS360b networks. However, on the CPCS422b networks, Markov-
LB with IJGP-sampling gives higher lower bounds. The martingale schemes (the random
permutation and the order statistics) give higher lower bounds than the average scheme.
Again, the minimum scheme is the weakest.

Random networks. The random networks are randomly generated graphs available from
the UAI 2006 evaluation web site. The evidence nodes are generated at random. The
networks have between 53 and 76 nodes and the maximum domain size is 50. We see that
Markov-LB is better than ATB on all random networks. The random permutation and
the order statistics martingale schemes are slightly better than the average scheme on most
instances.

4.3 Results on networks having determinism

In this subsection, we report on experiments for networks which have determinism. We
experimented with five benchmark domains: (a) Latin square instances, (b) Langford in-
stances, (¢) FPGA routing instances, (d) Linkage instances and (e) Relational instances.
The task of interest on the first three domains is counting solutions while the task of interest
on the remaining domains is computing the probability of evidence.

4.3.1 Results on Satisfiability model counting

For model counting, we evaluate the lower bounding power of Markov-LB with Sample-
Search and Markov-LB with SampleCount (Gomes et al., 2007). We ran both algorithms
for 10 hours on each instance.

Results on the Latin Square instances Our first set of benchmark instances come
from the normalized Latin squares domain. A Latin square of order s is an s x s table
filled with s numbers from {1, ..., s} in such a way that each number occurs exactly once in
each row and exactly once in each column. In a normalized Latin square the first row and
column are fixed. The task here is to count the number of normalized Latin squares of a
given order. The Latin squares were modeled as SAT formulas using the extended encoding
given in (Gomes and Shmoys, 2002). The exact counts for these formulas are known up to
order 11 (Ritter, 2003).

17



Markov-LB with Markov-LB with |REL
SampleSearch SampleCount SAT
Problem (n, k,c,w) Exact (Min| Avg | Per | Ord [Min| Avg | Per | Ord Best
A A A A A A A A A LB
Is8-norm | (512, 2,5584,255) |[5.40E+411(0.387/0.012(0.068|0.095 [0.310|0.027{0.090{0.090 [0.344|3.88E+11
1s9-norm | (729, 2,9009, 363) |[3.80E+417(0.347|0.021(0.055|0.070 [0.294|0.030{0.097| 0.074 [0.579|1.59E+17
1s10-norm| (1000, 2, 13820, 676) |7.60E~+24]0.304|0.002/0.077|0.044 |0.237| 0.016 [0.054| 0.050 |0.710(6.93E+24
Is11-norm| (1331, 2, 20350, 956) |5.40E+33|0.287| 0.023 [0.102]0.026 |0.227| 0.036 [0.094|0.034|0.783|7.37E+34

1s12-norm|(1728, 2, 28968, 1044) 0.251|0.007]0.045(0.011 (0.232{0.000(0.079| 0.002 |0.833|3.23E+4-43
1s13-norm|(2197, 2, 40079, 1558) 0.250| 0.005 [0.080(0.000(0.194| 0.015 |0.087| 0.044 |0.870|1.26E+55
Is14-norm|(2744, 2, 54124, 1971) 0.174/0.010 |0.057|0.000(0.140| 0.043 |0.065| 0.026 |0.899|2.72E+67
1s15-norm|(3375, 2, 71580, 2523) 0.189|0.015 |{0.080(0.000(0.130| 0.053 |0.077| 0.062 |0.923|4.84E+82
1s16-norm|(4096, 2, 92960, 2758) 0.158|0.000(0.055/0.001 [0.108| 0.030 0.053| 0.007 | X |[1.16E+97

Table 2: Table showing the log-relative error A of Relsat and four versions of Markov-
LB combined with SampleSearch and SampleCount respectively for Latin Square instances
after 10 hours of CPU time.

Markov-LB with Markov-LB with |REL
Ex SampleSearch SampleCount SAT
Problem (n, k,c,w) act Min| Avg | Per |Ord|Min|Avg| Per | Ord Best

A A A A A | A A A A LB

lang12 (576, 2,13584, 383) [2.16E+05|0.464|0.051|{0.128 [0.171]0.455]|0.067(|0.103[0.175/0.000(2.16E+405
langl6 | (1024, 2, 32320, 639) [6.53E+08]0.475(0.008(0.106|0.131{0.378]0.019{0.097[0.023| 0.365 |[7.68E+08
langl9 | (1444, 2, 54226, 927) [5.13E+11(0.405/0.041|0.109 [0.095]0.420(0.156]0.219{0.200{ 0.636 [1.70E+411
lang20 | (1600, 2, 63280, 1023) [5.27E+12{0.411{0.031{0.150 |0.102]0.424(0.217]0.188[0.123| 0.685 [2.13E+12
lang23 | (2116, 2,96370, 1407) [7.60E+15]0.389(0.058(0.119]0.100{0.418]0.215{0.284[0.211] X [9.15E+14
lang24 [(2304, 2, 109536, 1535)[9.37E+16(0.258( 0.076 [0.043|0.054|0.283|0.220(0.203[0.220| X |[1.74E+16
lang27 [(2916, 2,156114, 1919) 0.261|0.000(0.093 [0.107(0.364|0.264|0.291|0.267| X |7.67E419

Table 3: Table showing the log-relative error A of Relsat and four versions of Markov-LB
combined with SampleSearch and SampleCount respectively for Langford instances after 10
hours of CPU time.

Table 2 shows the results. The exact counts for Latin square instances are known only
up to order 11. As pointed out earlier, when the exact results are not known, we use the
highest lower bound reported by the schemes as a substitute for Z in Equation 33.

Among the different versions of Markov-LB with SampleSearch, we see that the average
scheme performs better than the martingale order statistics scheme on 5 out of 8 instances
while the martingale order statistics scheme is superior on the other 3 instances. The
minimum scheme is the weakest scheme while the martingale random permutation scheme
is between the minimum scheme and the average and martingale order statistics scheme.

Among the different versions of Markov-LB with SampleCount, we see very similar per-
formance. SampleSearch with Markov-LB generates better lower bounds than SampleCount
with Markov-LB on 6 out of the 8 instances. The lower bounds output by Relsat are sev-
eral orders of magnitude lower than those output by Markov-LB with SampleSearch and
Markov-LB with SampleCount.

Results on Langford instances Our second set of benchmark instances come from the
Langford’s problem domain. The problem is parameterized by its (integer) size denoted by
s. Given a set of s numbers {1,2,...,s}, the problem is to produce a sequence of length 2s
such that each i € {1, 2, ..., s} appears twice in the sequence and the two occurrences of
1 are exactly ¢ apart from each other. This problem is satisfiable only if n is 0 or 3 modulo
4. We encoded the Langford problem as a SAT formula using the channeling SAT encoding
described in (Walsh, 2001).
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Markov-LB with Markov-LB with REL
Ex- SampleSearch SampleCount SAT
Problem (n, k, c,w) act|Min| Avg | Per | Ord | Min | Avg | Per | Ord Best
A A A A A A A A A LB
9symml_gr_2pin_w6 | (2604, 2,36994, 413) 0.192(0.000(0.075/0.006 | 0.087 { 0.073 | 0.076 | 0.075|0.491 | 2.76E+53
9symml_gr_rcs.w6 | (1554,2,29119,613) 0.237/0.016 (0.117/0.023|0.117{ 0.060 | 0.041 | 0.009 |0.000| 9.95E+84
alu2_gr_rcs_.w8 (4080, 2, 83902, 1470) 0.224]0.097 (0.152|0.102 |0.000{ 0.906 | 0.023 | 0.345 | 0.762 |1.47E+235
apex7_gr_2pin_wb (1983, 2, 15358, 188) 0.158]0.003 [0.073|0.000| 0.064 [ 0.023 |0.047|0.036 | 0.547 | 2.71E+93
apex7_gr_rcs-wb (1500, 2, 11695, 290) 0.228(0.037(0.118/0.038 | 0.099 [0.000| 0.028 | 0.008 | 0.670 [3.04E+139
c499_gr_2pin_w6 (2070, 2, 22470, 263) 0.262|0.012(0.092/0.000{ X X X X 10.376| 6.84E4-54
c499_gr_rcs-w6 (1872, 2,18870, 462) 0.310{0.046 |0.164| 0.043 { 0.083 [ 0.042 | 0.062 |0.000| 0.391 | 1.07E+88
c880_gr_rcs-w7 (4592, 2, 61745, 1024) 0.223|0.110{0.142{0.110 {0.000{ 0.000 | 0.000|0.003 | 0.845 |1.37E+4278
example2_gr_2pin_w6| (3603, 2,41023, 350) 0.112]0.0000.026{ 0.000 [ 0.005 [ 0.005 | 0.005|0.005|0.756 |2.78 E+4159
example2_gr_rcs_w6 | (2664, 2,27684, 476) 0.176{0.050 |0.079{ 0.054 | 0.056 | 0.005 |0.000| 0.005 | 0.722 |1.47E+4263
terml_gr_2pin_w4 (746, 2, 3964, 31) 0.199(0.000(0.077|0.002| X X X X {0.141 | 7.68E+39
terml_gr_rcs_w4 (808, 2, 3290, 57) 0.252(0.000(0.090|0.017| X X X X [0.175|4.97TE+55
too_large_gr_res_w7 | (3633, 2, 50373, 1069) 0.156{0.026 (0.073|0.000{ X X X X 10.608|7.73E4182
too_large_gr_rcs_w8 | (4152, 2, 57495, 1330) 0.147(/0.000(0.038/0.020| X X X X 10.750 |8.36E+246
vda_gr_rcs_w9 (6498, 2,130997, 2402) 0.088(0.009 (0.030/0.000| X X X X 10.749|5.04E4-300

Table 4: Table showing the log-relative error A of Relsat and four versions of Markov-LB
combined with SampleSearch and SampleCount respectively for FPGA routing instances
after 10 hours of CPU time.

Table 3 shows the results. Among the different versions of Markov-LB with Sample-
Search, we see again the superiority of the average scheme. The martingale order statistics
and random permutation schemes are the second and the third best respectively. Among
the different versions of SampleCount based Markov-LB, we see a similar trend where the
average scheme performs better than other schemes on 6 out of the 7 instances.

Markov-LB with SampleSearch outperforms Markov-LB with SampleCount on 6 out
of the 7 instances. The lower bounds output by Relsat are inferior by several orders of
magnitude to the Markov-LB based lower bounds except on the langl2 instance which
RESLAT solves exactly.

Results on FPGA routing instances Our final SAT domain is that of the FPGA
routing instances. These instances are constructed by reducing FPGA (Field Programmable
Gate Array) detailed routing problems into a satisfiability formula. The instances were
generated by Gi-Joon Nam and were used in the SAT 2002 competition (Simon et al.,
2005).

We see (Table 4) a similar behavior to the Langford and Latin square instances in that
the average and the martingale order statistics schemes are better than other schemes. Sam-
pleSearch based Markov-LB yields better lower bounds than SampleCount based Markov-
LB on 11 out of the 17 instances. As in the other benchmarks, the lower bounds output by
Relsat are inferior by several orders of magnitude.

4.3.2 Results on Linkage instances

The Linkage networks are generated by converting biological linkage analysis data into a
Bayesian or Markov network. Linkage analysis is a statistical method for mapping genes
onto a chromosome (Ott, 1999). This is very useful in practice for identifying disease genes.
The input is an ordered list of loci Ly, ..., Li+1 with allele frequencies at each locus and
a pedigree with some individuals typed at some loci. The goal of linkage analysis is to
evaluate the likelihood of a candidate vector [0y, ..., 60| of recombination fractions for the
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Markov-LB with
SampleSearch VEC| Best
Problem (n, k, c,w) Exact |Min| Avg | Per [Ord LB
A A Al A A
BN_69.uai| (777,7,78,47) |5.28E-54 (0.082|0.029|0.031(0.034]|0.140| 1.56E-55
BN_70.uai| (2315, 5,159, 87) | 2.00E-71 [0.275|0.035|0.101(0.046|0.147 | 6.24E-74
BN _71.uai| (1740, 6, 202, 70) |5.12E-111(0.052|0.009{0.019(0.017]|0.035|5.76E-112
BN_72.uai| (2155, 6, 252, 86) |4.21E-150(0.021|0.002|0.004(0.007]0.023|2.38E-150
BN_73.uai|(2140, 5,216, 101)|2.26E-113(0.172|0.020|0.059(0.026]|0.121|1.19E-115
BN_74.uai| (749,6,66,45) |3.75E-45 (0.233|0.035|0.035(0.049|0.069| 1.09E-46
BN_75.uai| (1820, 5, 155, 92) | 5.88E-91 (0.077|0.005|0.024(0.019]|0.067| 1.98E-91
BN_76.uai| (2155, 7, 169, 64) |4.93E-110(0.109|0.015|0.043|0.018|0.153 |1.03E-111

Table 5: Table showing the log-relative error A of VEC and four versions of Markov-LB
combined with SampleSearch for Linkage instances from the UAI 2006 evaluation after 3
hours of CPU time.

Figure 1: A fragment of a Bayesian network used in genetic linkage analysis.

input pedigree and locus order. The component 6; is the candidate recombination fraction
between the loci L; and L.

The pedigree data can be represented as a Bayesian network with three types of random
variables: genetic loci variables which represent the genotypes of the individuals in the
pedigree (two genetic loci variables per individual per locus, one for the paternal allele and
one for the maternal allele), phenotype variables, and selector variables which are auxiliary
variables used to represent the gene flow in the pedigree. Figure 1 represents a fragment of
a network that describes parents-child interactions in a simple 2-loci analysis. The genetic
loci variables of individual 7 at locus j are denoted by L; j, and L; jn,. Variables X; ; , S; jp
and S; j,, denote the phenotype variable, the paternal selector variable and the maternal
selector variable of individual ¢ at locus j, respectively. The conditional probability tables
that correspond to the selector variables are parameterized by the recombination ratio 6.
The remaining tables contain only deterministic information. It can be shown that given
the pedigree data, computing the likelihood of the recombination fractions is equivalent to
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Markov-LB with
SampleSearch VEC| Best
Problem (n, k,c,w) Exact |Min| Avg | Per | Ord LB
A A A A A
pedigreel8.uai|(1184, 1,0, 26)| 7.18E-79 |0.062|0.004 | 0.011 [ 0.016 [0.000| 7.18E-79
pedigreel.uai | (334, 2,0,20) | 7.81E-15 |0.034| 0.020|0.020 | 0.020 |0.000| 7.81E-15
pedigree20.uai| (437,2,0,25) | 2.34E-30 {0.208/0.010 [ 0.011 | 0.029 [0.000| 2.34E-30
pedigree23.uai| (402, 1,0, 26) | 2.78E-39 [0.093|0.007 | 0.016 [ 0.019 [0.000| 2.78E-39
pedigree25.uail(1289, 1, 0, 38)(2.12E-119(0.006| 0.022 | 0.019 | 0.019 [0.024|1.69E-116
pedigree30.uai|(1289, 1,0, 27)| 4.03E-88 [0.014|0.039 | 0.039 [ 0.035 [0.042| 1.85E-84
pedigree37.uai|(1032, 1, 0, 25)(2.63E-117]0.031| 0.005 | 0.005 | 0.006 [0.000(2.63E-117
pedigree38.uai| (724, 1,0, 18) | 5.64E-55 [0.197/0.010 | 0.024 [ 0.023 [0.000| 5.65E-55
pedigree39.uai|(1272, 1, 0, 29)(6.32E-103]0.039| 0.003 [0.001{0.007 | 0.000 |7.96E-103
pedigree42.uai| (448,2,0,23) | 1.73E-31 [0.024/0.009 | 0.007 | 0.010 [0.000| 1.73E-31
pedigreel9.uai| (793, 2, 0, 23) 0.158/0.018 |0.000] 0.031 [0.011 | 3.67E-59
pedigree31.uai|(1183, 2, 0, 45) 0.059(0.000{0.003 |0.011|{0.083 | 1.03E-70
pedigree34.uai|(1160, 1, 0, 59) 0.211]0.006 [0.000{0.012 [0.174 | 4.34E-65
pedigreel3.uai|(1077, 1,0, 51) 0.175|0.000]0.038 {0.023 {0.163 | 2.94E-32
pedigree40.uai| (1030, 2, 0, 49) 0.126]0.000] 0.036 | 0.008 [0.025 | 4.26E-89
pedigree41.uai|(1062, 2, 0, 52) 0.079/0.000{0.012{0.010[0.049 | 2.29E-77
pedigreed4.uai| (811, 1, 0, 29) 0.045(0.002]0.007|0.009 [0.000| 2.23E-64
pedigreebl.uail(1152, 1,0, 51) 0.150{0.003]0.02710.000{0.139 | 1.01E-74
pedigree7.uai [(1068, 1, 0, 56) 0.127]0.000{0.019{0.009 [ 0.101 | 6.42E-66
pedigree9.uai (1118, 2,0,41) 0.072/0.000{ 0.009 {0.009 [0.028 | 1.41E-79

Table 6: Table showing the log-relative error A of VEC and four versions of Markov-LB
combined with SampleSearch for Linkage instances from the UAI 2008 evaluation after 3
hours of CPU time.

computing the probability of evidence on the Bayesian network that model the problem (for
more details consult (Fishelson and Geiger, 2003)).

Table 5 shows the results for linkage instances used in the UAI 2006 evaluation (Bilmes
and Dechter, 2006). Here, we compare Markov-LB with SampleSearch with VEC. ATB
(Bidyuk and Dechter, 2006) does not work on instances having determinism and therefore
we do not report on it here. We clearly see that SampleSearch based Markov-LB yields
higher lower bounds than VEC. Remember, however that the lower bounds output by
VEC are correct (with probability 1) while the lower bounds output by Markov-LB are
correct with probability > 0.99. We see that the average scheme is the best performing
scheme. Martingale order statistics scheme is the second best while the Martingale random
permutation scheme is the third best. The minimum scheme is the worst performing scheme.

Table 6 reports the results on Linkage instances encoded as Markov networks, used in
the UAT 2008 evaluation (Darwiche et al., 2008). VEC solves 10 instances exactly. On these
instances, the lower bound output by SampleSearch based Markov-LB are quite accurate as
evidenced by the small log relative error. On instances which VEC does not solve exactly,
we clearly see that Markov-LB with SampleSearch yields higher lower bounds than VEC.

Comparing between different versions of Markov-LB, we see that the average scheme is
overall the best performing scheme. The Martingale order statistics scheme is the second
best scheme while the Martingale random permutation scheme is the third best.
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Markov-LB with
SampleSearch VEC| Best

Problem (n, k,c,w) Exact |Min| Avg | Per | Ord LB
A A A A A

fs-01.uai (10,2,7,2) 5.00E-01 {0.000{0.000 | 0.000|0.000|0.000| 5.00E-01
fs-04.uai (262, 2,226, 12) 1.53E-0510.116{0.116 |0.116 | 0.116 |0.000| 1.53E-05
fs-07.uai (1225,2,1120, 35) |9.80E-17 [0.028]0.004 [0.014 [0.016 [0.079| 1.78E-15
fs-10.uai (3385,2,3175,71) | 7.89E-31(0.071/0.064(0.064 [0.065| X |9.57E-33
fs-13.uai (7228, 2,6877,119) | 1.34E-51 |0.077|0.077]0.077|0.077| X |1.69E-55
fs-16.uai (13240, 2,12712,171)| 8.64E-78 |0.085/0.019|0.048 | 0.025| X |3.04E-79
fs-19.uai (21907, 2, 21166, 243)|2.13E-109(0.051|0.050| 0.050 | 0.050| X |8.40E-115
fs-22.uai (33715, 2, 32725, 335)|2.00E-146|0.053|0.006| 0.022 | 0.009 | X |2.51E-147
fs-25.uai (49150, 2, 47875, 431)|7.18E-189|0.050| 0.005 | 0.026 |0.004| X |1.57E-189
fs-28.uai (68698, 2, 67102, 527)|9.83E-237|0.231| 0.017|0.023|0.011| X |4.53E-237
fs-29.uai (76212, 2, 74501, 559)|6.82E-254(0.259| 0.101 | 0.201 |0.027| X [9.44E-255

mastermind_03_08_03| (1220, 2, 48, 20) 9.79E-08 (0.283] 0.039 | 0.034 | 0.096 |0.000| 9.79E-08
mastermind _03_08_04| (2288, 2, 64, 30) 8.77E-09 (0.562| 0.045 | 0.145|0.131 |0.000| 8.77E-09
mastermind_03_08_05| (3692, 2, 80, 42) 8.90E-11 (0.432/0.041{0.021|0.095|0.000| 1.44E-10
mastermind_04_08_03| (1418, 2,48, 22) 8.39E-08 (0.297|0.041 | 0.072]0.0820.000| 8.39E-08
mastermind_04_08_04| (2616, 2, 64, 33) 2.20E-08 |0.640|0.026|0.155|0.1030.034 | 1.38E-08

( )

( )

( )

mastermind_05_08_03 1616, 2, 48, 28 5.30E-07 |0.625]0.062 | 0.188 |0.185|0.000| 5.30E-07
mastermind_06_08_03 1814, 2,48, 31 1.80E-08 10.510/0.058 |0.193]0.175 [0.000| 1.80E-08
mastermind_10_08_03 2606, 2, 48, 56 1.92E-07 |0.839|0.058|0.297|0.162 [ 0.058 | 7.90E-08

Table 7: Table showing the log-relative error A of VEC and four versions of Markov-LB
combined with SampleSearch for relational instances after 3 hours of CPU time.

4.3.3 Results on Relational instances

The relational instances are generated by grounding the relational Bayesian networks using
the Primula tool (Chavira et al., 2006). We experimented with ten Friends and Smoker
networks and six mastermind networks from this domain which have between 262 to 76,212
variables.

In Table 7, we report the results on instances with 10 Friends and Smoker networks and 6
mastermind networks from this domain which have between 262 to 76,212 variables. On the
11 friends and smokers network, we can see that as the problems get larger the lower bounds
output by Markov-LB with SampleSearch are higher than VEC. This clearly indicates that
Markov-LB with SampleSearch is more scalable than VEC. VEC solves exactly six out
of the eight mastermind instances while on the remaining two instances Markov-LB with
SampleSearch yields higher lower bounds than VEC.

4.4 Summary of Experimental Results

Based on our large scale experimental evaluation, we see that applying Markov inequality
and its generalizations to multiple samples generated by SampleSearch and [JGP-Sampling
is more scalable than deterministic approaches such as Variable elimination and conditioning
(VEC), Relsat and ATB. Among the different versions of Markov-LB, we find that the
average and martingale order statistics schemes consistently yield higher lower bounds and
therefore they should be preferred over the minimum scheme as well as the martingale
random permutation scheme.
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5 Conclusion and Future Work

Weighted counting is an important problem in the context of graphical models because
it includes many problems such as finding the probability of evidence and the partition
function as special cases. In this paper, we considered the problem of probabilistically lower
bounding weighted counts and introduced several schemes based on importance sampling
and Markov inequality for it. Our new schemes extend the one-sample Markov inequality
to multiple samples using various statistics such as the average, maximum and order, which
significantly improves its power and accuracy. Empirically, we showed that our new schemes
combined on top of state of-the-art importance sampling approaches such as IJGP-sampling
(Gogate, 2009), SampleSearch (Gogate and Dechter, 2011), and SampleCount (Gomes et al.,
2007) are substantially superior to state-of-the-art deterministic algorithms such as ATB
(Bidyuk et al., 2010), Relsat (Bayardo and Pehoushek, 2000) and variable elimination and
conditioning.

Several avenues remain for future work. An interesting future work is to develop ran-
domized algorithms for probabilistically upper bounding the weighted counts. Another line
of future work is relaxing the probabilistic guarantees requirement to a weaker statistical
guarantees requirement. Some initial results on this are reported in (Kroc et al., 2008;
Davies and Bacchus, 2008). A third line of future work is combining various schemes. A
possible approach is to divide the samples into k£ bins, apply different schemes to different
bins, consider the output as k samples and then apply one of the five schemes on the k
samples.
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